首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Thymus-derived, natural CD4(+)CD25(+) regulatory T cells can educate peripheral CD4(+)CD25(-) cells to develop suppressive activity by poorly understood mechanisms. TGF-beta has IL-2-dependent costimulatory effects on alloactivated naive, human CD4(+) T cells and induces them ex vivo to become potent contact-dependent, cytokine-independent suppressor cells. In this study, we report that CD4(+)CD25(+) cells are the targets of the costimulatory effects of IL-2 and TGF-beta. These cells do not divide, but, instead, greatly increase the numbers of CD4(+)CD25(-) cells that become CD25(+) cytokine-independent suppressor cells. These CD4(+)CD25(+) regulatory cells, in turn, induce other alloactivated CD4(+)CD25(-) cells to become potent suppressor cells by mechanisms that, surprisingly, require both cell contact and TGF-beta and IL-10. The suppressive effects of these secondary CD4(+)CD25(+) cells depend upon TGF-beta and IL-10. Moreover, both the naive CD4(+) cells induced by IL-2 and TGF-beta to become suppressor cells, and the subsequent CD4(+)CD25(-) cells educated by them to become suppressors express FoxP3. We suggest that the long-term effects of adoptively transferred natural-like CD4(+)CD25(+) regulatory cells induced ex vivo are due to their ability to generate new cytokine-producing CD4(+) regulatory T cells in vivo.  相似文献   

2.
Foxp3 functions as a lineage specification factor for the development of naturally occurring thymus-derived CD4+CD25+ regulatory T (Treg) cells. Recent evidence suggests that naive Foxp3-CD4+CD25- T cells can be converted in the periphery into Foxp3+ Treg cells. In this study, we have identified the G protein-coupled receptor (GPR)83 to be selectively up-regulated by CD4+CD25+ Treg cells of both murine and human origin in contrast to naive CD4+CD25- or recently activated T cells. Furthermore, GPR83 was induced upon overexpression of Foxp3 in naive CD4+CD25- T cells. Transduction of naive CD4+CD25- T cells with GPR83-encoding retroviruses did not confer in vitro suppressive activity. Nevertheless, GPR83-transduced T cells were able to inhibit the effector phase of a severe contact hypersensitivity reaction of the skin, indicating that GPR83 itself or GPR83-mediated signals conferred suppressive activity to conventional CD4+ T cells in vivo. Most strikingly, this in vivo acquisition of suppressive activity was associated with the induction of Foxp3 expression in GPR83-transduced CD4+ T cells under inflammatory conditions. Our results suggest that GPR83 might be critically involved in the peripheral generation of Foxp3+ Treg cells in vivo.  相似文献   

3.
Specific and selective immunological unresponsiveness to donor alloantigens can be induced in vivo. We have shown previously that CD25+CD4+ T cells from mice exhibiting long-term operational tolerance to donor alloantigens can regulate rejection of allogeneic skin grafts mediated by CD45RB(high)CD4+ T cells. In this study, we wished to determine whether donor-specific regulatory cells can be generated during the induction phase of unresponsiveness, i.e., before transplantation. We provide evidence that pretreatment with anti-CD4 Ab plus a donor-specific transfusion generates donor-specific regulatory CD25+CD4+ T cells that can suppress rejection of skin grafts mediated by naive CD45RB(high)CD4+ T cells. Regulatory cells were contained only in the CD25+ fraction, as equivalent numbers of CD25-CD4+ T cells were unable to regulate rejection. This pretreatment strategy led to increased expression of CD122 by the CD25+CD4+ T cells. Blockade of both the IL-10 and CTLA-4 pathways abrogated immunoregulation mediated by CD25+ T cells, suggesting that IL-10 and CTLA-4 are required for the functional activity of this population of immunoregulatory T cells. In clinical transplantation, the generation of regulatory T cells that could provide dynamic control of rejection responses is a possible route to permanent graft survival without the need for long-term immunosuppression.  相似文献   

