首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on a familial case including four male probands from three generations with a 45,X,psu dic(15;Y)(p11.2;q12) karyotype. 45,X is usually associated with a female phenotype and only rarely with maleness, due to translocation of small Y chromosomal fragments to autosomes. These male patients are commonly infertile because of missing azoospermia factor regions from the Y long arm. In our familial case we found a pseudodicentric translocation chromosome, that contains almost the entire chromosomes 15 and Y. The translocation took place in an unknown male ancestor of our probands and has no apparent effect on fertility and phenotype of the carrier. FISH analysis demonstrated the deletion of the pseudoautosomal region 2 (PAR2) from the Y chromosome and the loss of the nucleolus organizing region (NOR) from chromosome 15. The formation of the psu dic(15;Y) chromosome is a reciprocal event to the formation of the satellited Y chromosome (Yqs). Statistically, the formation of 45,X,psu dic(15;Y) (p11.2;q12) is as likely as the formation of Yqs. Nevertheless, it has not been described yet. This can be explained by the dicentricity of this translocation chromosome that usually leads to mitotic instability and meiotic imbalances. A second event, a stable inactivation of one of the two centromeres is obligatory to enable the transmission of the translocation chromosome and thus a stably reduced chromosome number from father to every son in this family.  相似文献   

2.
Summary A Japanese boy with genital malformation and mixed gonadal dysgenesis is described. The karyotype appeared to be 46,X t(15;Y)(p13;q11). A comparison of the Q-positive segment on der(15) with that of the paternal Y chromosome revealed, however, the loss of over half of the Q-positive segment from the paternal Y during t(15;Y) translocation. The father had an unusually long Y chromosome that corresponded to a chromosome 18. DNA analysis further revealed a deletion of the non-fluorescent part of the long arm of the Y chromosome spanning interval 5–6.  相似文献   

3.
The propositus was referred because of sterility and oligospermia. His karyotype was 45, XY, t(13q14q). His father was dead; his mother and the only brother, who was fertile, both had 47 chromosomes, but a normal phenotype and normal intelligence. The additional chromosome was three quarters the size of a G chromosome and had satellites on the short and long arms.  相似文献   

4.
Coexistence of inverted Y, chromosome 15p+ and abnormal phenotype.   总被引:3,自引:0,他引:3  
In this study, we report conventional and molecular cytogenetic studies in a patient with multiple anomalies who is a carrier of a pericentric inversion on chromosome Y and a chromosome 15p+. His parents were phenotypically normal. The father is a carrier of a pericentric inversion of chromosome Y, and the mother carries a large chromosome 15p+ variant. The inverted Y chromosome was demonstrated by GTG- and CBG-banding, and DAPI-staining. The presence of extra chromosomal material on the chromosome 15p, that was C-band and DAPI positive, was demonstrated by trypsin G-banding. This suggests that the extra chromosomal material contained repetitive DNA sequences. NOR-staining indicated the presence a nuclear organizer region at the junction of the chromosome 15p+ material. Fluorescence in situ hybridization (FISH), with chromosome X and Y painting probes, alpha- and classic-satellite probes specific for chromosome Y, alpha- and beta-satellite III probes for chromosome 15 were used to elucidate the nature of both the inverted Y chromosome and chromosome 15p+. The result with chromosome X and Y painting probes, alpha-satellite, classic-satellite, and DYS59 probes specific for chromosome Y revealed the rearrangement of the Y chromosome was an inv(Y)(p11.2q11.22 or q11.23). FISH with alpha-satellite and beta-satellite III probes for chromosome 15 demonstrated that the extra chromosomal material on the chromosome 15 probably represents beta-satellite III sequences. The possible roles of the simultaneous occurrence of an inverted Y and the amplified DNA sequence on chromosome 15p in the abnormal phenotype of the proband are discussed.  相似文献   

5.
A newborn male referred for genetic investigation because of a large sized head and dysplastic ears, but with apparently normal male genitalia was found to have a deletion of all of the brightly fluorescent part of the long are of chromosome Y and absence of the Y fluorescent body on buccal smear. His father and his two brothers had normal Y chromosomes. Social and family history as well as marker investigation make illegitimacy most unlikely and leaves an occurrence of a new chromosomal mutation in the father the most probably interpretation. Follow-up of the infant to the age of 9 months revealed a large baby with normal development.  相似文献   

