首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Activation of p38 mitogen-activated protein kinase (p38 MAPK) has been implicated as a mechanism of ischemia/hypoxia-induced cerebral injury. The current study was designed to explore the involvement of p38 MAPK in the development of cerebral hypoxic preconditioning (HPC) by observing the changes in dual phosphorylation (p-p38 MAPK) at threonine180 and tyrosine182 sites, protein expression, and cellular distribution of p-p38 MAPK in the brain of HPC mice. We found that the p-p38 MAPK levels, not protein expression, increased significantly (p < 0.05) in the regions of frontal cortex, hippocampus, and hypothalamus of mice in response to repetitive hypoxic exposure (H1–H6, n = 6 for each group) when compared to values of the control normoxic group (H0, n = 6) using Western blot analysis. Similar results were also confirmed by an immunostaining study of the p-p38 MAPK location in the frontal cortex, hippocampus, and hypothalamus of mice from HPC groups. To further define the cell type of p-p38 MAPK positive cells, we used a double-labeled immunofluorescent staining method to co-localize p-p38 MAPK with neurofilaments heavy chain (NF-H, neuron-specific marker), S100 (astrocyte-specific marker), and CD11b (microglia-specific maker), respectively. We found that the increased p-p38 MAPK occurred in microglia of cortex and hippocampus, as well as in neurons of hypothalamus of HPC mice. These results suggest that the cell type-specific activation of p38 MAPK in the specific brain regions might contribute to the development of cerebral HPC mechanism in mice.  相似文献   

2.
BackgroundEsophageal cancer is the seventh leading cause of cancer death in males in USA, and there is a strong link has been demonstrated between inflammation and esophageal cancer, interleukin (IL)-32 is a recently described pro-inflammatory cytokine characterized by the induction of nuclear factor NF-κB activation, the p38MAPK also plays an important role in key cellular processes related to inflammation and cancer. We investigated whether the IL-32 expression may be involved in esophageal carcinogenesis through modulates the activity of NF-κB and p-p38 MAPK.MethodMalignant esophageal tissue and blood samples were obtained from 65 operated untreated patients, normal samples was obtained from 35 patients operated for other reasons as control. IL-32 expression visualized by immunohistochemistry, Real time RT–PCR for IL-32 mRNA expression, NF-κB phosphorylation and phosphorylated p38mapk were analyzed by immunoblotting, ELISA for further detection IL-32 and cytokines (TNF-α, IL-1β, IL-6 and IL-8) concentration in the patient’s sera.ResultsIL-32 expression was increased in immunohistochemical staining for malignant esophageal tissue and it’s correlated with the relative expression level of IL-32 mRNA P = 0.007, the P-NF-κB level elevated in tumor tissue compared with control and no difference in the total NF-κB level P = 0.003 while the IL-32 up-regulated the P-pNF-κB in the esophageal tumor P = 0.005. There is increase in p-p38MAPK activation underlying IL-32 expression in tumor P = 0.004, but no change in total p38 MAPK in malignant esophagus. The plasma level of IL-32 expression was increased in malignant esophageal patients P = 0.01, with increased in the levels of the cytokines TNF-α, IL-6, and IL-1β P<0.05.ConclusionsUnderstanding the pathway of IL-32 expression to stimulate the secretion cytokines via the activation of NF-κB and up-regulation of p-p38MAPK may or may not prove to be a therapeutic target, or a biomarker, and future studies will finally answer this hypothesis generated.  相似文献   

