首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Predators in nature include an array of prey types in their diet, and often select certain types over others. We examined (i) prey selection by sea stars (Asterias vulgaris) and rock crabs (Cancer irroratus) when offered two prey types, juvenile sea scallops (Placopecten magellanicus) and blue mussels (Mytilus edulis), and (ii) the effect of prey density on predation, prey selection, and component behaviours. We quantified predation rates, behavioural components (proportion of time spent searching for prey, encounter probabilities) and various prey characteristics (shell strength, energy content per prey, handling time per prey) to identify mechanisms underlying predation patterns and to assess the contribution of active and passive prey selection to observed selection of prey. Sea stars strongly selected mussels over scallops, resulting from both active and passive selection. Active selection was associated with the probability of attack upon encounter; it was higher on mussels than on scallops. The probability of capture upon attack, associated with passive selection, was higher for mussels than for scallops, since mussels can not swim to escape predators. Sea stars consumed few scallops when mussels were present, and so did not have a functional response on scallops (the target prey). Rock crabs exhibited prey switching: they selected mussels when scallop density was very low, did not select a certain prey type when scallop density was intermediate, and selected scallops when scallop density was high relative to mussel density. The interplay between encounter rate (associated with passive selection) and probability of consumption upon capture (associated with both active and passive selection) explained observed selection by crabs. Scallops were encountered by crabs relatively more often and/or mussels less often than expected from random movements of animals at all scallop densities. However, the probability of consumption varied with scallop density: it was lower for scallops than mussels at low and intermediate scallop densities, but tended to be higher for scallops than mussels at high scallop densities. When mussels were absent, crabs did not have a functional response on scallops, but rather were at the plateau of the response. When mussels were present with scallops at relatively low density, crabs exhibited a type II functional response on scallops. Our results have implications for the provision of protective refuges for species of interest (i.e., scallops) released onto the sea bed, such as in population enhancement operations and bottom aquaculture.  相似文献   

2.
The diet of the starfish, Marthasterias glacialis (L.), consists of a variety of mollusc species, as well as ascidians and barnacles. Starfish densities are maximal where mussels, Choromytilus meridionalis (Krauss), are abundant and in such areas mussels form the bulk of the diet. Laboratory feeding experiments indicate that Marthasterias glacialis select mussels of particular sizes and that the length of prey taken is an increasing function of predator arm length. The time taken to consume each mussel is determined by the ratio of shell length to starfish size. The number of mussels consumed per day increases only slightly with starfish size, but because the prey taken increase in size, energy consumption is maintained at a relatively consistent 1% of predator body energy per day. Using prey selection and feeding rate data for different sized starfish, predictive three dimensional predation surfaces are developed for a natural starfish population feeding on either one or two cohort Choromytilus meridionalis populations. The models indicate that predatory effort should be concentrated on the smallest mussels when a single adult cohort is present, but on recruiting mussels just above the minimum prey size limit where two cohorts are present. Other major predators of mussels, the rock lobster, Jasus lalandii (Milne Edwards), and the whelk, Natica tecta Anton, appear to select similar size-ranges of prey to starfish, despite their differing body forms and feeding methods. Since the juveniles of all three predators can only take small mussels, predator recruitment may well depend upon the successful settlement of strong mussel cohorts. Evidence for such entrainment of predator cohorts to settlements of mussels is presented.  相似文献   

3.
Predation by herring gullsLarus argentatus and oystercatchersHaematopus ostralegus was evaluated on a newly established musselMytilus edulis bed on tidal flats of the German Wadden Sea. The mussel bed covered an area of 2 ha and showed a decrease in biomass of 40% in the most densely covered parts from August to January. Synchronously, the extent of the mussel bed was reduced, resulting in a decrease of average biomass of 98% over the whole mussel bed. From the beginning of August 1994 to mid January 1995, the average size of mussels increased from 10.7 to 20.3 mm. The P/B-ratio was 0.68 in August and 0.18 between September and November. Herring gulls and oystercatchers were the most important mussel predators. On average, 266 herring gulls and 63 oystercatchers were present on the mussel bed during one low tide; 34% of the herring gulls and 78% of the oystercatchers were observed to be feeding. Herring gulls fed at a rate of 4.2 mussels per minute and oystercatchers at a rate of 1.3 mussels per minute. While herring gulls took the most common mussel sizes (mean: 20 mm), oystercatchers searched for the largest mussels available (mean: 25 mm). Herring gulls consumed 13 mussels/m2 (0.3g AFDW) during one day and oystercatchers 1.7 mussels/m2 (0.1 g AFDW). Predation by birds was compensated by 33% of the production. The proportion removed by bird predation amounted to 10% of abundance and to 16% of biomass (including production). Oystercatchers were responsible for 1% of the reduction in abundance and for 3% of biomass. Removal was highest in the most common size classes of mussels, mainly caused by herring gulls. However, the highest proportion of mussels was eaten in the largest size classes, mainly by oystercatchers. *** DIRECT SUPPORT *** A03B6035 00004  相似文献   

