首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
A 20-month-old infant exhibiting psychomotor retardation, dysmorphisms and ambiguous external genitalia was found to have a 46-chromosome karyotype including a normal X chromosome and a marker Y with most of Yq being replaced by an extra Xp21-->pter segment. The paternal karyotype (G and C bands) was 46,XY. The marker Y composition was verified by means of FISH with a chromosome X painting, an alphoid repeat and a DMD probe. Thus, the final diagnosis was 46,X,der(Y)t(X;Y)(p21;q11)de novo.ish der(Y)(wcpX+,DYZ3+,DMD+). The patient's phenotype is consistent with the spectrum documented in 13 patients with similar Xp duplications in whom sex reversal with female or ambiguous genitalia has occurred in spite of an intact Yp or SRY gene. A review of t(X;Y) identifies five distinct exchanges described two or more times: t(X;Y)(p21;q11), t(X;Y)(p22;p11), t(X;Y)(p22;q11-12), t(X;Y) (q22;q12), and t(X;Y)(q28;q12). These translocations probably result from a recombination secondary to DNA homologies within misaligned sex chromosomes in the paternal germline with the derivatives segregating at anaphase I.  相似文献   

2.
Summary An unusually long Y chromosome was described in the phenotypically normal father and paternal grandfather of a girl with Down's syndrome, and likewise in a male infant with multiple malformations and his father, normal in phenotype. Measurements revealed that the long Y chromosome corresponded in length to autosomes of group 16–18.Information was obtained to show that the increased length of the Y chromosome was an inheritable character, and that a long Y chromosome was not always associated with an abnormal phenotype (or phenotypes).Contribution No. 585 from the Zoological Institute, Hokkaido University.  相似文献   

3.
Cytogenetic studies on a phenotypically normal male, presenting with infertility, revealed a balanced Y;19 translocation - 46,XY,t (Y;19) (q11; p or q13). The patient had a normal hormone profile, but semen analysis showed immature cells in the fluid. The possible mechanisms causing the infertility are discussed. An extensive review of the literature of Y ; autosome translocations indicates that there are 2 types, those in which the broken segment of the Y is translocated to the short arm or centromeric region of an acrocentric chromosome, and those in which the Y material is translocated onto a long or short arm region of a non-acrocentric chromosome. The first type is less frequently associated with infertility and hypogonadism than the second type. There is presumptive evidence that the first type is non-random.  相似文献   

4.
An apparently balanced reciprocal translocation between the long arm of the Y chromosome and the long arm of the chromosome 16 t(Y;16)(q12;q13) is described in an infertile man with azoospermia and cryptorchidism. The patient was phenotypically normal and had bilateral inguinal hernia repair with orchidopexy at the age of 8 years. Histological examination of testicular biopsies revealed maturation arrest. Y/autosome translocations in the literature are relatively rare and mostly associated with infertility. To our knowledge, this is the sixth report about the reciprocal t(Y;16) translocation in the literature but the first presenting with cryptorchidism.  相似文献   

5.
We report on a Yq/15p translocation in a 23-year-old infertile male referred for Klinefelter Syndrome testing, who had azoospermia and bilateral small testes. Hormonal studies revealed hypergonadotropic hypogonadism. Conventional cytogenetic procedures giemsa trypsin giemsa (GTG) and high resolution banding (HRB) and molecular cytogenetic techniques Fluorescence In Situ Hybridization (FISH) performed on high-resolution lymphocyte chromosomes revealed the karyotype 46,XX, t(Y;15)(q12;p11). SRY-gene was confirmed to be present by classical Polymerase Chain Reaction (PCR) methods. His father carried de novo derivative chromosome 15 [45,X, t(Y;15)(q12;p11)] and was fertile; the karyotype of the father using G-band technique confirmed a reciprocal balanced translocation between chromosome Y and 15. In the proband, the der (15) has been inherited from the father because the mother had a normal karyotype (46,XX). In the proband, the der (15) could have produced genetic imbalance leading to unbalanced robertson translocation between chromosome Y and 15, which might have resulted in azoospermia and infertility in the proband. The paternal translocation might have lead to formation of imbalanced ova, which might be resulted infertility in the proband. Sister''s karyotypes was normal (46,XX) while his brother was not analyzed.  相似文献   

6.
A de novo t(X;13)(p11.21;q12.3) translocation is described in an 19-month-old girl with incontinentia pigmenti (IP) and bilateral retinoblastoma. Based on previously reported two girls and this patient, each with a structural X chromosome abnormality and IP, it was assumed that the locus for IP is at Xp11.21. Q-banding analysis revealed that the translocated chromosomes were of paternal origin. The derivative X chromosome was late-replicating in 9% of cultured peripheral blood lymphocytes and in 1% of skin fibroblasts. The erythrocyte esterase D activity in the patient was normal. Several possibilities were considered for possible causative relationship between the X/13 translocation and the development of retinoblastoma. One possibility involved functional monosomy of 13q14 in a minority of retinoblasts due to the spreading of inactivation of the translocated X chromosome segment.  相似文献   

