首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract Shorebirds foraging in the intertidal have been shown to exert a significant effect on assemblage level processes; this is particularly true of the oystercatcher–limpet–algae system. The African black oystercatcher (Haematopus moquini) is endemic to the southern African coastline, where it plays a significant role in ecosystem processes as a rocky‐shore predator, especially of mussels and limpets. This understanding was based on studies of a rocky shore environment that has since been considerably modified following invasion of an alien mussel (Mytilus galloprovincialis). This invasion has not only changed the relative proportions of different food types on the shore, but has also greatly increased overall food biomass. We tested the previous model that food selection by oystercatchers reflected prey abundance and that intake by male and female oystercatchers differed owing to bill morphology. We predicted that this difference would persist despite the changed nature of the food base. We also predicted that wave action would modify prey selection as a result of both its influence on prey behaviour and its impact on searching and handling times of the birds. Overall, both sexes consumed more limpets than expected by encounter rate alone, but contrary to prediction, the relative proportions of different prey types taken post invasion did not differ between the sexes. Dietary convergence is interpreted as a result of greatly increased food biomass on the shore, which is also reflected in increased oystercatcher densities since the invasion. Also contrary to prediction there was no evidence that waves acted as indirect modifiers of the interaction between oystercatchers and their prey. The results of this study indicate that models of trophic cascades will need to be altered in the event of a significant change in a trophic level, which then effects behavioural changes in the key predator.  相似文献   

2.
Male and female sooty oystercatchers (subspecies Haematopus fuliginosus fuliginosus; Haematopodidae) have an average difference in bill length of 19%. We studied the relationship between this sexual dimorphism and foraging ecology at coastal sites in southern New South Wales, Australia. Intersexual foraging divergence was most striking in diet, with seven prey classes eaten exclusively by one sex (male: 4, female: 3), and all shared prey classes eaten in different proportions. Intersexual diet partitioning was also observed in energetic rewards gained from foraging, with females gaining highest energetic benefits from eating ascidians and males from eating limpets. Furthermore, within the most commonly consumed prey item, limpets, females gained higher energetic benefit from eating smaller sizes while males gained greater rewards from the largest limpet sizes. Intersexual divergence was also observed in several aspects of foraging behaviour. Finally, there was a significant effect of tidal cycles upon intersexual niche partitioning in this species; the degree of diet divergence varied between tide conditions and females had a consistently more efficient dietary intake on neap tides than males. Diet divergence in the sooty oystercatcher is greater than previously observed in any oystercatcher, and is correlated with the largest sexual bill dimorphism recorded in this family. It is argued that intersexual competition between territorial pairs is operating to diverge male and female bill morphology.  相似文献   

3.
NOTICES     
Dr. Llewellyn Grimes 《Ostrich》2013,84(3-4):125-128
Ward, D. 1990. The demography, diet and reproductive success of African Black Oystercatchers on a sandy beach. Ostrich 61:125-133.

The biology of African Black Oystercatchers Haematopus moquini on a sandy beach is described and compared with earlier studies of this species on mixed and rocky shores. Adult oystercatchers specialized on the wedge clam Donax serra. There was no difference in the size of clams taken by adult and immature oystercatchers, although chicks were fed smaller clams. The abundance of oystercatchers and the biomass of Donax serra was positively correlated. There was no significant relationship between clutch size, egg volume or clutch volume and prey biomass.  相似文献   

4.
The African oystercatcher Haematopus moquini is a near‐threatened wader that is endemic to southern Africa. In the past, the species suffered a drastic decrease in nesting success due to human disturbance. We present the case report of an African oystercatcher that was hatched, hand‐reared, and released in the Western Cape, South Africa. African oystercatchers are semi‐altricial birds that tend to be highly sensitive to stress; as a result, strategies to minimize stress and the employment of surrogate parents and pre‐release acclimatization are important to ensure post‐release survival of hand‐reared chicks. Considering the lack of literature on the incubation and hand‐rearing of oystercatchers, this case report provides a basis for the development of hand‐rearing techniques that might be useful for the protection of this and other threatened wader species.  相似文献   