4.
Molluscan predation by the three-spot swimming crab was investigated. The dentition of the heteromorphic chelae allowed crushing, shearing, cutting and holding of prey. Laboratory investigations indicated that small mussels and gastropods were crushed, the larger mussels were prized open, and the foot of the larger gastropods shredded and bits removed. Stomach contents of freshly captured crabs indicated that the crabs are selective carnivores and preferred prey species which are not most abundant in situ (crabs from Kings Beach, Donax serra Röding; crabs from Maitlands River Beach, Bullia rhodostoma Reeve). Ovalipes punctatus (De Haan) foraged on a variety of prey and had no upper prey size limit, but the crabs did show preferences for certain prey sizes. Data indicate that the swimming crabs can effectively utilize the entire mollusc populations on the beaches as prey items.  相似文献   

5.
The profitability (energy content per second of handling time) of cockles, Cerastoderma edule, to oystercatchers, Haematopus ostralegus, increases with cockle size. In accordance with the predictions of optimal foraging theory, oystercatchers selected the more profitable (i.e. larger) cockles. The percentage abandoned at the different sites increased with the mean size taken, suggesting that attacks on large cockles were less likely to be successful. Oystercatchers use some visual cues to find prey during the day, but use only tactile cues at night. They take smaller prey at night, with a flesh content 25% less than those taken during the day.  相似文献   

6.
Observations made overseas of predation by blue mussels and zebra mussels on mesozooplankton (>200 μm) have raised concern within New Zealand that the Greenshell mussel, Perna canaliculus, which is cultured in large tonnages throughout hundreds of marine farms within the New Zealand coastal zone, could exert ecologically detrimental effects by preying on zooplankton. We conducted experiments at Clova Bay, Pelorus Sound in May 2002 to determine the rates that P. canaliculus ingests prey, up to and including the mesozooplankton size range. Single mussels from farms were incubated with seawater enriched with zooplankton (>60 μm) in gently circulated 15-l pails. Depletion of chlorophyll-a (chl-a), ciliate microzooplankton, and nauplii, copepodites, and adults of copepods was determined over 5 h, relative to controls with no mussels. Two experiments were made over consecutive days. Gut contents of these experimental mussels, and of mussels examined soon after collection from a farm, were described.Gut contents of experimental and of freshly collected mussels (standard shell length ∼90 mm) had numerous copepod parts, whole copepods and larval bivalves present. Experimental mussels cleared chl-a and ciliates from 59- to 137-l individual−1 day−1, respectively, averaged across the two experiments. Faster ciliate than chl-a clearance was probably caused by the high proportion (56%) of phytoplankton below the retention size for P. canaliculus (ca. 5 μm) and by faster ciliate grazing in controls than treatments. The average clearance rates of adult, copepodite, and naupliar copepod stages by mussels were 20, 31, and 49 l individual−1 day−1, respectively. The clearance rates of each copepod stage were not significantly different between the two experiments. Clearance of nauplii was significantly greater than of adults and copepodites, while adult and copepodite clearance rates were nearly significantly different. The mean lengths of the adult, copepodite, and naupliar copepods were 430, 265, and 165 μm, respectively. The decreasing clearance rates with increasing size and development of prey (from ciliates, through naupliar, copepodite to adult copepods), suggested that prey escape ability, related to body size and/or morphology, affected capture rates. Mussel faecal samples indicated complete digestion of the gut contents. Pseudofaecal samples showed very low rejection rates of mesozooplankton by mussels. The results are considered in context of current biophysical modelling studies of impacts of large mussel farms in New Zealand. Designs of future experiments to improve accuracy of estimates of mesozooplankton clearance rates by P. canaliculus are considered.  相似文献   

