首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
The electrical activity and the respiratory changes in length of the third parasternal intercostal muscle were measured during single-breath airway occlusion in 12 anesthetized, spontaneously breathing dogs in the supine posture. During occluded breaths in the intact animal, the parasternal intercostal was electrically active and shortened while pleural pressure fell. In contrast, after section of the third intercostal nerve at the chondrocostal junction and abolition of parasternal electrical activity, the muscle always lengthened. This inspiratory muscle lengthening must be related to the fall in pleural pressure; it was, however, approximately 50% less than the amount of muscle lengthening produced, for the same fall in pleural pressure, by isolated stimulation of the phrenic nerves. These results indicate that 1) the parasternal inspiratory shortening that occurs during occluded breaths in the dog results primarily from the muscle inspiratory contraction per se, and 2) other muscles of the rib cage, however, contribute to this parasternal shortening by acting on the ribs or the sternum. The present studies also demonstrate the important fact that the parasternal inspiratory contraction in the dog is really agonistic in nature.  相似文献   

2.
Inspiratory rhythm in airway smooth muscle tone   总被引:2,自引:0,他引:2  
In anesthetized paralyzed open-chested cats ventilated with low tidal volumes at high frequency, we recorded phrenic nerve activity, transpulmonary pressure (TPP), and either the tension in an upper tracheal segment or the impulse activity in a pulmonary branch of the vagus nerve. The TPP and upper tracheal segment tension fluctuated with respiration, with peak pressure and tension paralleling phrenic nerve activity. Increased end-tidal CO2 or stimulation of the carotid chemoreceptors with sodium cyanide increased both TPP and tracheal segment tension during the increased activity of the phrenic nerve. Lowering end-tidal CO2 or hyperinflating the lungs to achieve neural apnea (lack of phrenic activity) caused a decrease in TPP and tracheal segment tension and abolished the inspiratory fluctuations. During neural apnea produced by lowering end-tidal CO2, lung inflation caused no further decrease in tracheal segment tension and TPP. Likewise, stimulation of the cervical sympathetics, which caused a reduction in TPP and tracheal segment tension during normal breathing, caused no further reduction in these parameters when the stimulation occurred during neural apnea. During neural apnea the tracheal segment tension and TPP were the same as those following the transection of the vagi or the administration of atropine (0.5 mg/kg). Numerous fibers in the pulmonary branch of the vagus nerve fired in synchrony with the phrenic nerve. Only these fibers had activity which paralleled changes in TPP and tracheal tension. We propose that the major excitatory input to airway smooth muscle arises from cholinergic nerves that fire during inspiration, which have preganglionic cell bodies in the ventral respiratory group in the region of the nucleus ambiguus and are driven by the same pattern generators that drive the phrenic and inspiratory intercostal motoneurons.  相似文献   

3.
The effects of diaphragm paralysis on respiratory activity were assessed in 13 anesthetized, spontaneously breathing dogs studied in the supine position. Transient diaphragmatic paralysis was induced by bilateral phrenic nerve cooling. Respiratory activity was assessed from measurements of ventilation and from the moving time averages of electrical activity recorded from the intercostal muscles and the central end of the fifth cervical root of the phrenic nerve. The degree of diaphragm paralysis was evaluated from changes in transdiaphragmatic pressure and reflected in rib cage and abdominal displacements. Animals were studied both before and after vagotomy breathing O2, 3.5% CO2 in O2, or 7% CO2 in O2. In dogs with intact vagi, both peak and rate of rise of phrenic and inspiratory intercostal electrical activity increased progressively as transdiaphragmatic pressure fell. Tidal volume decreased and breathing frequency increased as a result of a shortening in expiratory time. Inspiratory time and ventilation were unchanged by diaphragm paralysis. These findings were the same whether O2 or CO2 in O2 was breathed. After vagotomy, no significant change in phrenic or inspiratory intercostal activity occurred with diaphragm paralysis in spite of increased arterial CO2 partial pressure. Ventilation and tidal volume decreased significantly, and respiratory timing was unchanged. These results suggest that mechanisms mediated by the vagus nerves account for the compensatory increase in respiratory electrical activity during transient diaphragm paralysis. That inspiratory time is unchanged by diaphragm paralysis whereas the rate or rise of phrenic nerve activity increases suggest that reflexes other than the Hering-Breuer reflex contribute to the increased respiratory response.  相似文献   