3.
AimsCisplatin (CP) promotes increased production of reactive oxygen species, which can activate p38 mitogen activated protein kinases (p38 MAPKs) leading to apoptosis and increased expression of proinflammatory mediators that intensify the cytotoxic effects of CP. We investigated the effect of the treatment with SB203580, a p38 MAPKs inhibitor, on oxidative stress, on the oxidation-associated signal, p38 MAPK and on apoptosis in CP-injected rats, starting after the beginning of the renal damage.Main methodsRats (n = 21) were injected with CP (5 mg/kg, i.p.) and 3 and 4 days after some of them (n = 8) were treated with SB203580 (0.5 mg/kg, i.p.). Controls (n = 6) received saline (i.p.). Two or five days after saline or CP injections, plasma creatinine, urinary volume, sodium and potassium fractional excretions, blood urea nitrogen and urinary lipid peroxidation were measured. The kidneys were removed for histological, apoptosis, immunohistochemical and Western blot studies.Key findingsCP caused abnormalities in kidney functions and structure associated with raised urinary peroxidation levels and higher number of apoptotic cells in the outer medulla. The immunostaining studies showed increased numbers of macrophages/monocytes and p-p38 MAPKs positive cells in the renal outer medulla. The increase of p-p38 MAPKs expression was confirmed by Western blot analysis. All of these alterations were attenuated by treatment with SB203580.SignificanceThese data suggest that the beneficial effect of SB203580 on CP-induced renal damage might be related, in part, to the blockade of p38 MAPK activation with reduction of the inflammatory process, oxidative stress and apoptotic cell death.  相似文献   

4.
5.
This paper aims to observe the effects of total flavonoids of Radix Ilicis pubescentis on mouse model of cerebral ischemia reperfusion. Mice were orally given different doses of total flavonoids of Radix Ilicis pubescentis 10 d, and were administered once daily. On the tenth day after the administration of 1 h in mice after anesthesia, we used needle to hook the bilateral common carotid artery (CCA) for 10 min, with 10 min ischemia reperfusion, 10 min ischemia. Then we restored their blood supply, copy the model of cerebral ischemia reperfusion; We then had all mice reperfused for 24 h, and then took their orbital blood samples and measured blood rheology. We quickly removed the brain, with half of the brain having sagittal incision. Then we fixed the brains and sectioned them to observe the pathological changes of brain cells in the hippocampus and cortex. We also measured the other half sample which was made of brain homogenate of NO, NOS, Na+-K+-, ATP enzyme Mg2+-ATPase and Ca2+-ATPase. Acupuncture needle hook occlusion of bilateral common carotid arteries can successfully establish the model of cerebral ischemia reperfusion. After comparing with the model mice, we concluded that Ilex pubescens flavonoids not only reduce damage to the brain nerve cells in the hippocampus and cortex, but also significantly reduce the content of NO in brain homogenate, the activity of nitric oxide synthase (NOS) and increases ATP enzyme activity (P < 0.05, P < 0.01). In this way, cerebral ischemia reperfusion injury is improved. Different dosages of Ilex pubescens flavonoids on mouse cerebral ischemia reperfusion model have good effects.  相似文献   