5.
Intertidal zone mussels can face threats from a variety of predatory species during high and low tides, and they must balance the threat of predation against other needs such as feeding and aerobic respiration. Black oystercatchers (Haematopus bachmani) on the Pacific coast of North America can depend on the mussel Mytilus californianus for a substantial portion of their diet. Observations suggest that oystercatchers tend to focus on mussels beginning to gape their valves during rising tides, following periods of aerial emersion. We present detailed, autonomous field measurements of the dynamics of three such predation events in the rocky intertidal zone. We measured accelerations of up to 4 g imposed on mussels, with handling times of 115–290 s required to open the shell and remove the majority of tissue. In each case a single oystercatcher attacked a mussel that had gaped the shell valves slightly wider than its neighbors as the rising tide began to splash the mussel bed, but no other obvious characteristic of the mussels, such as body temperature or orientation, could be linked to the oystercatcher's individual prey choice.  相似文献   

6.
In this study we revise the biogeographic delimitation, and large-scale patterns of community structure of the intertidal rocky shores of southern Africa. We use binary (presence/absence) and per-species biomass data collected at fifteen localities and thirty-seven different rocky sites, encompassing the shores of southern Namibia, South Africa and southern Mozambique. Multivariate analyses revealed that the shores of southern Africa (south of 25°) can be divided into three main biogeographic provinces: the west coast or Namaqua province, the south coast or Agulhas province and the east coast or Natal province. The biomass structure of the intertidal rocky shores communities of southern Africa varied at a large scale, corresponding to biogeographic differences, while local-scale variation accorded with the intensity of local wave action. The average biomass of west coast communities was on average significantly greater than that of the south and east provinces. At a local scale, the community biomass on exposed shores was an order of magnitude greater than on sheltered shores, within all biogeographic provinces. Semi-exposed shores exhibited intermediate average biomass. The trophic structure of these communities varied significantly with wave action: autotrophs, filter-feeders and invertebrate predators were more prevalent on wave exposed than sheltered shores, whereas grazers were more abundant on sheltered and semi-exposed shores. Exposed shores were consistently dominated by far fewer species than semi-exposed and sheltered shores, independently of biogeographic differences. Within all biogeographic provinces semi-exposed and sheltered shores were more diverse than exposed shores. West coast intertidal communities therefore had high levels of biomass, but were consistently species-poor. Several working hypotheses that could explain these large and small-scale patterns are presented.  相似文献   

7.
The Mediterranean mussel Mytilus galloprovincialis invaded the shores of South Africa in about the mid-1970s. It was first detected at a harbour in Saldanha on the west coast and apparently arrived accidentally. From there, it spread at a rate of about 115 km·year−1 and now occupies the whole of the west coast of South Africa and at least the southern half of Namibia. It was deliberately introduced from the west coast to the south coast for mariculture. In this case study, we record its effects on intertidal rocky shores, cast in terms of predictions based on (a) the history of its invasions elsewhere, (b) its mode of dispersal, (c) its physiological performance relative to indigenous mussels, (d) the role of wave action as a moderator of competition, (e) the influence of relative body sizes, (f) the projected effects of the mussel on infauna, (g) consumption by higher trophic levels, and (h) rates of parasitism.

Several properties of M. galloprovincialis itself, and of the recipient community, conspired to favour the spread and establishment of this alien mussel, including high productivity on the west coast of South Africa, prevalently strong wave action, a sparsity of predators, an absence of parasites, the mussel's fast growth and high reproductive output, and its possession of a planktotrophic larva. It competitively displaces several species because of its physiological performance. Some of the species gain a substitute substratum on the mussels themselves, but only if they are small enough to live and reproduce on the mussels. M. galloprovincialis has had little effect on infauna, but has provided an additional source of food for higher predators, including the rare and endangered African Black Oystercatcher (Haematopus moquini).

Nearly all these effects and conditions were forecasted (or, at the least, explainable with hindsight), but despite these successes in predicting the impacts of M. galloprovincialis, its spread was not only unavoidable but was encouraged by its transfer to the south coast for mariculture. Moreover, there was one completely unpredictable effect of M. galloprovincialis—which led to mass mortalities of a swimming crab. Given the failure of even quite detailed and accurate predictions to allow control of M. galloprovincialis once it arrived, prevention rather than cure must be the prime means of avoiding future unwanted introductions of invasive species.  相似文献   