7.
Summary A partial trisomy for the distal segment of the long arm of chromosome 7 (bands q32qter) was observed in a severely retarded child with somatic and CNS anomalies. The phenotypically normal father and paternal grandmother had a balanced reciprocal translocation between the long arm of a chromosome 2 and the long arm of a chromosome 7: 46,XX-XY,t(2;7) (q37;q32). The clinical features of the child at birth and at the ages of 5 months and 2 years are compared with those previously reported in cases of partial trisomy 7q.  相似文献   

8.
A case with an apparently balanced reciprocal translocation between the long arm of the Y chromosome and the short arm of chromosome 1 t(Y;1)(q11.2;p34.3) is described. The translocation was found in a phenotypically normal male ascertained by infertility and presenting for intra-cytoplasmatic sperm injection treatment. Histological examination of testicular biopsies revealed spermatogenic failure. Chromosome painting with probes for chromosome 1 and for the euchromatic part of the Y chromsome confirmed the translocation of euchromatic Y chromosomal material onto the short arm of chromosome 1 and of a substantial part of the short arm of chromosome 1 onto the Y chromosome. Among the Y/autosome translocations, the rearrangements involving long arm euchromatin of the Y chromosome are relatively rare and mostly associated with infertility. Microdeletion screening at the azoospermia locus revealed no deletions, suggesting another mechanism causing infertility in this translocation carrier.  相似文献   

9.
Partial deletion of 4p (Wolf syndrome) is reported in two cases resulting from paternal balanced t(4;8)(p163;p231). One of them was diagnosed prenatally and aborted. Autopsy revealed dysmorphic face, and malformed heart and kidneys. The other case, the mentally retarded sister, had no clinical signs of internal malformations, only slightly dysmorphic appearance. We concluded that loss of the terminal segment of 4p(4p163) seems sufficient to produce the clinical entity of Wolf syndrome, and partial trisomy of the short arm of chromosome 8 did not mask the 4p- phenotype. Segregation analysis showed risk figures of about 15% for a malformed child comparable to previously given figures concerning the outcome of autosomal reciprocal translocations.  相似文献   

10.
Molecular analysis of a patient affected by the autosomal recessive skeletal dysplasia, pycnodysostosis (cathepsin K deficiency; MIM 265800), revealed homozygosity for a novel missense mutation (A277V). Since the A277V mutation was carried by the patient's father but not by his mother, who had two normal cathepsin K alleles, paternal uniparental disomy was suspected. Karyotyping of the patient and of both parents was normal, and high-resolution cytogenetic analyses of chromosome 1, to which cathepsin K is mapped, revealed no abnormalities. Evaluation of polymorphic DNA markers spanning chromosome 1 demonstrated that the patient had inherited two paternal chromosome 1 homologues, whereas alleles for markers from other chromosomes were inherited in a Mendelian fashion. The patient was homoallelic for informative markers mapping near the chromosome 1 centromere, but he was heteroallelic for markers near both telomeres, establishing that the paternal uniparental disomy with partial isodisomy was caused by a meiosis II nondisjunction event. Phenotypically, the patient had normal birth height and weight, had normal psychomotor development at age 7 years, and had only the usual features of pycnodysostosis. This patient represents the first case of paternal uniparental disomy of chromosome 1 and provides conclusive evidence that paternally derived genes on human chromosome 1 are not imprinted.  相似文献   

11.
Summary We have used two repeated DNA fragments (3.4 and 2.1 kb) released from Y chromosome DNA by digestion with the restriction endonuclease Hae III to analyze potential Y chromosome/autosome translocations. Two female patients were studied who each had an abnormal chromosome 22 with extra quinacrine fluorescent material on the short arm. The origin of the 22p+ chromosomes was uncertain after standard cytologic examinations. Analysis of one patient's DNA with the Y-specific repeated DNA probes revealed the presence of both the 3.4 and 2.1 kb Y-specific fragments. Thus, in this patient, the additional material was from the Y chromosome. Analysis of the second patient's DNA for Y-specific repeated DNA was negative, indicating that the extra chromosomal segment was not from the long arm of the Y chromosome. These two cases demonstrate that repeated DNA can distinguish between similar appearing aberrant chromosomes and may be useful in karyotypic and prenatal diagnosis.  相似文献   