7.
Feeding by juvenile Polinices duplicatus (Say) on Gemma gemma (Totten) at Barnstable Harbor, Massachusetts, was examined using laboratory experiments and collections of naturally occurring bored shells. Snails < 19 mm fed on Gemma in the laboratory and borehole diameter was directly related to predator size. Field collections of drilled shells showed that Gemma was an important prey of 0-year-class Polinices. Boreholes in Gemma shells from field collections were made primarily by snails of 1– mm, and < 3% were made by snails of > 10 mm. Most bored Gemma were large 1- to 2-yr-old individuals. The proportion of empty Gemma shells containing boreholes ranged from 3.7–14.6%, indicating that naticid prédation was a minor source of total Gemma mortality. Collections of bored shells closely reflected both the size range and relative abundance of natural predators of Gemma.  相似文献   

8.
We investigated the effects of shell coil orientation and shell size on reproduction in field populations of the hermit crab, Clibanarius vittatus. Females were collected in the intertidal in Beaufort, NC. Shell parameters were measured and size (cephalothorax length) and reproductive status were determined for 70 females occupying Busycon shells. Crabs were categorized as berried (eggs on the pleopods), mature ovaries, or non-reproductive (no eggs). For berried females, the number of eggs was recorded. By offering a separate group of females access to empty shells, it was possible to calculate optimal shell size and the deficit in shell size for field-collected animals.Females that were berried were in shells closer to the optimal shell size than females with mature ovaries, both for shell weight and shell volume. And females with mature ovaries were in shells that were closer to the optimal size than females that were non-reproductive. For both categories of females without eggs on the pleopods, the majority of females were in shells that were too big (in weight and internal volume). While the percentage of berried females did not differ between dextral (Busycon carica) and sinistral (Busycon sinistrum) shells, the non-reproductive females had a much smaller deficit in volume in sinistral shells compared to dextral shells. For berried females, there was no relationship between the magnitude of their shell deficit and the number of eggs carried. Our results suggest that reproduction is inhibited when females occupy shells sufficiently greater than the optimal shell size.  相似文献   

9.
The common seastars Leptasterias polaris and Asterias vulgaris show competitive interactions in shallow subtidal communities in the northern Gulf of St. Lawrence, particularly during summer when aggregations of the two seastars forage on mussel beds at 1-2 m in depth. We examined interactions between the two seastars in a different situation, in a mussel bed at 6 m in depth (a rare situation in this region). In the deeper mussel bed, seastars were three times more abundant than in the shallower beds, and the mussels were larger. The deeper bed disappeared rapidly due to the intense predation. Although decreased prey abundance should have favored interference interactions, we did not detect either partitioning of mussels by size or avoidance of A. vulgaris by L. polaris as previously reported when mussels are in short supply in shallower water. The lack of an avoidance behavior by L. polaris, together with the higher proportion of L. polaris than A. vulgaris that were feeding, suggests that in this situation, the dominance of A. vulgaris (observed in shallower water) is attenuated, or that L. polaris may dominate.  相似文献   

10.
In the western Baltic Sea, the highly competitive blue mussel Mytilus edulis tends to monopolize shallow water hard substrata. In many habitats, mussel dominance is mainly controlled by the generalist predator Carcinus maenas. These predator-prey interactions seem to be affected by mussel size (relative to crab size) and mussel epibionts.There is a clear relationship between prey size and predator size as suggested by the optimal foraging theory: Each crab size class preferentially preys on a certain mussel size class. Preferred prey size increases with crab size.Epibionts on Mytilus, however, influence this simple pattern of feeding preferences by crabs. When offered similarly sized mussels, crabs prefer Balanus-fouled mussels over clean mussels. There is, however, a hierarchy of factors: the influence of attractive epibiotic barnacles is weaker than the factor ‘mussel size’. Testing small mussels against large mussels, presence or absence of epibiotic barnacles does not significantly alter preferences caused by mussel size. Balanus enhanced crab predation on mussels in two ways: Additional food gain and, probably more important, improvement in handling of the prey. The latter effect is illustrated by the fact that artificial barnacle mimics increased crab predation on mussels to the same extent as do live barnacles.We conclude that crab predation preferences follows the optimal foraging model when prey belong to different size classes, whereas within size classes crab preferences is controlled by epibionts.  相似文献   