8.
Abstract

The taxonomy of New Zealand oyster‐catchers is controversial. Some authorities assign full species status to all three oystercatcher taxa breeding in New Zealand, whereas others classify the variable oystercatcher as a full species and the Chatham island oystercatcher and South island pied oystercatcher as distinct only at the subspecies level. The debate is not just of academic interest, as the IUCN lists the Chatham island oystercatcher as endangered and the New Zealand department of Conservation has carried an intensive management programme to conserve it. We obtained genetic data from four regions of the mitochondrial genome of all three taxa, and found support for classifying the Chatham island and South island pied oystercatchers as full species, rather than subspecies.  相似文献   

9.
Foraging distributions are thought to be density‐dependent, because animals not only select for a high availability and quality of resources, but also avoid conspecific interference. Since these processes are confounded, their relative importance in shaping foraging distributions remains poorly understood. Here we aimed to rank the contribution of density‐dependent and density‐independent effects on the spatio‐temporal foraging patterns of eurasian oystercatchers. In our intertidal study area, tides caused continuous variation in oystercatcher density, providing an opportunity to disentangle conspecific interference and density‐independent interactions with the food landscape. Spatial distributions were quantified using high‐resolution individual tracking of foraging activity and location. In a model environment that included a realistic reconstruction of both the tides and the benthic food, we tested a family of behaviour‐based optimality models against these tracking data. Density‐independent interactions affected spatial distributions much more strongly than conspecific interference, even in an interference‐prone species like oystercatchers. Spatial distributions were governed by avoidance of bill injury costs, selection for high interference‐free intake rates and a decreasing availability of benthic bivalve prey after their exposure. These density‐independent interactions outweighed interference competition in terms of effect size. We suggest that the bottleneck in our mechanistic understanding of foraging distributions may be primarily the role of density‐independent prey attributes unrelated to intake rates, like damage costs in the case of oystercatchers foraging on perilous prey. At a landscape scale, above the finest inter‐individual distances, effects of conspecific interaction on spatial distributions may have been overemphasised.  相似文献   

10.
Predation by herring gullsLarus argentatus and oystercatchersHaematopus ostralegus was evaluated on a newly established musselMytilus edulis bed on tidal flats of the German Wadden Sea. The mussel bed covered an area of 2 ha and showed a decrease in biomass of 40% in the most densely covered parts from August to January. Synchronously, the extent of the mussel bed was reduced, resulting in a decrease of average biomass of 98% over the whole mussel bed. From the beginning of August 1994 to mid January 1995, the average size of mussels increased from 10.7 to 20.3 mm. The P/B-ratio was 0.68 in August and 0.18 between September and November. Herring gulls and oystercatchers were the most important mussel predators. On average, 266 herring gulls and 63 oystercatchers were present on the mussel bed during one low tide; 34% of the herring gulls and 78% of the oystercatchers were observed to be feeding. Herring gulls fed at a rate of 4.2 mussels per minute and oystercatchers at a rate of 1.3 mussels per minute. While herring gulls took the most common mussel sizes (mean: 20 mm), oystercatchers searched for the largest mussels available (mean: 25 mm). Herring gulls consumed 13 mussels/m2 (0.3g AFDW) during one day and oystercatchers 1.7 mussels/m2 (0.1 g AFDW). Predation by birds was compensated by 33% of the production. The proportion removed by bird predation amounted to 10% of abundance and to 16% of biomass (including production). Oystercatchers were responsible for 1% of the reduction in abundance and for 3% of biomass. Removal was highest in the most common size classes of mussels, mainly caused by herring gulls. However, the highest proportion of mussels was eaten in the largest size classes, mainly by oystercatchers. *** DIRECT SUPPORT *** A03B6035 00004  相似文献   

11.
Above lowshore levels of wave-beaten rocky shores, desiccation from tidal exposure and hydrodynamics stresses from wave action are thought to create refuges from predation, allowing concentrations of sedentary prey such as mussel beds. Underwater time-lapse photography on rocky shores in Southern California revealed that dense aggregations of spiny lobsters prey on mussels during nocturnal high tides. In contradiction of the refuge hypothesis, the densest aggregations occurred on midshore levels of the most wave-exposed site, a semi-protected site showed intermediate densities, and a protected site showed only sparse numbers of lobsters. On wave-beaten shores, the lobsters' high mobility and rapid prey handling allowed them to exploit intertidal prey in the brief period at extreme high tide, when both desiccation and hydrodynamic stresses were at a minimum. The spatial differences in lobster densities were, however, positively related to the recruitment rates of juvenile mussels, the preferred prey. A field experiment demonstrated that predation by lobsters within a mussel bed affects the age/size structure of the bed without changing primary percent coverage. Therefore, concentrations of adult prey on some wave-swept sites appear to result from elevated rates of prey recruitment that surpass rates of predation, rather than absolute refuges from predation.  相似文献   