12.
Clinical consequences of a human non-fluorescent Y chromosome (Ynf)   总被引:1,自引:0,他引:1  
A new case of ambiguous genitalia and immature tissue in the left gonad is presented. Cytogenetic findings with various techniques demonstrated that the distal two-thirds of the long arm of the Y chromosome is deleted. Q-banding showed a non-fluorescent Y; three positive bands were however noted when the DA/DAPI technique was applied. After a review of the literature, it was concluded that the non-fluorescent Y chromosome (Ynf) when inherited from generation to generation is a heteromorphism in normal males. However, in our case, where the proband's Y is lacking the fluorescent segment, a simple deletion does not appear to adequately explain the DA/DAPI positive bands. Possibly, a deletion followed by a structural rearrangement of the non-fluorescent segment had occurred de novo. The highly Y-specific DNA sequences present in the fluorescent segment are absent in these patients. The abnormal development in these cases is due to the presence of the 45,X cell line. The gene responsible for spermatogenesis has been localized to the non-fluorescent region in the long arm of the Y chromosome. Furthermore, it is concluded that two types of non-fluorescent Y chromosomes can be found in the population; one is a normal inherent heteromorphic variant, while the other appears to be an abnormality, especially in cases with azoospermia. Such distinctions should clearly be established prior to genetic counseling for patients with so called Ynf or del (Yd).  相似文献   

13.
The mammalian Y chromosome offers a unique perspective on the male reproduction and paternal evolutionary histories. However, further understanding of the Y chromosome biology for most mammals is hindered by the lack of a Y chromosome assembly. This study presents an integrated in silico strategy for identifying and assembling the goat Y‐linked scaffolds using existing data. A total of 11.5 Mb Y‐linked sequences were clustered into 33 scaffolds, and 187 protein‐coding genes were annotated. We also identified high abundance of repetitive elements. A 5.84 Mb subset was further ordered into an assembly with the evidence from the goat radiation hybrid map (RH map). The existing whole‐genome resequencing data of 96 goats (worldwide distribution) were utilized to exploit the paternal relationships among bezoars and domestic goats. Goat paternal lineages were clearly divided into two clades (Y1 and Y2), predating the goat domestication. Demographic history analyses indicated that maternal lineages experienced a bottleneck effect around 2,000 YBP (years before present), after which goats belonging to the A haplogroup spread worldwide from the Near East. As opposed to this, paternal lineages experienced a population decline around the 10,000 YBP. The evidence from the Y chromosome suggests that male goats were not affected by the A haplogroup worldwide transmission, which implies sexually unbalanced contribution to the goat trade and population expansion in post‐Neolithic period.  相似文献   

14.
A t(X:15)(q23;q25) was detected during cytogenetic investigation of a lymphoblastoid cell line established from a female patient with Fanconi anemia. The translocation was apparently balanced at passage 300 and unbalanced at passage 13. A chromatid exchange between both the normal and the der(15), between the centromere and band 15q25, may explain these results. Replication studies, following BrdU incorporation, indicate that the segment Xq23----qter from the der(15) is early replicating whereas segment Xpter----q23 from the der(X) is late replicating. Since the normal X was early replicating, it is concluded that the segment of the long arm of chromosome X, separated from its inactivation center by the translocation, was reactivated. This interpretation is confirmed by the methylation patterns of the hypoxanthine phosphoribosyltransferase gene (HPRT), mapped on Xq26, which corresponds to that of an active gene, whereas that of phosphoglycerate kinase (PGK1), which remained on the der(X), corresponds to that of an inactive gene. This is the first example of reactivation of a segment of the X chromosome following a structural rearrangement in somatic cells.  相似文献   

15.
A child with maple syrup urine disease type 2 (MSUD2) was found to be homozygous for a 10-bp MSUD2-gene deletion on chromosome 1. Both purported parents were tested, and neither carries the gene deletion. Polymorphic simple-sequence repeat analyses at 15 loci on chromosome 1 and at 16 loci on other chromosomes confirmed parentage and revealed that a de novo mutation prior to maternal meiosis I, followed by nondisjunction in maternal meiosis II, resulted in an oocyte with two copies of the de novo mutant allele. Fertilization by a sperm that did not carry a paternal chromosome 1 or subsequent mitotic loss of the paternal chromosome 1 resulted in the propositus inheriting two mutant MSUD2 alleles on two maternal number 1 chromosomes.  相似文献   