4.
Wang L  Liu L  Xu X 《生理学报》1999,51(4):439-444
在44只氨基甲酸乙酯麻醉、断双侧迷走神经的健康成年家兔上、观察电、化学刺激面神经核背内侧区和腹内侧区对颏舌肌和膈肌肌电活动的影响。结果如下:(1)长串电脉冲刺激dMNF引起颏舌肌和膈肌肌电活动明显增强;(2)短串电脉冲刺激dMFN,当刺激落用于吸气相时,引起颏舌肌和膈肌在呼气相的肌是有终止;(3)长串电脉冲刺激vMNF使颏舌肌和膈肌肌电活动明显被抑制;(4)短中电脉冲刺激vMNF,当刺激落位有气相  相似文献   

5.
The genioglossus (GG) muscle activity of four infants with micrognathia and obstructive sleep apnea was recorded to assess the role of this tongue muscle in upper airway maintenance. Respiratory air flow, esophageal pressure, and intramuscular GG electromyograms (EMG) were recorded during wakefulness and sleep. Both tonic and phasic inspiratory GG-EMG activity was recorded in each of the infants. On occasion, no phasic GG activity could be recorded; these silent periods were unassociated with respiratory embarrassment. GG activity increased during sigh breaths. GG activity also increased when the infants spontaneously changed from oral to nasal breathing and, in two infants, with neck flexion associated with complete upper airway obstruction, suggesting that GG-EMG activity is influenced by sudden changes in upper airway resistance. During sleep, the GG-EMG activity significantly increased with 5% CO2 breathing (P less than or equal to 0.001). With nasal airway occlusion during sleep, the GG-EMG activity increased with the first occluded breath and progressively increased during the subsequent occluded breaths, indicating mechanoreceptor and suggesting chemoreceptor modulation. During nasal occlusion trials, there was a progressive increase in phasic inspiratory activity of the GG-EMG that was greater than that of the diaphragm activity (as reflected by esophageal pressure excursions). When pharyngeal airway closure occurred during a nasal occlusion trial, the negative pressure at which the pharyngeal airway closed (upper airway closing pressure) correlated with the GG-EMG activity at the time of closure, suggesting that the GG muscle contributes to maintaining pharyngeal airway patency in the micrognathic infant.  相似文献   

6.
To determine the combined effect of increased subatmospheric upper airway pressure and withdrawal of phasic volume feedback from the lung on genioglossus muscle activity, the response of this muscle to intermittent nasal airway occlusion was studied in 12 normal adult males during sleep. Nasal occlusion at end expiration was achieved by inflating balloon-tipped catheters located within the portals of a nose mask. No seal was placed over the mouth. During nose breathing in non-rapid-eye-movement (NREM) sleep, nasal airway occlusion resulted in multiple respiratory efforts before arousal. Mouth breathing was not initiated until arousal. Phasic inspiratory genioglossus activity was present in eight subjects during NREM sleep. In these subjects, comparison of peak genioglossus inspiratory activity on the first three occluded efforts to the value just before occlusion showed an increase of 4.7, 16.1, and 28.0%, respectively. The relative increases in peak genioglossus activity were very similar to respective increases in peak diaphragm activity. Arousal was associated with a large burst in genioglossus activity. During airway occlusion in rapid-eye-movement (REM) sleep, mouth breathing could occur without a change in sleep state. In general, genioglossus responses to airway occlusion in REM sleep were similar in pattern to those in NREM sleep. A relatively small reflex activation of upper airway muscles associated with a sudden increase in subatmospheric pressure in the potentially collapsible segment of the upper airway may help compromise upper airway patency during sleep.  相似文献   