12.
Sexual size dimorphism can result in reduced competition if it leads males and females to use different foraging techniques or consume different prey items. Among woodpeckers, differences between males and females in bill length are common and may explain foraging differences in this family of birds. Northern Flickers (Colaptes auratus) are ground‐foraging woodpeckers that specialize on ants. However, the overall contribution of ants to their diet and the proportions of particular ant genera in their diet are not well known. To understand the relationship between bill morphology and the consumption of prey items, we compared the bill length and bill width of male and female flickers. We then collected and analyzed fecal samples from breeding flickers (N = 40 males, 33 females) at a study site in central British Columbia, Canada. Bills of male flickers were significantly longer (4%) and wider (5%) than those of females. Of 11 prey types identified, ants made up over 99% of their diet, and the abundance and composition of ant taxa in the diet did not differ between the sexes. We found significant year and time of season effects, with the abundance of Tapinoma sessile and Lasius spp. increasing from May to the end of June and differing between years. This difference in diet composition between years may have been due to changes in the abundance or accessibility of certain ant taxa related to differences in vegetation structure or weather. Nine ant taxa were consumed by flickers and the four most common were T. sessile, Lasius spp.,Myrmica spp., and the Formica fusca species group. The degree of dimorphism in bill size of male and female Northern Flickers in our study was smaller than reported for several species of arboreal‐foraging woodpeckers, suggesting that bill size of ground‐foraging woodpeckers may not be strongly linked to niche separation at the level of prey selection.  相似文献   

13.
As the alien species that most dominates space along the South African coast, the Mediterranean mussel Mytilus galloprovincialis has radically altered community composition on invaded shores. We experimentally assessed interspecific interactions between this invasive species and dominant indigenous species in conjunction with considering how wave action moderates such interactions. The density of both M. galloprovincialis and the limpet Scutellastra granularis increased with wave action. Conversely, the tube-building polycheate Gunnarea capensis was negatively affected by wave exposure, being most abundant on sheltered shores. The influence of wave action on the indigenous mussel Aulacomya ater, however, remains unclear. M. galloprovincialis outcompeted both G. capensis and A. ater at moderate to high exposure levels, whereas it had both positive and negative effects on S. granularis. It outcompeted adult limpets on primary rock space on semi-exposed and exposed shores, reducing densities of this portion of the population. However, recruitment of S. granularis was facilitated by M. galloprovincialis, as greater numbers recruited to the secondary substratum offered by mussel shells. Again this interaction intensified with wave action. Due to the extremely high density of recruits on secondary space, the net effect of M. galloprovincialis on S. granularis was positive. Thus, wave action not only influences the abundance of individual species, but also mediates both positive and negative interspecific interactions in rocky shore communities, including the impact of alien species such as M. galloprovincialis.  相似文献   

14.
Communities of the rocky mid-intertidal zone of the South-western Atlantic are uniform in appearance, dominated by dense monocultures of small-size mussels (Brachidontes rodriguezii and Perumytilus purpuratus). To explain this, two hypotheses have been advanced in the literature: environmental harshness due to high potential evaporation and historical contingency after the Last Glacial Maximum. In this study of Uruguayan and Argentine shores, we address the implications and predictions of these two hypotheses from a biogeographic perspective by studying the regional distribution and composition of mid-intertidal mussels. We conducted an extensive latitudinal sampling survey (21 locations, 34–54°S), along with a compilation of available information on mussel bed composition and mussel predators present along the coastline. Then we constructed latitudinal profiles of ecologically significant environmental variables with specific emphasis on potential evaporation, a proxy for desiccation stress. The results show that mussel beds are composed of two species of small mussels, which coexist over a biogeographic transition zone (40–42°S) related to sea surface water temperature. The distribution of mussels along the coastline studied is not consistent with the environmental harshness hypothesis. In addition, in the Central Patagonian zone (44–50°S), two invertebrate predators also inhabit the intertidal rocky shores. However, these localities showed higher environmental harshness (potential evaporation rate) than non-Patagonian localities. We suggest that further attention should be given to historical contingency in order to advance towards a hypothesis consistent with current knowledge on the post-glacial biogeographic history of the South-western Atlantic.  相似文献   