6.
Summary Comparative cytogenetic analyses were performed with ten different banding methods on a previously undescribed, inherited structural aberration of a Y chromosome, and the results compared with those of normal Y chromosomes occurring in the same family. The value of the individual staining techniques in investigations of Y chromosomal aberrations is emphasized. The aberrant Y chromosome analyzed can be formally derived from an isodicentric Y chromosome for the short arm with a very terminal long-arm breakpoint, in which the centromere, an entire short arm, and the proximal region on one long arm was lost. This interpretation was confirmed by determining the amount of the two Y-specific DNA sequences (2.1 and 3.4 kb in length) by means of HaeIII restriction endonuclease analysis. The karyotype-phenotype correlations in the men with this aberrant Y chromosome, especially the fertility dysfunctions (oligoasthenoteratozoospermia, cryptozoospermia), are discussed. The possibility of the existence of fertility factors involved in the control of spermatogenesis within the quinacrine-bright heterochromatic region of the Y long arm is presented.  相似文献   

7.
Summary We have used a recombinant DNA clone derived from the Y-specific 3,4-kb repeats for in situ chromosome hybridization and Southern blotting analysis to identify a case of de novo Y;18 translocation. The proband has a chromosome complement of 46,XY and a variant chromosome 18 with a Q-bright and C-positive short arm. The father has a normal male karyotype of 46,XY. The mother has a female karyotype of 46,XX and an unusually large Q-bright satellite on one chromosome 22. In situ hybridization with the 3,4-kb probe to the metaphase preparations of family members indicated that the additional Q-bright material in the proband's variant chromosome 18 derived from the Y chromosome of his father, and not from the variant chromosome 22 of his mother. On Southern hybridization, the proband had approximately twice the amount of 3,4-kb repeats per cell as his father. These observations suggest a de novo genetic rearrangement in the proband which probably occurred during the father's spermatogenesis.  相似文献   

8.
One hundred and seventy normal male infants from Delhi were studied using the CBG technique to estimate Y-chromosome length heteromorphisms. The median class in Y/F [Y/F = total length of the Y chromosome/average total length of the F group chromosomes (19 and 20)] distribution was 0.75-0.79. The Y/F index in infants varied from 0.60 to 1.16 with a mean of 0.81 and a standard deviation of 0.09. A high incidence for very small (53.5 percent) and small (41.2 percent) categories of Y-chromosome length heteromorphisms was observed. Data were compared with other available reports; also possible mechanisms of the Y-chromosome length heteromorphisms and their role in ethnic/racial variation as well as in developmental disturbances are discussed. It is suggested there may be a need to redefine the long and short Y chromosome in a given population while studying different clinical disorders.  相似文献   

9.
We report on the second prenatal diagnosis of familial paracentric inversion of the long arm of Y chromosome [46, X, inv(Y)(q11.2q12)]. The anomaly was detected through an amniocentesis performed because of advanced maternal age. The inversion has been detected by standard GTG banding methods and better characterized by FISH with painting probe and specific satellite probes DYZ1 and DYZ3. The inversion derived from phenotypically normal father. Pregnancy was uneventful and an healthy child was born. We discuss the issue concerning genetic prenatal counselling of this rare condition and we report the clinical follow up of the child.  相似文献   

10.
A boy with Down syndrome due to a free trisomy 21 also had a metacentric Y chromosome with an arm euchromatic and the other heterochromatic inherited from his phenotypically normal father. This chromosome was mitotically stable and hybridized with the DYZ3 probe precisely at its primary constriction; in addition, a subtelomeric Xp/Yp probe gave the expected signal near the end of the euchromatic arm. So, the proband's karyotype was 47,X,inv(Y)(p11q11.2),+21. Given the high frequency of both chromosome anomalies, we regard its concurrence as a mere coincidence. This observation, along with previous reports, allows us to classify the apparent pericentric inversions of the Y chromosome into two types: "true" inversions characterized by an alphoid single centromere and mitotic stability, and "false" inversions in which a nonalphoid centromere has taken over the usual alphoid centromere; indeed, these chromosomes are dicentric and mitotically unstable. Finally, the inv(Y) polymorphism in man compares with that documented in other mammal species, in which the rearranged Y chromosome neither impairs the fertility nor has other phenotypical consequences.  相似文献   