6.
ObjectiveTo demonstrate the hypothesis that aerobic exercise training inhibits the development of insulin resistance through IL-6 and probe into the possible molecular mechanism about it.MethodsRats were raised with high-fat diets for 8 weeks to develop insulin resistance, and glucose infusion rates (GIRs) were determined by hyperinsulinemic–euglycemic clamping to confirm the development of insulin resistance. Aerobic exercise training (the speed and duration time in the first week were respectively 16 m/min and 50 min, and speed increased 1 m/min and duration time increased 5 min every week following it) and/or IL-6shRNA plasmid injection (rats received IL-6shRNA injection via the tail vein every two weeks) were adopted during the development of insulin resistance. The serum IL-6, leptin, adiponectin, fasting blood glucose, fasting serum insulin, GIR, IL-6 gene expression levels, p-p38 in various tissues and p-STAT3/t-STAT3 ratio in the liver were measured.ResultsRats fed with high-fat diets for 8 weeks were developed insulin resistance and the IL-6mRNA levels of IL-6shRNA injection groups in various tissues were significantly lower than those of control group (P < 0.05), respectively. The development of insulin resistance in exercise rats significantly decreased, however, compared with that, the GIR of exercise rats injected by IL-6shRNA was lower (P < 0.05). The IL-6mRNA levels were highest in the fat tissue and lowest in the skeletal muscles in all the rats. The serum adiponectin levels decreased (P < 0.05) following the development of insulin resistance, and it increased (P < 0.05) when the rats were intervened by aerobic exercise training for 8 weeks at the same time. However, there were not significant differences when serum leptin concentrations were compared (P > 0.05). The p-p38 significantly increased in the rats fed with high-fat diets, however, p-p38 of the exercise high-fat diets rats in the liver and fat tissues significantly decreased than that (P < 0.05). The changes of p-p38 in exercise rats injected by IL-6shRNA were irregular. The activation of STAT3 in the liver significantly increased (P < 0.05) following the development of insulin resistance, and it decreased (P < 0.05) when the rats were intervened by aerobic exercise training for 8 weeks at the same time, and the gene silencing of IL-6 did not have effects on the activation of STAT3 in the liver (P > 0.05).ConclusionsIn conclusion, aerobic exercise training prevented the development of insulin resistance through IL-6 to a certain degree. The gene expression and secretion of IL-6 could inhibit the development of insulin resistance. The mechanism of the effects were possibly related with elevating the levels of serum adiponectin, and/or inhibiting the activation of STAT3 in the liver and p38MAPK in the skeletal muscles, liver and fat tissues.  相似文献   

7.
In this study, we tested the hypothesis that prostaglandin endoperoxide synthase-1 and -2 (PGHS-1 and PGHS-2) are expressed throughout the latter half of gestation in ovine fetal brain and pituitary. Hypothalamus, pituitary, hippocampus, brainstem, cortex and cerebellum were collected from fetal sheep at 80, 100, 120, 130, 145 days of gestational age (DGA), 1 and 7 days postpartum lambs, and from adult ewes (n = 4–5 per group). mRNA and protein were isolated from each region, and expression of prostaglandin synthase-1 (PGHS-1) and -2 (PGHS-2) were evaluated using real-time RT-PCR and western blot. PGHS-1 and -2 were detected in every brain region at every age tested. Both enzymes were measured in highest abundance in hippocampus and cerebral cortex, and lowest in brainstem and pituitary. PGHS-1 and -2 mRNA’s were upregulated in hypothalamus and pituitary after 100 DGA. The hippocampus exhibited decreases in PGHS-1 and increases in PGHS-2 mRNA after 80 DGA. Brainstem PGHS-1 and -2 and cortex PGHS-2 exhibited robust increases in mRNA postpartum, while cerebellar PGHS-1 and -2 mRNA’s were upregulated at 120 DGA. Tissue concentrations of PGE2 correlated with PGHS-2 mRNA, but not to other variables. We conclude that the regulation of expression of these enzymes is region-specific, suggesting that the activity of these enzymes is likely to be critical for brain development in the late-gestation ovine fetus.  相似文献   