11.
Interactions between predators and their multiple prey species can vary greatly among locations where they coexist. As a method to assess spatial variation in predation by intertidal dogwhelks on their dominant prey, immunoassays of dogwhelk gut contents from experimental populations and field collected individuals were evaluated using polyclonal antibodies raised separately to soluble proteins from Mytilus edulis L. mussels and Semibalanus balanoides (L.) barnacles. Both antisera produced strong reactions against their homologous antigens but no cross reactions between prey species. Experimental trials tested the critical hypothesis that prey species had equal detection intervals in dogwhelk guts. Two groups of 225 dogwhelks were starved for 14 days, provided with either mussels or barnacles for five days, and then sampled over 22 days. Independent immunoassays of dogwhelk gut contents against each antibody revealed a consistent, weak cross reaction between the anti-mussel antibody and dogwhelk gut tissues. After accounting for this cross reaction, the strength of immunoassays against both prey species declined exponentially and at similar rates. The proportions of dogwhelks that tested positive for their provided prey species declined linearly through time and were not significantly influenced by prey type. Prey were detectable throughout the sampled post-feeding period and were projected to have detection limits of 24.4 days (barnacles) and 26.5 days (mussels), demonstrating that immunoassay results are not biased by dissimilar prey detection intervals. Reactions against the antibody from the non-provided prey were time invariant and occurred at relatively low frequencies. Immunoassays of dogwhelks collected from five intertidal sites on Swans Island, Maine, USA revealed patterns similar to field observations, though immunoassays classified far fewer individuals as non-feeders and more as barnacle feeders than indicated by direct field observations. Unlike single observations, immunoassays also revealed the presence of both prey in dogwhelks from four sites, though most individuals tested positive for only a single prey type. Immunoassays facilitate concurrent collections of predation data from many individuals and will enable further local- to regional-scale assessments of dogwhelk predation at additional sites around the Gulf of Maine.  相似文献   

12.
Observations were made on the density and distribution of Octopus joubini in its natural environment. The average density of octopuses was 1/33 m2 but their distribution was clumped. This distribution correlated significantly with the distribution of molluscan shells in which they hid. In addition, octopuses were attracted to sites that had been enriched with extra empty gastropod shells. Since site stability was not observed and they were not repelled from one another when placed at a high density, octopuses were probably not spaced by social pressure. Small crab species, the normal prey of O. joubini, were at a very high density of 30/m2, and food abundance probably did not limit octopus number. The main factor affecting distribution of this population of octopuses may be predator pressure acting through the availability of places to hide.  相似文献   

13.
M. Norton-Griffiths   《Ibis》1967,109(3):412-424
Oystercatchers have two methods of opening mussels, both neatly adapted to the structure of the prey. To open mussels exposed by the tide, the bird hammers a hole along the ventral margin of the shell, whereas to open mussels under water, the bird drives its bill into the gape of the valves to cut through the posterior adductor muscle. Large and strong-shelled mussels can be opened by stabbing but not by hammering. Feeding methods of Oystercatchers vary from mussel-bed to mussel-bed. These variations in behaviour are attributable to differences in the strength of the shells of the prey and to the firmness of their attachment to the substrate. Diversity of ecological conditions on the mussel-beds causes an apparent size selection of prey by Oystercatchera.  相似文献   