11.
This paper reports a case of XY gonadal dysgenesis in two sisters. Both patients presented an eunochoid female phenotype with normal external genitalia. At laparotomy, the elder sister was found to have bilateral gonadoblastoma. Cytogenetic studies, which included G and C banding and in situ hybridization, showed that the patients had an apparently normal 46, XY karyotype. PCR analyses revealed absence of the conserved portion (HMG box) of the SRY gene and of the Y chromosome pseudoautosomal boundary region sequence in both patients. The presence of the ZFY sequence was detected by Southern hybridization in the two affected sisters. The patients' father (46, XY, no mosaicism detected in peripheral blood lymphocytes) was positive for SRY and ZFY sequences. The occurrence of gonadoblastoma is discussed in terms of the genetic factors that may lead to tumor development.  相似文献   

12.
Routine cytogenetic analysis of an amniotic fluid sample revealed a large brightly fluorescent region in the short arm of chromosome 14 in an otherwise normal male karyotype (46,XY,14p+ + +). This site was also present in the paternal karyotype. In situ hybridisation to a Y-chromosome-specific DNA probe confirmed that the father had a Y/14 translocation. The incidence of two hybridisation bodies (large hybridisation sites), detecting both the translocated Y chromatin and the normal Y chromosome, was lower in interphase nuclei (44.3%) than in metaphase spreads (95.2%). The relevance of these observations to the potential use of in situ hybridisation to interphase nuclei for prenatal diagnosis is discussed.  相似文献   

13.
We report on a Yq/15p translocation in a 23-year-old infertile male referred for Klinefelter Syndrome testing, who had azoospermia and bilateral small testes. Hormonal studies revealed hypergonadotropic hypogonadism. Conventional cytogenetic procedures giemsa trypsin giemsa (GTG) and high resolution banding (HRB) and molecular cytogenetic techniques Fluorescence In Situ Hybridization (FISH) performed on high-resolution lymphocyte chromosomes revealed the karyotype 46,XX, t(Y;15)(q12;p11). SRY-gene was confirmed to be present by classical Polymerase Chain Reaction (PCR) methods. His father carried de novo derivative chromosome 15 [45,X, t(Y;15)(q12;p11)] and was fertile; the karyotype of the father using G-band technique confirmed a reciprocal balanced translocation between chromosome Y and 15. In the proband, the der (15) has been inherited from the father because the mother had a normal karyotype (46,XX). In the proband, the der (15) could have produced genetic imbalance leading to unbalanced robertson translocation between chromosome Y and 15, which might have resulted in azoospermia and infertility in the proband. The paternal translocation might have lead to formation of imbalanced ova, which might be resulted infertility in the proband. Sister''s karyotypes was normal (46,XX) while his brother was not analyzed.  相似文献   

14.
Parental chromosome studies were referred to us after initial finding of a balanced translocation involving chromosomes 4 and 15 in their phenotypically abnormal male child (cytogenetic analysis was done at another laboratory). In addition to the same 4;15 translocation, the father also had an interstitial deletion of the long arm of one chromosome 6 and a marker chromosome. In this article, we report a neocentromere on this marker, which was determined to be composed of chromosome 6 material by FISH. The child's karyotype was re-interpreted to be unbalanced due to the presence of the abnormal chromosome 6, but without the marker. The clinical phenotype associated with the interstitial deletion of chromosome 6 is also reported.  相似文献   

15.
A new family with extra material on proximal 15q   总被引:2,自引:0,他引:2  
Proximal extra material in the long arm of chromosome 15, has been described in individuals with different phenotypes (isolated mental retardation, multiple malformations, repeated miscarriages), and with apparently normal phenotype, in which cytogenetic analysis was invariably carried out on the basis of clinical indications. The paper describes a child with mental retardation, and his father, who both had proximal extra material in 15q. Caution is advised in the study of karyotype-phenotype correlation.  相似文献   

16.
About 30% of couple infertilities are of male origin, some of them caused by genetic abnormalities of the Y chromosome. Deletions in AZF region can cause severe spermatogenic defects ranging from non-obstructive azoospermia to oligospermia. The intracytoplasmatic sperm injection technique (ICSI) is rapidly becoming a versatile procedure for human assisted reproduction in case of male infertility. The use of ICSI allows Y chromosome defects to be passed from father. The goal of our study is to evaluate the frequency of microdeletions in the long arm of Y chromosome, within the AZF regions, in these cases of infertilities, using molecular genetics techniques. Thirty infertile men with azoospermia or oligozoospermia, determined by spermogram, were studied after exclusion of patients with endocrine or obstructive causes of infertility. Peripheral blood DNA was extracted from each patient, then amplified by multiplex PCR with STS genomic markers from the Y chromosome AZF zones. Each case was checked by multiplex PCR through coamplification with the SRY marker. Three men with microdeletions of the long arm of the Y chromosome were diagnosed among the 30 patients, corresponding to a proportion of 10%. The relatively high proportion of microdeletions found in our population suggest the need for strict patient selection to avoid unnecessary screening for long arm Y chromosome microdeletions. The molecular diagnostics was performed according to the current European Academy of Andrology laboratory guidelines for molecular diagnosis of Y chromosomal microdeletions.  相似文献   