8.
AimsPrevious studies suggested that p38 MAPK activation during sustained myocardial ischaemia and reperfusion was harmful. We hypothesize that attenuation of p38MAPK activity via dephosphorylation by the dual-specificity phosphatase MKP-1 should be protective against ischaemia/reperfusion injury. Since the glucocorticoid, dexamethasone, induces the expression of MKP-1, the aim of this study was to determine whether upregulation of this phosphatase by dexamethasone protects the heart against ischaemia/reperfusion injury.Main methodsMale Wistar rats were treated with dexamethasone (3 mg/kg/day ip) for 10 days, before removal of the hearts for Western blot (ip Dex ? P) or perfusion in the working mode (ip Dex + P). Hearts were subjected to 20 min global or 35 min regional ischaemia (36.5 °C) and 30 or 120 min reperfusion. In a separate series, dexamethasone (1 µM) was added to the perfusate for 10 min (Pre + Dex) before or after (Rep + Dex) ischaemia.Key findingsDexamethasone, administered intraperitoneally or added directly to the perfusate, significantly improved post-ischaemic functional recovery and reduced infarct size compared to untreated controls (p < 0.05). These were associated with enhanced up-regulation of MKP-1 protein expression (arbitrary units (mean ± SD): Untreated: 1; ip Dex ? P: 2.59 ± 0.22; ip Dex + P: 1.51 ± 0.22; Pre + Dex: 4.11 ± 0.73, Rep + 15′Dex: 1.51 ± 0.14; untreated vs. all groups, p < 0.05) and attenuation of p38 MAPK activation (p < 0.05) in all dexamethasone-treated groups, except for Rep + 10′Dex. ERK and PKB/Akt activation were unchanged.SignificanceDexamethasone-induced cardioprotection was associated with upregulation of the phosphatase MKP-1 and inactivation of pro-apoptotic p38 MAPK.  相似文献   

9.
Artesunate is a semi-synthetic derivative of artemisinin used to treat malaria, and has been shown to possess anti-inflammatory activity. In this study, we have investigated the effect of artesunate on PGE2 production/COX-2 protein expression in LPS + IFNγ-activated BV2 microglia. To further understand the mechanism of action of this compound, we investigated its interference with NF-κB and p38 MAPK signalling pathways. PGE2 production was determined using EIA, while protein expressions of inflammatory targets like COX-2, mPGES-1, IκB, p38 and MAPKAPK2 were evaluated using western blot. An NF-κB-bearing luciferase reporter gene assay was used to test the effect of artesunate on NF-κB-mediated pro-inflammatory gene expression in HEK293 cells stimulated with TNFα (1 ng/ml). Artesunate (2 and 4 μM), significantly (p <0.01) suppressed PGE2 production in LPS + IFNγ-activated BV2 microglia. This effect was found to be mediated via reduction in COX-2 and mPGES-1 proteins. Artesunate also produced significant inhibition of TNFα and IL-6 production in activated BV2 microglia. Further investigations showed that artesunate (0.5–4 μM) significantly (p <0.001) reduced NF-κB-driven luciferase expression, and inhibited IκB phosphorylation and degradation, through inhibition of IKK. Artesunate inhibited phosphorylation of p38 MAPK and its substrate MAPKAPK2 following stimulation of microglia with LPS + IFNγ. Taken together, we have shown that artesunate prevents neuroinflammation in BV2 microglia by interfering with NF-κB and p38 MAPK signalling.  相似文献   

10.
《Cryobiology》2013,66(3):235-241
Metabolic signaling coordinates the transition by hibernating mammals from euthermia into profound torpor. Organ-specific responses by activated p38 mitogen activated protein kinase (MAPK) are known to contribute to this transition. Therefore, we hypothesized that the MAPK-activated protein kinase-2 (MAPKAPK2), a downstream target of p38 MAPK, would also be active in establishing the torpid state. Kinetic parameters of MAPKAPK2 from skeletal muscle of Richardson’s ground squirrels, Spermophilus richardsonii, were analyzed using a fluorescence assay. MAPKAPK2 activity was 27.4 ± 1.27 pmol/min/mg in muscle from euthermic squirrels and decreased by ∼63% during cold torpor, while total protein levels were unchanged (as assessed by immunoblotting). In vitro treatment of MAPKAPK2 via stimulation of endogenous phosphatases and addition of commercial alkaline phosphatase decreased enzyme activity to only ∼3–5% of its original value in muscle extracts from both euthermic and hibernating squirrels suggesting that posttranslational modification suppresses MAPKAPK2 during the transition from euthermic to torpid states. Enzyme S0.5 and nH values for ATP and peptide substrates changed significantly between euthermia and torpor, and also between assays at 22 versus 10 °C but, kinetic parameters were actually closely conserved when values for the euthermic enzyme at 22 °C were directly compared with the hibernator enzyme at 10 °C. Arrhenius plots showed significantly different activation energies of 40.8 ± 0.7 and 54.3 ± 2.7 kJ/mol for the muscle enzyme from euthermic versus torpid animals, respectively but MAPKAPK2 from the two physiological states showed no difference in sensitivity to urea denaturation. Overall, the results show that total activity of MAPKAPK2 is in fact reduced, despite previous findings of p38 MAPK activation, and kinetic parameters are altered when ground squirrels enter torpor but protein stability is not apparently changed. The data suggest that MAPKAPK2 suppression may have a significant role in the differential regulation of muscle target proteins when ground squirrels enter torpor.  相似文献   