7.
An imbalance in the amplitude of electrical activity of the upper airway and chest wall inspiratory muscles is associated with both collapse and reopening of the upper airway in obstructive sleep apnea (OSA). The purpose of this study was to examine whether timing of the phasic activity of these inspiratory muscles also was associated with changes in upper airway caliber in OSA. We hypothesized that activation of upper airway muscle phasic electrical activity before activation of the chest wall pump muscles would help preserve upper airway patency. In contrast, we anticipated that the reversal of this pattern with delayed activation of upper airway inspiratory muscles would be associated with upper airway narrowing or collapse. Therefore the timing and amplitude of midline transmandibular and costal margin moving time average (MTA) electromyogram (EMG) signals were analyzed from 58 apnea cycles in stage 2 sleep in six OSA patients. In 86% of the postapnea breaths analyzed the upper airway MTA peak activity preceded the chest wall peak activity. In 86% of the obstructed respiratory efforts the upper airway MTA peak activity followed the chest wall peak activity. The onset of phasic electrical activity followed this same pattern. During inspiratory efforts when phasic inspiratory EMG amplitude did not change from preapnea to apnea, the timing changes noted above occurred. Even within breaths the relative timing of the upper airway and chest wall electrical activities was closely associated with changes in the pressure-flow relationship. We conclude that the relative timing of inspiratory activity of the upper airway and chest wall inspiratory muscles fluctuates during sleep in OSA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
This study was designed to investigate the influence of hypoxia-evoked augmented breaths (ABs) on respiratory-related tongue protrudor and retractor muscle activities and inspiratory pump muscle output. Genioglossus (GG) and hyoglossus (HG) electromyogram (EMG) activities and respiratory-related tongue movements were compared with peak esophageal pressure (Pes; negative change in pressure during inspiration) and minute Pes (Pes x respiratory frequency = Pes/min) before and after ABs evoked by sustained poikilocapnic, isocapnic, and hypercapnic hypoxia in spontaneously breathing, anesthetized rats. ABs evoked by poikilocapnic and isocapnic hypoxia triggered long-lasting (duration at least 10 respiratory cycles) reductions in GG and HG EMG activities and tongue movements relative to pre-AB levels, but Pes was reduced transiently (duration of <10 respiratory cycles) after ABs. Adding 7% CO(2) to the hypoxic inspirate had no effect on the frequency of evoked ABs, but this prevented long-term declines in tongue muscle activities. Bilateral vagotomy abolished hypoxia-induced ABs and stabilized drive to the tongue muscles during each hypoxic condition. We conclude that, in the rat, hypoxia-evoked ABs 1) elicit long-lasting reductions in protrudor and retractor tongue muscle activities, 2) produce short-term declines in inspiratory pump muscle output, and 3) are mediated by vagal afferents. The more prolonged reductions in pharyngeal airway vs. pump muscle activities may lead to upper airway narrowing or collapse after spontaneous ABs.  相似文献   

9.
The aim of the work was to study the influence of pyracetam on respiratory muscles fatigue and ventilatory disorders caused by inspiratory resistive load in cats. The experiments have show that after the use of pyracetam in conditions of fatigue total bioelectric activities of inspiratory muscles and of the phrenic nerve and transdiaphragmal pressure restore; duty cycle, respiratory rate and tidal volume per minute decrease. The conclusion is drawn that pyracetam in the dose 300 mg/kg, in intravenous administration, compensates inspiratory muscle fatigue at the expense of its central mechanism of action.  相似文献   