14.
Abstract Shorebirds foraging in the intertidal have been shown to exert a significant effect on assemblage level processes; this is particularly true of the oystercatcher–limpet–algae system. The African black oystercatcher (Haematopus moquini) is endemic to the southern African coastline, where it plays a significant role in ecosystem processes as a rocky‐shore predator, especially of mussels and limpets. This understanding was based on studies of a rocky shore environment that has since been considerably modified following invasion of an alien mussel (Mytilus galloprovincialis). This invasion has not only changed the relative proportions of different food types on the shore, but has also greatly increased overall food biomass. We tested the previous model that food selection by oystercatchers reflected prey abundance and that intake by male and female oystercatchers differed owing to bill morphology. We predicted that this difference would persist despite the changed nature of the food base. We also predicted that wave action would modify prey selection as a result of both its influence on prey behaviour and its impact on searching and handling times of the birds. Overall, both sexes consumed more limpets than expected by encounter rate alone, but contrary to prediction, the relative proportions of different prey types taken post invasion did not differ between the sexes. Dietary convergence is interpreted as a result of greatly increased food biomass on the shore, which is also reflected in increased oystercatcher densities since the invasion. Also contrary to prediction there was no evidence that waves acted as indirect modifiers of the interaction between oystercatchers and their prey. The results of this study indicate that models of trophic cascades will need to be altered in the event of a significant change in a trophic level, which then effects behavioural changes in the key predator.  相似文献   

15.
Sex‐specific feeding segregation related to sexual bill dimorphism has been described in several oystercatcher species, including the African black oystercatcher. For the latter, studies concerned only a small number of breeding pairs and were done prior the invasion of the South African rocky shores by the Mediterranean mussel, which is believed to have benefited oystercatchers by increasing overall biomass. Here, we investigated geographic variability in the segregation of diet, biometrics and body condition between sexes in the African species, in relation to changes in foraging habitats along the South African coastline, using stable isotope analyses. Males and females and their potential prey (mussels, limpets, polychaetes and ascidians) were sampled on the southern African west, south‐west and south‐east coasts for stable isotope analyses and biometrics and body conditions of birds were measured. Bill dimorphism occurred throughout the study area and south‐west males had lower body conditions than other males and females in general. Sexes displayed little differences in their δ13C ratios and in the relative consumption of the different prey throughout the study area, except on the south‐east coast where males were slightly depleted in 13C relative to females and the most abundant prey elsewhere (the Mediterranean mussel) is rare. Females were slightly but significantly enriched in 15N by 0.3‰ compared to their breeding partners and this did not link clearly to differences in diet. We argue that the combined effect of biogeographic variations in rocky shores diversity and biomass, heterogeneous invasion by the Mediterranean mussel on the South African coastline and bill dimorphism may have altered the sex‐specific feeding behaviour of oystercatchers differently between coastal regions and possibly had an additional cost for male oystercatchers faced with lower prey biomass and diversity on the south‐west coast.  相似文献   

16.
Intertidal zone mussels can face threats from a variety of predatory species during high and low tides, and they must balance the threat of predation against other needs such as feeding and aerobic respiration. Black oystercatchers (Haematopus bachmani) on the Pacific coast of North America can depend on the mussel Mytilus californianus for a substantial portion of their diet. Observations suggest that oystercatchers tend to focus on mussels beginning to gape their valves during rising tides, following periods of aerial emersion. We present detailed, autonomous field measurements of the dynamics of three such predation events in the rocky intertidal zone. We measured accelerations of up to 4 g imposed on mussels, with handling times of 115–290 s required to open the shell and remove the majority of tissue. In each case a single oystercatcher attacked a mussel that had gaped the shell valves slightly wider than its neighbors as the rising tide began to splash the mussel bed, but no other obvious characteristic of the mussels, such as body temperature or orientation, could be linked to the oystercatcher's individual prey choice.  相似文献   

17.
The present study documents for the first time shell use by juvenile fiddler crabs in the salt marsh. Twenty visits were made to six salt marsh sites at Tybee Island, Georgia between 2007 and 2009. One hundred empty Littorina irrorata shells were collected at each site on each field trip. Juvenile carapace width was measured, crabs sexed, and species identification completed using RFLP analysis. Shell use of up to 79% was observed. Two species of fiddler crabs were found in empty shells, Uca pugnax and U. pugilator. U. pugnax was the dominant species at all sites representing 62-84% of the juvenile fiddler crab population. Juvenile sex ratios were female-biased (1.7:1) at all six sites. Juvenile size did not vary significantly between species but males of both species were significantly larger than females. Size frequency distribution of carapace width revealed that shell use varied with size and sex. In the 3 to 4 mm size class, juvenile females outnumbered juvenile males in empty L. irrorata shells while in the 5 to 6 mm size class and greater, juvenile males outnumbered juvenile females in shells. Significantly more juvenile fiddler crabs were found in empty shells during flood than ebb tide at 3 of the sites. This discovery illuminates the resourcefulness of juvenile fiddler crabs and provides another mechanism that might enhance survival.  相似文献   