11.
BackgroundTransforming growth factor beta inducible early gene-1 (TIEG-1), a member of the Krüppel-like factor, was identified as a primary response gene for TGF-β. The role of TIEG-1 in skin repair has been mainly addressed in vivo on TIEG-1 null mice model and the mechanism remains unexplored.MethodsWe investigated the modulation of TIEG-1 expression in normal human skin fibroblasts by either down-expressing or overexpressing the gene. We evaluated reactive oxygen species production and the cell viability of treated cells. The effect of TIEG-1 overexpression was monitored by wound healing assay and immunofluorescence staining of actin fibers organization and alpha-smooth muscle actin (α-SMA). Western blots were carried out to identify the level of expression or phosphorylation of key proteins such as cofilin, Rho GTPases, and p38 mitogen-activated protein kinase (p38 MAPK).ResultsTIEG-1 down-regulation had a deleterious effect on the cell viability. It was significantly reduced (65 ± 5%) and exposure to ultraviolet further increased this effect (47 ± 3%). By contrast, cells overexpressing TIEG-1 had a reduced reactive oxygen species production (75%) compared to control and mock-transfected cells. This overexpression also resulted in formation of actin stress fibers and increased α-SMA expression and an enhanced wound healing feature. RhoB GTPase was upregulated and phosphorylation of cofilin and p38 MAPK was observed.ConclusionTIEG-1 overexpression in normal human skin fibroblasts results in improved resistance to oxidative stress, myofibroblast-like conversion that involved RhoB signaling pathway with cofilin and p38 MAPK proteins activation.General significanceThis study enlightens the role of TIEG-1 role in skin biology.  相似文献   

12.
Signaling events triggered by interferon alpha (IFN-α) and ribavirin are involved in anti-hepatitis C virus (HCV) action. The p38 mitogen-activated protein kinase (MAPK) pathway plays an important role in HCV pathogenesis. Effects of IFN-α and ribavirin on p38 MAPK signaling were investigated in human hepatoma cells. Type I IFN receptor 2 (IFNAR2) mediated IFN-α-induced p38 MAPK phosphorylation. Also, p38 MAPK phosphorylation was enhanced by ribavirin. Treatment for 48 h with a combination of IFN-α and ribavirin increased p38 MAPK phosphorylation, whereas the treatment for 72 h reduced p38 MAPK phosphorylation. Cell culture-derived HCV (HCVcc) infection dramatically increased p38 MAPK phosphorylation and such phosphorylation was inhibited by IFN-α or ribavirin. Moreover, siRNA-mediated knockdown of p38 MAPK resulted in enhancement of ribavirin-dependent HCV RNA replication. These results suggest that regulation of p38 MAPK signaling by IFN-α and ribavirin might contribute to anti-HCV action.  相似文献   