10.
To determine if depression of central respiratory output during progressive brain hypoxia (PBH) can be generalized to other brain stem outputs, we examined the effect of PBH on the tonic (tSCS) and inspiratory-synchronous (iSCS) components of preganglionic superior cervical sympathetic (SCS) nerve activity. Peak phrenic and SCS activity were measured in nine anesthetized, paralyzed, peripherally chemodenervated, vagotomized cats. PBH was produced by inhalation of 0.5% CO in 40% O2 while blood pressure and end-tidal CO2 were maintained constant. A progressive reduction in arterial O2 content from 14.3 +/- 0.6 to 4.5 +/- 0.3 vol% caused a 79 +/- 7% depression of peak phrenic activity and an 84 +/- 10% reduction of iSCS activity, but tSCS activity increased 42 +/- 21%. During CO2 rebreathing, iSCS activity increased in parallel with peak phrenic activity while tSCS activity was unchanged. The slopes of the CO2 responses of both phrenic (6.3 +/- 1.2%max/mmHg) and iSCS (4.6 +/- 0.8%max/mmHg) activity were unaffected by PBH. In four of nine hypocapnic and three of nine hypoxic studies, inspiratory activity in the SCS nerve was observed even after completely silencing the phrenic neurogram.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The effect of stimulation of afferent mesenteric nerves on tidal volume (VT), phrenic nerve, and external intercostal muscle activities was studied in anesthetized spontaneously breathing cats. Both mechanical distension of the small intestine and electrical stimulation of the mesenteric nerves resulted in an initial inspiratory inhibition of VT followed by a gradual recovery above the prestimulus controls. Changes in VT were accompanied by a depression of phrenic nerve activity and an excitation of external intercostal muscle activity. During the recovery phase of VT, the amplitude of phrenic nerve activity returned only partially, whereas the activity of the external intercostal muscle was greater than the prestimulus controls. In a second group of experiments, brief tetanic stimulation at the beginning of inspiration led to a complete and maintained inhibition of phrenic nerve activity but with a simultaneous excitation of external intercostal muscle activity and without any change in VT; whereas expiratory stimulation caused a decrease in expiratory abdominal muscle activity, without changing the peak amplitude of phrenic nerve activity. The respiratory changes observed with distension of the small intestine were abolished after denervation of the mesenteric plexus. It is concluded that activation of the visceral afferents of the mesenteric region reflexly changes diaphragmatic breathing to intercostal breathing. It is assumed that such a type of breathing pattern may occur in pregnancy and in pathophysiological situations involving splanchnic viscera.  相似文献   

12.
Hypoxic episodes can evoke a prolonged augmentation of inspiratory motor output called long-term facilitation (LTF). Hypoglossal (XII) LTF has been assumed to represent increased tongue protrudor muscle activation and pharyngeal airway dilation. However, recent studies indicate that tongue protrudor and retractor muscles are coactivated during inspiration, a behavior that promotes upper airway patency by reducing airway compliance. These experiments tested the hypothesis that XII LTF is manifest as increased inspiratory drive to both tongue protrudor and retractor muscles. Neurograms were recorded in the medial XII nerve branch (XIIMED; contains tongue protrudor motor axons), the lateral XII nerve branch (XIILAT; contains tongue retractor motor axons), and the phrenic nerve in anesthetized, vagotomized, paralyzed, ventilated male rats. Strict isocapnia was maintained for 60 min after five 3-min hypoxic episodes (arterial Po(2) = 35 +/- 2 Torr) or sham treatment. Peak inspiratory burst amplitude showed a persistent increase in XIIMED, XIILAT, and phrenic nerves during the hour after episodic hypoxia (P < 0.05 vs. sham). This effect was present regardless of the quantification method (e.g., % baseline vs. percent maximum); however, comparisons of the relative magnitude of LTF between neurograms (e.g., XIIMED vs. XIILAT) varied with the normalization procedure. There was no persistent effect of episodic hypoxia on inspiratory burst frequency (P > 0.05 vs. sham). These data demonstrate that episodic hypoxia induces LTF of inspiratory drive to both tongue protrudor and retractor muscles and underscore the potential contribution of tongue muscle coactivation to regulation of upper airway patency.  相似文献   

13.
To study the effects of continuous positive airway pressure (CPAP) on lung volume, and upper airway and respiratory muscle activity, we quantitated the CPAP-induced changes in diaphragmatic and genioglossal electromyograms, esophageal and transdiaphragmatic pressures (Pes and Pdi), and functional residual capacity (FRC) in six normal awake subjects in the supine position. CPAP resulted in increased FRC, increased peak and rate of rise of diaphragmatic activity (EMGdi and EMGdi/TI), decreased peak genioglossal activity (EMGge), decreased inspiratory time and inspiratory duty cycle (P less than 0.001 for all comparisons). Inspiratory changes in Pes and Pdi, as well as Pes/EMGdi and Pdi/EMGdi also decreased (P less than 0.001 for all comparisons), but mean inspiratory airflow for a given Pes increased (P less than 0.001) on CPAP. The increase in mean inspiratory airflow for a given Pes despite the decrease in upper airway muscle activity suggests that CPAP mechanically splints the upper airway. The changes in EMGge and EMGdi after CPAP application most likely reflect the effects of CPAP and the associated changes in respiratory system mechanics on the afferent input from receptors distributed throughout the intact respiratory system.  相似文献   