17.
18.
Summary The phenotype of the variegation position effect white-mottled-2 in Drosophila hydei is modified by supernumerary Y chromosomes and by fractions thereof. Different translocated Y fragments have varying degrees of effectiveness in suppressing the mutant phenotype in the mottled eyes. In fragments derived from similar regions of the Y chromosome the suppressive ability is related to their cytological lengths. In contrast, fragments derived from distinctive regions of the Y chromosome differ markedly in their effectiveness, and these differences are not necessarily correlated with the cytological length. In particular, fragments of the distal region of YL are more effective in enhancing the wild phenotype than are proximal fragments of similar size.The mutation white-mottled-2 is accompanied by a complex rearrangement of the X chromosome. This inhibits crossing over between large regions of the X chromosome in structural heterozygotes; it causes also a delay of development and a considerable reduction of viability in homozygous females and hemizygous males. XO males are inviable. The inviability of these males is partially covered by Y fragments. With respect to viability, the fragments show similar regional differences in effectiveness as in the modification of the mottled phenotype.There is also a parental effect on the modulation of the white-mottled-2 phenotype.There is no correlation between the activity of Y chromosomal factors on spermiogenesis and the activity of Y factors on the modification of the variegation position effect. Suppression of Y chromosomal sites which normally unfold lampbrush loops during the spermatocyte stage and whose activity has previously been shown to be indispensible for normal differentiation of the male germ line cells does not result in any visible alterations of the effectiveness on the mottling. So there is obviously independence between these two different genetic activities of Y chromosomal factors.  相似文献   

19.
A case with an apparently balanced reciprocal translocation between the long arm of the Y chromosome and the short arm of chromosome 1 t(Y;1)(q11.2;p34.3) is described. The translocation was found in a phenotypically normal male ascertained by infertility and presenting for intra-cytoplasmatic sperm injection treatment. Histological examination of testicular biopsies revealed spermatogenic failure. Chromosome painting with probes for chromosome 1 and for the euchromatic part of the Y chromsome confirmed the translocation of euchromatic Y chromosomal material onto the short arm of chromosome 1 and of a substantial part of the short arm of chromosome 1 onto the Y chromosome. Among the Y/autosome translocations, the rearrangements involving long arm euchromatin of the Y chromosome are relatively rare and mostly associated with infertility. Microdeletion screening at the azoospermia locus revealed no deletions, suggesting another mechanism causing infertility in this translocation carrier.  相似文献   

20.
A long repetitive DNA sequence (OtY8) has been cloned from male chinook salmon and its genomic organization has been characterized. The repeat has a unit length of 8 kb and is present approximately 300 times per diploid male nucleus. All internal fragments within the 8-kb repeat segregate from father to son, suggesting that the entire repeat unit is located on the Y chromosome. The organization of this sequence into an 8-kb repeat unit is restricted to the Y chromosome, as are several male-specific repeat subtypes identified on the basis of restriction-site variation. The repeat possesses only weak internal sequence similarities, suggesting that OtY8 has not arisen by duplication of a smaller repeat unit, as is the case for other long tandem arrays found in eukaryotes. Based on a laddered pattern arising from partial digestion of genomic DNA with a restriction enzyme which cuts only once per repeat unit, this sequence is not dispersed on the Y chromosome but is organized as a head-to-tail tandem array. Pulse-gel electrophoresis reveals that the direct-tandem repeats are organized into at least six separate clusters containing approximately 12 to 250 copies, comprising some 2.4 Mb of Y-chromosomal DNA in total. Related sequences with nucleotide substitutions and DNA insertions relative to the Y-chromosomal fragment are found elsewhere in the genome but at much lower copy number and, although similar sequences are also found in other salmonid species, the amplification of the repeat into a Y-chromosome-linked tandem array is only observed in chinook salmon. The OtY8 repetitive sequence is genetically tightly associated with the sex-determination locus and provides an opportunity to examine the evolution of the Y chromosome and sex determination process in a lower vertebrate. Received: 4 April 1997 / Accepted: 22 July 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号