13.
We have recently reported that downregulation of miR-199a-5p is necessary and sufficient for inducing upregulation of its targets, including hypoxia-inducible factor-1alpha (Hif-1α) and Sirt1, during hypoxia preconditioning (HPC). Conversely, others and we have reported that miR-199a-5p is upregulated during cardiac hypertrophy. Thus, the objective of this study was to delineate the signaling pathways that regulate the expression of miR-199a-5p and its targets, and their role in myocyte survival during hypoxia. Since HPC is mediated through activation of the AKT pathway, we questioned if AKT is sufficient for inducing downregulation of miR-199a-5p. Our present study shows that overexpression of a constitutively active AKT (caAKT) induced 70% reduction in miR-199a-5p and was associated with a robust increase in HiF-1α (10 ± 2 fold) and Sirt1 (4 ± 0.8 fold) that was reversed by overexpression of miR-199a-5p. Similarly, insulin receptor-stimulated activation of the AKT pathway induced downregulation of miR-199a-5p and upregulation of its targets. In contrast, β-adrenergic receptor (βAR) activation in vitro and in vivo, induced 1.8–3.5-fold increase in miR-199a-5p. Accordingly, we predicted that βAR would antagonize AKT-induced, miR-199a-5p-dependent, upregulation of Hif-1α and Sirt1. Indeed, pre-treating the myocytes with isoproterenol before applying HPC, caAKT, or insulin resulted in 87 ± 3%, 75 ± 15%, and 100% reductions in Hif-1α expression, respectively, and sensitized the cells to hypoxic injury. Thus, activation of beta-adrenergic signaling counteracts the survival effects of the AKT pathway via upregulating miR-199a-5p.  相似文献   

14.
ObjectiveTo investigate the effects of maternal lead (Pb) exposure on the learning and memory ability and expression of interleukin1-β (IL1-β), tumor necrosis factor (TNF-α) and beta amyloid protein (Aβ) in cerebral cortex of mice offspring.MethodsPb exposure initiated from beginning of gestation to weaning. Pb acetate administered in drinking solutions was dissolved in distilled deionized water at the concentrations of 0.1%, 0.5% and 1% groups, respectively. On the PND21, the learning and memory ability were tested by water maze test and the Pb levels were also determined by graphite furnace atomic absorption spectrometry. The expression of IL1-β, TNF-α and Aβ in cerebral cortex was measured by immunohistochemistry and western blotting.ResultsThe Pb levels in blood and cerebral cortex of all exposure groups were significantly higher than that of the control group (P < 0.05). In water maze test, the performances of 0.5% and 1% groups were worse than that of the control group (P < 0.05). The expression of IL1-β, TNF-α and Aβ was increased in Pb exposed groups than that of the control group (P < 0.05).ConclusionsThe high expression of IL1-β, TNF-α and Aβ in the cerebral cortex of pups may contribute to the impairment of learning and memory associated with maternal Pb exposure.  相似文献   

15.
The design, synthesis and biological evaluation of novel triazolyl p38α MAPK inhibitors with improved water solubility for formulation in cationic liposomes (SAINT-O-Somes) targeted at diseased endothelial cells is described. Water-solubilizing groups were introduced via a ‘click’ reaction of functional azides with 2-alkynyl imidazoles and isosteric oxazoles to generate two small libraries of 1,4-disubstituted 1,2,3-triazolyl p38α MAPK inhibitors. Triazoles with low IC50 values and desired physicochemical properties were screened for in vitro downregulation of proinflammatory gene expression and were formulated in SAINT-O-Somes. Triazolyl p38α MAPK inhibitor 88 (IC50 = 0.096 μM) displayed the most promising in vitro activity.  相似文献   