14.
Receptors responding to transmural pressure, airflow, and contraction of laryngeal muscles have been previously identified in the larynx. To assess the relative contribution of these three types of receptors to the reflex changes in breathing pattern and upper airway patency, we studied diaphragmatic (DIA) and posterior cricoarytenoid muscle (PCA) activity in anesthetized dogs during spontaneous breathing and occluded efforts with and without bypassing the larynx. Inspiratory duration (TI) was longer, mean inspiratory slope (peak DIA/TI) was lower, and PCA activity was greater with upper airway occlusion than with tracheal occlusion (larynx bypassed). Bilateral section of the superior laryngeal nerves eliminated these differences. When respiratory airflow was diverted from the tracheostomy to the upper airway the only change attributable to laryngeal afferents was an increase in PCA activity. These results confirm the importance of the superior laryngeal nerves in the regulation of breathing pattern and upper airway patency and suggest a prevalent role for laryngeal negative pressure receptors.  相似文献   

15.
To study respiratory timing mechanisms in patients with occlusive apnea, inspiratory and expiratory times (TI and TE) were calculated from the diaphragmatic electromyogram obtained in seven patients during non-rapid-eye-movement (NREM) sleep. Peak diaphragmatic activity (EMGdi) had a curvilinear relationship with TI during the ventilatory and occlusive phases such that TI shortened as EMGdi decreased during the ventilatory phase (r = 0.87, P less than 0.05) and it prolonged as EMGdi increased during the occlusive phase (r = 0.89, P less than 0.02). However, EMGdi vs. TI for the occlusive phase was shifted to the right of that for the ventilatory phase, reflecting the relatively longer TI during upper airway occlusion. TI also had a linear relationship with pleural pressure (r = 0.94, P less than 0.001) that remained unchanged during the ventilatory and occlusive phases such that it prolonged as negative inspiratory pressure increased. These results indicate that respiratory timing is continuously modified in patients with occlusive apnea as inspiratory neural drive fluctuates during NREM sleep and suggest that this modification is due to the net effects of changing inspiratory neural drive and afferent input predominantly from upper airway mechanoreceptors.  相似文献   

16.
Recently, a vagally mediated excitatory lung reflex (ELR) causing neural hyperpnea and tachypnea was identified. Because ventilation is regulated through both inspiratory and expiratory processes, we investigated the effects of the ELR on these two processes simultaneously. In anesthetized, open-chest, and artificially ventilated rabbits, we recorded phrenic nerve activity and abdominal muscle activity to assess the breathing pattern when the ELR was evoked by directly injecting hypertonic saline (8.1%, 0.1 ml) into lung parenchyma. Activation of the ELR stimulated inspiratory activity, which was exhibited by increasing amplitude, burst rate, and duty cycle of the phrenic activity (by 22 +/- 4, 33 +/- 9, and 57 +/- 11%, respectively; n = 13; P < 0.001), but suppressed expiratory muscle activity. The expiratory muscle became silent in most cases. On average, the amplitude of expiratory muscle activity decreased by 88 +/- 5% (P < 0.002). The suppression reached the peak at 6.9 +/- 1 s and lasted for 200 s (median). Injection of H(2)O(2) into the lung parenchyma produced similar responses. By suppressing expiration, the ELR produces a shift in the workload from expiratory muscle to inspiratory muscle. Therefore, we conclude that the ELR may contribute to inspiratory muscle fatigue, not only by directly increasing the inspiratory activity but also by suppressing expiratory activity.  相似文献   