15.
Kleptoparasitism involves the theft of resources such as food items from one individual by another. Such food‐stealing behaviour can have important consequences for birds, in terms of individual fitness and population sizes. In order to understand avian host–kleptoparasite interactions, studies are needed which identify the factors which modulate the risk of kleptoparasitism. In temperate European intertidal areas, Eurasian oystercatchers Haematopus ostralegus feed primarily on bivalve molluscs, which may be stolen by kleptoparasitic species such as carrion crows Corvus corone and herring gulls Larus argentatus. In this study we combined overwinter foraging observations of oystercatchers and their kleptoparasites on the Exe Estuary, UK, with statistical modelling to identify the factors that influence the likelihood of successful food stealing behaviour occurring. Across the winter, 16.4% of oystercatcher foraging attempts ended in successful kleptoparasitism; the risk of theft was lowest in February (10.8%) and highest in December (36.3%). Using an information theoretic approach to compare multiple logistic regression models we present evidence that the outcome of host foraging attempts varied with the number of kleptoparasites per host within the foraging patch for two out of five individual months, and for all months grouped. Successful, kleptoparasitism was more likely to occur when the total number of all kleptoparasites per host was greater. Across the entire winter study period, oystercatcher foraging attempts that resulted in kleptoparasitism were associated with a mean number of kleptoparasites per host that was more than double that for foraging attempts that ended in the oystercatcher successfully consuming the mussel. Conversely, the stage of the tidal cycle within the estuary did not affect the outcome of oystercatcher foraging attempts. Our study provides evidence that bird numbers influence the risk of kleptoparasitism within avian assemblages.  相似文献   

16.
Diversity and biogeography of southern African intertidal Acari   总被引:1,自引:0,他引:1  
Abstract Aim The aims were (1) to describe the diversity and geographical distribution of the intertidal mite fauna of southern Africa, and (2) to show how species richness, endemism and geographical patterns of this fauna (comprising taxa of variable terrestrial ancestry) compare with typically marine faunas. Location and methods To assess intertidal mite diversity and endemism, records (published and unpublished) were compiled for a variety of habitats (mainly rocky shores and mangroves), between Swakopmund (Namibia) and Inhambane (Mozambique). The geographical study was based on a dedicated sampling programme from rocky shores, at nine localities between Elandsbaai (on the west coast) and St Lucia (on the east coast). Results Eighty‐two species of marine mite, from thirty‐three genera, are currently known from southern Africa. The majority belong to the earlier marine ancestral Halacaridae (forty‐eight species), with the Ameronothroidea and Hyadesiidae collectively comprising seventeen species. In constituting three faunistic provinces, corresponding with the west (Atlantic), south and east coast (Indian) regions, the mite fauna conforms with trends for the southern African marine fauna in general. Species richness was greatest in the southern province, which deviates from the general pattern of increase from west to east, but is similar to that of some invertebrate taxonomic groups. Conclusions Despite their relatively recent marine connections, marine mites show typical geographical distributions, comparable with those of other rocky‐shore biota in southern Africa. The marine faunistic provinces are ‘insular’ and apparently remain largely intact, across taxonomic groups and with increased taxonomic resolution.  相似文献   

17.
Predation by eiders, oystercatchers and herring gulls on natural mussel bedsMytilus edulis was studied in the Königshafen, a sheltered bay in the Wadden Sea. About 15 ha (2.5%) of the Königshafen were covered with mussel patches of a biomass of about 1300 g AFDW m?2. The biomass on the mussel beds was dominated by old mussels and found to be constant over several years. Birds annually removed 30% of the standing stock. Eiders were by far the most important predators and consumed 346 g AFDW m?2, followed by oystercatchers with 28 g AFDW m?2 and herring gulls with 3.6 g AFDW m?2. Birds consumed a substantial part of the annual production of the mussel beds which was estimated from literature data to be approx. 500 to 600 g AFDW m?2. As other predators were absent, the production of the mussels was sufficient to sustain the high predation rate by birds. Stable mussel beds form a short and efficient link between primary production and bird predation which is unusual for the Wadden Sea, where the main part of primary food supply is thought to be unavailable for higher trophic levels.  相似文献   