18.
The ability to feed on suspended and dissolved organic nutrients may have been retained in predatory gastropods during evolution. The carnivorous muricid neogastropod Thais clavigera feeds on prey by boring through their shells, followed by extracellular digestion and suction of the nutrient-rich fluid of the prey's body tissues. This study reports on the effect of feeding on suspended and soluble organic nutrients (SSONs) on the survival, growth, and various physiological activities including scope for growth and glycogen stores of T. clavigera. Juvenile T. clavigera of similar shell length (23.8±1.7 mm) were either starved, fed with mussel Septifer virgatus, fed with SSONs from homogenized mussel flesh (S. virgatus), or fed with both mussels and SSONs, and kept in artificial seawater (salinity: 30‰) for 50 days. Ingestion of SSONs by the animals was significant. Feeding with the “soup” (i.e., SSONs) reduced tissue wastage and improved condition index of the snails. T. clavigera fed in this manner were intermediates between the starved and the mussel-fed groups in terms of mortality, growth, food consumption, respiration, scope for growth, and glycogen content measurements. Furthermore, T. clavigera fed with both mussels and SSONs exhibited an identical energy requirement and similar values of various physiological measurements as that of those fed solely on mussel flesh. Feeding of SSONs contributed >10% of the overall energy requirement when both SSONs and mussel prey were available. The results indicate that energy from suspended and dissolved organic nutrients can contribute to the maximization of energy input in T. clavigera, which may favor better survivorship and thus lifetime fitness.  相似文献   

19.
Understanding the behavioural mechanisms that underlie prey size preference of predators is an essential component of unravelling the processes that govern predator-prey dynamics. In marine systems, despite being able to consume larger and more profitable prey, many molluscivorous predators show a preference for smaller, less profitable prey, most likely to minimize the risk of damaging feeding extremities. Here we assessed the flexibility of this prey size preference. We observed that shore crabs (Carcinus maenas) that were food deprived, and which were offered mussels (Mytilus edulis) of different sizes in dichotomous preference tests, preferred smaller, less profitable mussels. The same result was observed for crabs foraging with a conspecific competitor. Only crabs that were conditioned to feed on the larger, most profitable mussels shifted their prey size preference and ranked the most profitable mussels as highest. Although shore crabs showed flexibility in prey size preference, through which they would be able to cope with environmental variability, our results in general emphasize preference for smaller prey. We discuss the possibility that crabs maximize their long-term feeding rate, in which case it can be optimal to select these smaller mussels.  相似文献   

20.
Predator-prey relationships between the panopeid crab, Dyspanopeus sayi, and the mytilid, Musculista senhousia, were investigated. Through laboratory experiments, prey-handling behavior, prey size selection, predator foraging behavior and preferences for two types of prey (M. senhousia and the Manila clam Ruditapes philippinarum) were assessed. Handling time differed significantly with respect to the three prey sizes offered (small: 15.0-20.0 mm shell length, SL; medium: 20.1-25.0 mm SL; and large: 25.1-30.0 mm SL); mud crabs were more efficient in predating medium-small than large prey. Although differences in prey profitability were not evident, D. sayi exhibited a marked reluctance to feed on larger-sized prey whilst smaller, more easily predated mussels were available. Size selection may be the result of a mechanical process in which encountered prey are attacked but rejected if they remain unbroken after a certain number of opening attempts. D. sayi exhibited inverse density-dependent foraging. A significant higher mortality of prey was evident at low prey density. Thus, at low predator density, the D. sayi-M. senhousia interaction was a destabilizing type II functional response. Interference responses affected the magnitude of predation intensity by D. sayi on M. senhousia, since as the density of foraging crabs increased, their foraging success fell. At high density (4 crabs tank−1), crabs engaged in a high amount of agonistic activity when encountering a conspecific specimen, greatly diminished prey mortality. Finally, presenting two types of prey, Manila clam juveniles were poorly predated by mud crabs, which focused their predation mostly on M. senhousia. It is hypothesized that, when more accessible prey is available, mud crabs will have a minimal predatory impact on commercial R. philippinarum juvenile stocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号