17.
We evaluated the hypothesis that the tonic discharge of pulmonary stretch receptors significantly influences the respiratory-modulated activities of cranial nerves. Decerebrate and paralyzed cats were ventilated with a servo-respirator, which produced changes in lung volume in parallel with integrated phrenic activity. Activities of the facial, hypoglossal, and recurrent laryngeal nerves and nerves to the thyroarytenoid muscle and triangularis sterni were recorded. After a stereotyped pattern of lung inflation, tracheal pressure was held at 1, 2, 4, or 6 cmH2O during the subsequent ventilatory cycle. Increases in tracheal pressure caused progressive reductions in both inspiratory and expiratory cranial nerve activities and progressive elevations in triangularis sterni discharge; peak levels of phrenic activity declined modestly. Similar changes were observed in normocapnia and hypercapnia. We conclude that the tonic discharge of pulmonary stretch receptors is an important determinant of the presence and magnitude of respiratory-modulated cranial nerve activity. This reflex mechanism may maintain upper airway patency and also regulate expiratory airflow.  相似文献   

18.
To determine upper airway and respiratory muscle responses to nasal continuous negative airway pressure (CNAP), we quantitated the changes in diaphragmatic and genioglossal electromyographic activity, inspiratory duration, tidal volume, minute ventilation, and end-expiratory lung volume (EEL) during CNAP in six normal subjects during wakefulness and five during sleep. During wakefulness, CNAP resulted in immediate increases in electromyographic diaphragmatic and genioglossal muscle activity, and inspiratory duration, preserved or increased tidal volume and minute ventilation, and decreased EEL. During non-rapid-eye-movement and rapid-eye-movement sleep, CNAP was associated with no immediate muscle or timing responses, incomplete or complete upper airway occlusion, and decreased EEL. Progressive diaphragmatic and genioglossal responses were observed during non-rapid-eye-movement sleep in association with arterial O2 desaturation, but airway patency was not reestablished until further increases occurred with arousal. These results indicate that normal subjects, while awake, can fully compensate for CNAP by increasing respiratory and upper airway muscle activities but are unable to do so during sleep in the absence of arousal. This sleep-induced failure of load compensation predisposes the airways to collapse under conditions which threaten airway patency during sleep. The abrupt electromyogram responses seen during wakefulness and arousal are indicative of the importance of state effects, whereas the gradual increases seen during sleep probably reflect responses to changing blood gas composition.  相似文献   

19.
Studies were conducted to determine the effects of intercostal muscle spindle endings (MSEs) and tendon organs (TOs) on medullary inspiratory activity in decerebrate and allobarbital-anesthetized cats. Impeded muscle contractions, elicited by electrical stimulation of the peripheral cut end of the T6 ventral root, were used to stimulate external and internal intercostal TOs without MSEs. Impeded contractions of either the external or internal intercostal muscles reduced phrenic and medullary inspiratory neuronal activities. Vibration was used to selectively stimulate external or internal intercostal MSEs (90 and 40 micron amplitude, respectively). Selective stimulation of either external or internal intercostal MSEs did not change phrenic or medullary inspiratory neuronal activities. It is concluded that both external and internal intercostal TOs have a generalized inhibitory effect on medullary inspiratory activity and intercostal MSEs have no effect on medullary inspiratory activity.  相似文献   

20.
The purpose of the present study was to examine the respiratory motor response to diaphragm fatigue. Studies were performed using in situ diaphragm muscle strips dissected from the left costal diaphragm in anesthetized dogs. The left inferior phrenic artery was isolated, and diaphragmatic strip fatigue was elicited by occluding this vessel. Strip tension, strip electromyographic activity, parasternal electromyographic activity, and the electromyogram of the right hemidiaphragm were recorded during spontaneous breathing efforts before, during, and after periods of phrenic arterial occlusion. In separate trials, we examined the neuromuscular responses to phrenic arterial occlusion at arterial PCO2 (PaCO2) of 40, 55, and 75 Torr. No fatigue and no alteration in electromyographic activities were observed in trials at PaCO2 of 40 Torr. During trials at PaCO2 of 55 and 75 Torr, however, diaphragm tension fell, the peak height of the diaphragm strip electromyogram decreased, and the peak heights of the parasternal and right hemidiaphragm electromyograms increased. Relief of phrenic arterial occlusion resulted in a return of strip tension and all electromyograms toward base-line values. In additional experiments, the left phrenic nerve was sectioned in the chest after producing fatigue. Phrenic section was followed by an increase in the peak height of the left phrenic neurogram (recorded above the site of section). This latter finding suggests that diaphragm strip motor drive may be reflexly inhibited during the development of fatigue by neural traffic carried along phrenic afferents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号