4.
Mouse studies demonstrated that infusion of CD4+CD25+ regulatory T cells (Tregs) prevented graft versus host disease (GVHD) lethality after bone marrow transplantation (BMT). But the potential impact of human Tregs on GVHD has not been well demonstrated. In this study, we demonstrated that human Tregs enriched from peripheral blood of healthy donors could be expanded ex vivo to clinically relevant cell numbers in 2-3 weeks while maintaining Foxp3, CD25, CTLA-4, and CD62L expression as well as in vitro suppressive function. Furthermore, injection of human PBL into NOD/SCID mice induced lethal xenogenic GVHD, but co-transfer of expanded human Tregs with human PBL significantly enhanced survival, reduced GVHD symptoms, and inhibited human IgG/IgM production in the NOD/SCID mice. These results demonstrated that ex vivo expanded human Tregs retained their in vivo suppressive activity and prevented lethal xenogeneic GVHD, revealing the therapeutic potential of expanded human Tregs for GVHD.  相似文献   

5.
6.
We have been investigating whether alloantigen-specific CD4(+)25+ regulatory T cells can be identified for use in treating graft-versus-host disease. CD150, which is upregulated on the surface of all activated T lymphocytes, was identified as a candidate marker for alloantigen-activated CD4(+)25+ regulatory T cells by gene chip analysis. Freshly isolated CD4(+)25+ cells had only low cell-surface expression of CD150, comparable to that of CD4(+)25- T cells. Increased CD150 expression was observed on all T cells after coculture with allogeneic stimulator cells. When purified CD4(+)25+ cells were precultured with allogeneic stimulator cells, then sorted into CD150+ and CD150- subsets, allosuppressive activity was contained primarily in the CD150+ fraction. These cells also suppressed the proliferation of alloantigen-activated autologous T cells, and they could be expanded in vitro without loss of their suppressive capacity. These results suggest that CD150 can be used as a marker for the identification of purified alloantigen-activated CD4(+)25+ regulatory T cells.  相似文献   

7.
Previously we reported that TGF-beta has an important role in the generation and expansion of human "professional" CD4(+)CD25(+) regulatory T cells in the periphery that have a cytokine-independent mechanism of action. In this study we used low-dose staphylococcal enterotoxin to induce T cell-dependent Ab production. We report that TGF-beta induces activated CD4(+)CD25(-) T cells to become Th3 suppressor cells. While stimulating CD4(+) cells with TGF-beta modestly increased expression of CD25 and intracellular CTLA-4 in primary cultures, upon secondary stimulation without TGF-beta the total number and those expressing these markers dramatically increased. This expansion was due to both increased proliferation and protection of these cells from activation-induced apoptosis. Moreover, adding as few as 1% of these TGF-beta-primed CD4(+) T cells to fresh CD4(+) cells and B cells markedly suppressed IgG production. The inhibitory effect was mediated by TGF-beta and was also partially contact dependent. Increased TGF-beta production was associated with a decreased production of IFN-gamma and IL-10. Depletion studies revealed that the precursors of these TGF-beta-producing CD4(+) suppressor cells were CD25 negative. These studies provide evidence that CD4(+)CD25(+) regulatory cells in human blood consist of at least two subsets that have TGF-beta-dependent and independent mechanisms of action. TGF-beta has an essential role in the generation of both of these T suppressor cell subsets from peripheral T cells. The ability to induce CD4(+) and CD8(+) cells to become regulatory cells ex vivo has the potential to be useful in the treatment of autoimmune diseases and to prevent transplant rejection.  相似文献   

8.
Naturally arising CD4+CD25+ regulatory T (T(R)) cells have been shown to prevent and cure murine T cell-mediated colitis. However, their exact mechanism of controlling colitogenic memory CD4+ T cells in in vivo systems excluding the initial process of naive T cell activation and differentiation has not been examined to date. Using the colitogenic effector memory (T(EM)) CD4+ cell-mediated colitis model induced by adoptive transfer of colitogenic CD4+CD44(high)CD62L(-) lamina propria (LP) T cells obtained from colitic CD4+CD45RB(high) T cell-transferred mice, we have shown in the present study that CD4+CD25+ T(R) cells are able not only to suppress the development of colitis, Th1 cytokine production, and the expansion of colitogenic LP CD4+ T(EM) cells but also to expand these cells by themselves extensively in vivo. An in vitro coculture assay revealed that CD4+CD25+ T(R) cells proliferated in the presence of IL-2-producing colitogenic LP CD4+ T(EM) cells at the early time point (48 h after culture), followed by the acquisition of suppressive activity at the late time point (96 h after culture). Collectively, these data suggest the distinct timing of the IL-2-dependent expansion of CD4+CD25+ T(R) cells and the their suppressive activity on colitogenic LP CD4+ T(EM) cells.  相似文献   