18.
Many bird species show spatial or habitat segregation of the sexes during the non-breeding season. One potential ecological explanation is that differences in bill morphology favour foraging niche specialisation and segregation. Western sandpipers Calidris mauri have pronounced bill size dimorphism, with female bills averaging 15% longer than those of males. The sexes differ in foraging behaviour and exhibit partial latitudinal segregation during the non-breeding season, with males predominant in the north and females in the south. Niche specialisation at a local scale might account for this broad geographic pattern, and we investigated whether longer-billed females and shorter-billed males occupy different foraging niches at 16 sites across the non-breeding range. We used stable-nitrogen (δ15N) isotope analysis of whole blood to test for dietary specialisation according to bill length and sex. Stable-nitrogen isotope ratios increase with trophic level. We predicted that δ15N values would increase with bill length and would be higher for females, which use a greater proportion of foraging behaviour that targets higher-trophic level prey. We used stable-carbon (δ13C) isotope analysis to test for habitat segregation according to bill length and sex. Stable-carbon isotope ratios vary between marine- and freshwater-influenced habitats. We predicted that δ13C values would differ between males and females if the sexes segregate between habitat types. Using a model selection approach, we found little support for a relationship between δ15N and either bill length or sex. There was some indication, however, that more marine δ13C values occur with shorter bill lengths. Our findings provide little evidence that male and female western sandpipers exhibit dietary specialisation as a function of their bill size, but indicate that the sexes may segregate in different habitats according to bill length at some non-breeding sites. Potential ecological factors underlying habitat segregation between sexes include differences in preferred habitat type and predation risk.  相似文献   

19.
Global change, including invasive species introduction, has already had observable effects on migrant bird species, from northern breeding areas to wintering grounds. In this study we analyze the response of the Eurasian oystercatcher abundance to the density of an invasive clam species (Corbicula fluminea) and its potential role as biological control. As a case study, the oystercatcher population fluctuations over a 30‐yr time period, coupled with video‐recorded estimates of its feeding behavior on C. fluminea, and results from an exclosure experiment, were analyzed in the NW of the Iberian Peninsula. Results showed that oystercatchers exert a top‐down control over C. fluminea density. In addition, oystercatchers doubled its wintering numbers in a C. fluminea invaded estuary where they actively feed upon this invasive clam. Given that, the facilitative interaction between the invasive C. fluminea and the migratory Eurasian oystercatcher seems to respond to bottom‐up forces. Altogether, our results suggest that control measures applied to long term biological invasions must be carefully analyzed since non‐native species may be sustaining dependent native communities.  相似文献   

20.
Invasive species can affect the function and structure of natural ecological communities, hence understanding and predicting their potential for spreading is a major ecological challenge. Once established in a new region, the spread of invasive species is largely controlled by their dispersal capacity, local environmental conditions and species interactions. The mussel Mytilus galloprovincialis is native to the Mediterranean and is the most successful marine invader in southern Africa. Its distribution there has expanded rapidly and extensively since the 1970s, however, over the last decade its spread has ceased. In this study, we coupled broad scale field surveys, Ecological Niche Modelling (ENM) and Lagrangian Particle Simulations (LPS) to assess the current invaded distribution of M. galloprovincialis in southern Africa and to evaluate what prevents further spread of this species. Results showed that all environmentally suitable habitats in southern Africa have been occupied by the species. This includes rocky shores between Rocky Point in Namibia and East London in South Africa (approx. 2800 km) and these limits coincide with the steep transitions between cool-temperate and subtropical-warmer climates, on both west and southeast African coasts. On the west coast, simulations of drifting larvae almost entirely followed the northward and offshore direction of the Benguela current, creating a clear dispersal barrier by advecting larvae away from the coast. On the southeast coast, nearshore currents give larvae the potential to move eastwards, against the prevalent Agulhas current and beyond the present distributional limit, however environmental conditions prevent the establishment of the species. The transition between the cooler and warmer water regimes is therefore the main factor limiting the northern spread on the southeast coast; however, biotic interactions with native fauna may also play an important role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号