16.
As an essential component of the diet, retinol supplementation is often considered harmless and its application is poorly controlled. However, recent works demonstrated that retinol may induce a wide array of deleterious effects, especially when doses used are elevated. Controlled clinical trials have demonstrated that retinol supplementation increased the incidence of lung cancer and mortality in smokers. Experimental works in cell cultures and animal models showed that retinol may induce free radical production, oxidative stress and extensive biomolecular damage. Here, we evaluated the effect of retinol on the regulation of the receptor for advanced glycation end-products (RAGE) in the human lung cancer cell line A549. RAGE is constitutively expressed in lungs and was observed to be down-regulated in lung cancer patients. A549 cells were treated with retinol doses reported as physiologic (2 μM) or therapeutic (5, 10 or 20 μM). Retinol at 10 and 20 μM increased free radical production, oxidative damage and antioxidant enzyme activity in A549 cells. These doses also downregulated RAGE expression. Antioxidant co-treatment with Trolox®, a hydrophilic analog of α-tocopherol, reversed the effects of retinol on oxidative parameters and RAGE downregulation. The effect of retinol on RAGE was mediated by p38 MAPK activation, as blockade of p38 with PD169316 (10 μM), SB203580 (10 μM) or siRNA to either p38α (MAPK14) or p38β (MAPK11) reversed the effect of retinol on RAGE. Trolox also inhibited p38 phosphorylation, indicating that retinol induced a redox-dependent activation of this MAPK. Besides, we observed that NF-kB acted as a downstream effector of p38 in RAGE downregulation by retinol, as NF-kB inhibition by SN50 (100 μg/mL) and siRNA to p65 blocked the effect of retinol on RAGE, and p38 inhibitors reversed NF-kB activation. Taken together, our results indicate a pro-oxidant effect of retinol on A549 cells, and suggest that modulation of RAGE expression by retinol is mediated by the redox-dependent activation of p38/NF-kB signaling pathway.  相似文献   

17.
AimsIn the present study, we explored the hypothesis that initiation of PH involves the upregulation of monocyte chemoattractant protein-1 (MCP-1) in acute PTE. We evaluated the effects of resveratrol and the role of p38 mitogen-activated protein kinase (MAPK) in this process.Main methodsA rat model of acute PTE was established by infusion of an autologous blood clot into the pulmonary artery through a polyethylene catheter. Rats were randomly divided into 1, 4, and 8 hour time groups. Resveratrol, C1142 (a rodent chimeric mAb that neutralizes rat MCP-1) or SB203580 (a p38MAPK specific inhibitor) was administered to the animals beginning 1 h prior to the start of the acute PTE protocol. At each time point, the mean pulmonary artery pressure (mPAP), mRNA and protein expressions of MCP-1 were measured. The phosphorylation of p38 MAPK (p-pMAPK) was also detected.Key findingsAcute PTE elicited significant increases in mean pulmonary artery pressure (mPAP), and up-regulated the expression of monocyte chemoattractant protein-1 (MCP-1) and phosphorylation of p38 mitogen-activated protein kinase (p-p38 MAPK). Administration of C1142 markedly reduced mPAP. Furthermore, pre-treatment of rats with resveratrol significantly reduced mPAP and down-regulated the expression of MCP-1, which was associated with robustly suppressed acute PTE-induced p-p38MAPK expression.SignificanceThese findings suggested that MCP-1 was involved in the formation of acute PTE-induced PH, and resveratrol down-regulated the expression of MCP-1 by inhibiting acute PTE-induced p-p38MAPK activation, which contributed to the decrease in PH.  相似文献   

18.
Bisphenol-A (BPA) is a common environmental endocrine disruptor. Our recent studies found that exposure to BPA in both adolescent and adulthood sex-specifically impaired spatial memory in male mice. In this study, 11-week-old gonadectomied (GDX) male mice daily received subcutaneous injections of testosterone propionate (TP, 0.5 mg/kg), TP and BPA (0.4 and 4 mg/kg), or vehicle for 45 days. The results of Morris water maze task showed that exposure to BPA did not affect the spatial memory of GDX mice but impaired that of sham (4 mg/kg/day) and TP-treated GDX mice (0.4 mg/kg/day). In addition, BPA reduced the level of testosterone (T) in the serum and brain of sham and TP-treated GDX mice. Exposure to BPA decreased the synaptic density and had an adverse effect on the synaptic interface of the hippocampus in sham and TP-treated GDX mice. The results of western blot analysis further showed that BPA (4 mg/kg) reduced the levels of synaptic proteins (synapsin I and PSD-95) and NMDA receptor subunit NR2B in sham and TP-treated GDX mice. BPA decreased the phosphorylation of ERK1/2 but increased the phosphorylation of p38 in sham and TP-treated GDX mice. These results suggest that impairment of spatial memory and adverse effects on synaptic remodeling of hippocampal neurons in males after long-term BPA exposure is related to the anti-androgen effect of BPA. These effects of BPA may be associated with downregulated synaptic proteins and NMDA receptor through inhibiting ERKs and promoting the p38 pathways.  相似文献   