9.
10.
Murine CD4(+)CD25(+) regulatory cells have been reported to express latency-associated peptide (LAP) and TGF-beta on the surface after activation, and exert regulatory function by the membrane-bound TGF-beta in vitro. We have now found that a small population of CD4(+) T cells, both CD25(+) and CD25(-), can be stained with a goat anti-LAP polyclonal Ab without being stimulated. Virtually all these LAP(+) cells are also positive for thrombospondin, which has the ability to convert latent TGF-beta to the active form. In the CD4(+)CD45RB(high)-induced colitis model of SCID mice, regulatory activity was exhibited not only by CD25(+)LAP(+) and CD25(+)LAP(-) cells, but also by CD25(-)LAP(+) cells. CD4(+)CD25(-)LAP(+) T cells were part of the CD45RB(low) cell fraction. CD4(+)CD25(-)LAP(-)CD45RB(low) cells had minimal, if any, regulatory activity in the colitis model. The regulatory function of CD25(-)LAP(+) cells was abrogated in vivo by anti-TGF-beta mAb. These results identify a new TGF-beta-dependent regulatory CD4(+) T cell phenotype that is CD25(-) and LAP(+).  相似文献   

11.
TNFR2 is predominantly expressed by a subset of human and mouse CD4(+)CD25(+)FoxP3(+) T regulatory cells (Tregs). In this study, we characterized the phenotype and function of TNFR2(+) Tregs in peripheral lymphoid tissues of normal and tumor-bearing C57BL/6 mice. We found that TNFR2 was expressed on 30-40% of the Tregs of the peripheral activated/memory subset that were most highly suppressive. In contrast, TNFR2(-) Tregs exhibited the phenotype of naive cells and only had minimal suppressive activity. Although not typically considered to be Tregs, CD4(+)CD25(-)TNFR2(+) cells nevertheless possessed moderate suppressive activity. Strikingly, the suppressive activity of TNFR2(+) Tregs was considerably more potent than that of reportedly highly suppressive CD103(+) Tregs. In the Lewis lung carcinoma model, more highly suppressive TNFR2(+) Tregs accumulated intratumorally than in the periphery. Thus, TNFR2 identifies a unique subset of mouse Tregs with an activated/memory phenotype and maximal suppressive activity that may account for tumor-infiltrating lymphocyte-mediated immune evasion by tumors.  相似文献   

12.
Regulatory T cells preserve tolerance to peripheral self-Ags and may control the response to allogeneic tissues to promote transplantation tolerance. Although prior studies have demonstrated prolonged allograft survival in the presence of regulatory T cells (T-reg), data documenting the capacity of these cells to promote tolerance in immunocompetent transplant models are lacking, and the mechanism of suppression in vivo remains unclear. We used a TCR transgenic model of allograft rejection to characterize the in vivo activity of CD4(+)CD25(+) T-reg. We demonstrate that graft Ag-specific T-reg effectively intercede in the rejection response of naive T cells to established skin allografts. Furthermore, CFSE labeling demonstrates impaired proliferation of naive graft Ag-specific T cells in the draining lymph node in the presence of T-reg. These results confirm the efficacy of T-reg in promoting graft survival and suggest that their suppressive action is accomplished in part through inhibition of proliferation.  相似文献   

13.
Regulatory T cells prevent autoimmunity by suppressing the reactivity of potentially aggressive self-reactive T cells. Contact-dependent CD4+ CD25+ 'professional' suppressor cells and other cytokine-producing CD4+ and CD8+ T-cell subsets mediate this protective function. Evidence will be reviewed that T cells primed with transforming growth factor (TGF)-beta expand rapidly following restimulation. Certain CD4+ T cells become contact-dependent suppressor cells and other CD4+ and CD8+ cells become cytokine-producing regulatory cells. This effect is dependent upon a sufficient amount of IL-2 in the microenvironment to overcome the suppressive effects of TGF-beta. The adoptive transfer of these suppressor cells generated ex vivo can protect mice from developing chronic graft-versus-host disease with a lupus-like syndrome and alter the course of established disease. These data suggest that autologous T cells primed and expanded with TGF-beta have the potential to be used as a therapy for patients with systemic lupus erythematosus and other chronic inflammatory diseases. This novel adoptive immunotherapy also has the potential to prevent the rejection of allogeneic transplants.  相似文献   