16.
石玉平  马绍武 《遗传学报》1993,20(6):488-492
本文对一便生育过先天愚型儿的个体刊进行了细胞与分子遗传学研究。发现先证者拥有t(14;21)用一个短臂增大变异为15号标记染色体。通过G-显带、C-显带、Q-显带、硝酸银染色及Y染色体长臂异染色质区特异控针pY3.4对先证者基因组DNA的斑点杂交和中期染色体的原位杂交,证实变异部分由Y染色体长臂异染色质区易位所形成,从而排除了巨大随体的存在或其他染色体参与重排形成变的可能性,结果表明,常规显带与染  相似文献   

17.
The inheritance of several X-linked restriction fragment length polymorphisms ( RFLPs ) is examined in seven 46,XX males and their immediate relatives. The XX males are shown to have inherited a paternal and a maternal RFLP allele in each of the five (of seven) families in which these X-linked markers are informative. In the other two families, a maternal X-chromosomal contribution is demonstrated, but a paternal contribution cannot be determined. We conclude that most, if not all, XX males inherit one paternal and one maternal X chromosome. A segment of single-copy DNA specific to the short arm of the Y chromosome is found to be absent from the genomes of eight XX males. In one of these XX males, an Xp-Yp translocation had previously been inferred from chromosome-banding studies. Our findings argue against mosaicism involving a Y-containing cell line in the XX males examined here, but they do not exclude an X-Y (or Y-autosome) translocation during paternal meiosis. If such a translocation has occurred, the translocation product received by the XX males does not include the Yp-specific sequence tested here.  相似文献   

18.
X-chromosome inactivation (XCI) is an essential mechanism in females that compensates for the genome imbalance between females and males. It is known that XCI can spread into an autosome of patients with X;autosome translocations. The subject was a 5-year-old boy with Prader?CWilli syndrome (PWS)-like features including hypotonia, hypo-genitalism, hypo-pigmentation, and developmental delay. G-banding, fluorescent in situ hybridization, BrdU-incorporated replication, human androgen receptor gene locus assay, SNP microarrays, ChIP-on-chip assay, bisulfite sequencing, and real-time RT-PCR were performed. Cytogenetic analyses revealed that the karyotype was 46,XY,der(X)t(X;15)(p21.1;q11.2),?15. In the derivative chromosome, the X and half of the chromosome 15 segments showed late replication. The X segment was maternal, and the chromosome 15 region was paternal, indicating its post-zygotic origin. The two chromosome 15s had a biparental origin. The DNA methylation level was relatively high in the region proximal from the breakpoint, and the level decreased toward the middle of the chromosome 15 region; however, scattered areas of hypermethylation were found in the distal region. The promoter regions of the imprinted SNRPN and the non-imprinted OCA2 genes were completely and half methylated, respectively. However, no methylation was found in the adjacent imprinted gene UBE3A, which contained a lower density of LINE1 repeats. Our findings suggest that XCI spread into the paternal chromosome 15 led to the aberrant hypermethylation of SNRPN and OCA2 and their decreased expression, which contributes to the PWS-like features and hypo-pigmentation of the patient. To our knowledge, this is the first chromosome-wide methylation study in which the DNA methylation level is demonstrated in an autosome subject to XCI.  相似文献   

19.
Summary A girl with delayed growth in body height and weight, retarded psychomotor development, facial dysmorphism, high-arched palate, extension defects of elbows, and a probable hearing impairment is presented. A chromosome investigation by both conventional and high-resolution banding techniques revealed an apparently pure interstitial deletion of the proximal segment of the short arm of chromosome 3 (46, XX, del(3) (p11p14.2) de novo). The paternal karyotype is 47,XYY. The clinical features of the patient are compared with those of two previously reported cases in the literature with an interstitial 3p deletion.  相似文献   

20.
We report on the investigation of the parental origin and mode of formation of the two isochromosomes, i(2p) and i(2q), detected in a healthy adult male. Conventional cytogenetic analysis revealed the proband's lack of structurally normal chromosomes 2, these being replaced by an i(2p) and an i(2q). Investigation of the parental origin of the isochromosomes revealed a paternal origin of the i(2p) chromosome and a maternal origin of the i(2q) chromosome. Thus, the formation of both isochromosomes, or at least of the paternal i(2p), appears to have occurred postzygotically. Interestingly, whilst a paternal isodisomy was observed for the entire 2p, maternal heterodisomy was detected for two segments of 2q, separated by a segment showing isodisomy. The results are indicative of an initial error (non-disjunction or i(2q) formation) concerning the maternal chromosomes 2 during meiosis I, which likely favored the subsequent mitotic recombination event resulting in the presence of two isochromosomes. To the best of our knowledge this is the first case of an initial meiotic error, followed by postzygotic trisomy rescue through the formation of isochromosomes, resulting in a normal phenotype. A prenatal detection, by cytogenetic and molecular analysis, of such chromosome abnormality would have led to the incorrect conclusion of a most likely poor prognosis for the fetus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号