19.
Dysequilibrium syndrome (DES, OMIM 224050) is a genetically heterogeneous condition that combines autosomal recessive non-progressive cerebellar ataxia with mental retardation. The subclass dysequilibrium syndrome type 1 (CAMRQ1) has been attributed to mutations in the VLDLR gene encoding the very low density lipoprotein receptor (VLDLR). This receptor is involved in the Reelin signaling pathway that guides neuronal migration in the cerebral cortex and cerebellum. Three missense mutations (c.1459G > T; p.D487Y, c.1561G > C; p.D521H and c.2117G > T; p.C706F) have been previously identified in VLDLR gene in patients with DES. However, the functional implications of those mutations are not known and therefore we undertook detailed functional analysis to elucidate the cellular mechanisms underlying their pathogenicity. The mutations have been generated by site-directed mutagenesis and then expressed in cultured cell lines. Confocal microscopy and biochemical analysis have been employed to examine the subcellular localization and functional activities of the mutated proteins relative to wild type. Our results indicate that the three missense mutations lead to defective intracellular trafficking and ER retention of the mutant VLDLR protein. This trafficking impairment prevents the mutants from reaching the plasma membrane and binding exogenous Reelin, the initiating event in Reelin signaling. Collectively, our results provide evidence that ER quality control is involved in the functional inactivation and underlying pathogenicity of these DES-associated mutations in the VLDLR.  相似文献   

20.
In order to develop a new class of anti-rheumatic drug which inhibits production of proinflammatory cytokines such as TNFα, IL-1β, IL-6, and IL-8, a series of 3-pyridylpyrrole derivatives possessing a bicyclic tetrahydropyridine moiety at the 4-position of the pyrrole ring were synthesized and their pharmacological activities were evaluated. The derivatives were found to have potent inhibitory activities on the production of the cytokines both in vitro and in vivo. Among them, compound 4a, (S)-2-(4-fluorophenyl)-4-(1,2,3,5,6,8a-hexahydroindolizin-7-yl)-3-(pyridin-4-yl)-1H-pyrrole (R-132811), achieved the most promising results in various in vitro and in vivo tests including several rheumatoid arthritis models ((i) inhibition of p38α, p38β, p38γ, and p38δ MAP kinases: IC50 = 0.034, 0.572, >10, and >10 μM, respectively; (ii) inhibition of TNFα, IL-1β, IL-6, and IL-8 production in human whole blood: IC50 = 0.026, 0.020, 0.88, and 0.016 μM, respectively; (iii) inhibition of LPS induced TNFα, IL-1β and IL-6 production in mice: ID50 = 0.93, 8.63, and 0.11 mg/kg, po, respectively; (iv) inhibition of anti-collagen antibody-induced arthritis in mice: ID50 = 2.22 mg/kg, po; (v) inhibition of collagen-induced arthritis in mice: ID50 = 2.38 mg/kg, po; (vi) prophylactic effect on adjuvant-induced arthritis in rats: ID50 = 3.1 mg/kg, po; (vii) therapeutic effect on adjuvant-induced arthritis in rats: ID50 = 4.9 mg/kg, po; (viii) analgesic effect on adjuvant-induced arthritic pain in rats: ID50 = 2.9 mg/kg, po). As a result, compound 4a was chosen as a candidate for further pre-clinical studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号