14.
15.
Pathogenic CD8+ T cells are implicated in the physiopathological mechanisms leading to experimental cerebral malaria (CM) in Plasmodium berghei ANKA (PbA) infected mice. Therefore, we hypothesised that in CM susceptible mice the neuropathology could be, at least in part, the result of an inefficient control of pathogenic effector T cells by CD4+ CD25+ Treg cells. Remarkably, the number of CD4+ CD25high T cells expressing Foxp3 increased in the spleen during the course of infection. These cells displayed an activated phenotype and consistent with that, CD4+ CD25high Treg cells isolated from PbA-infected mice showed an enhanced regulatory activity in vitro. Surprisingly, these cells do not migrate to the brain at the time of neurological symptoms as the conventional CD4+ T cells do. CM was not exacerbated in anti-CD25 treated mice when infected with PbA one month after treatment, even if splenic CD8+ T cells expressing CD69 increased in these mice. Taken together, these results show that P. berghei infection leads to an increase of the number of splenic CD4+ CD25high Treg cells exhibiting in vitro suppressive function, but they do not seem to be involved in vivo in the protection against CM.  相似文献   

16.
CD4+CD25highFOXP3+ regulatory T (Treg) cells have recently been found at elevated levels in the peripheral blood of tuberculosis patients, compared to Mycobacterium tuberculosis latently infected (LTBI) healthy individuals and non-infected controls. Here, we show that CD4+CD25highFOXP3+ T lymphocytes can be expanded in vitro from peripheral blood mononuclear cells (PBMC) of LTBI individuals, but not of uninfected controls by incubating them with BCG in the presence of TGF-beta. These expanded cells from the PBMC of LTBI subjects expressed CTLA-4, GITR and OX-40, but were CD127low/- and have therefore the phenotype of Treg cells. In addition, they inhibited in a dose-dependant manner the proliferation of freshly isolated mononuclear cells in response to polyclonal stimulation, indicating that they are functional Treg lymphocytes. In contrast, incubation of the PBMC with BCG alone preferentially induced activated CD4+ T cells, expressing CD25 and/or CD69 and secreting IFN-gamma. These results show that CD4+CD25highFOXP3+ Treg cells can be expanded or induced in the peripheral blood of LTBI individuals in conditions known to predispose to progression towards active tuberculosis and may therefore play an important role in the pathogenesis of the disease.  相似文献   

17.
Oral administration of Ag coupled to cholera toxin B subunit (CTB) efficiently induces peripheral immunological tolerance. We investigated the extent to which this oral tolerance is mediated by CD25+CD4+ regulatory T cells (T(reg)). We found that total T(reg), KJ1-26+ T(reg) and CTLA-4+ T(reg) were all increased in Peyer's patches, mesenteric lymph nodes, and, to a lesser extent, in spleen of mice after intragastric administration of OVA/CTB conjugate, which also increased TGF-beta in serum. This could be abolished by co-administering cholera toxin or by treatment with anti-TGF-beta mAb. CD25+ T(reg), but also CD25-CD4+ T cells from OVA/CTB-treated BALB/c or DO11.10 mice efficiently suppressed effector T cell proliferation and IL-2 production in vitro. Following adoptive transfer, both T cell populations also suppressed OVA-specific T cell and delayed-type hypersensitivity responses in vivo. Foxp3 was strongly expressed by CD25+ T(reg) from OVA/CTB-treated mice, and treatment also markedly expanded CD25+Foxp3+ T(reg). Furthermore, in Rag1(-/-) mice that had adoptively received highly purified Foxp3-CD25-CD4+ OT-II T cells OVA/CTB feeding efficiently induced CD25+ T(reg) cells, which expressed Foxp3 more strongly than naturally developing T(reg) and also had stronger ability to suppress effector OT-II T cell proliferation. A remaining CD25- T cell population, which also became suppressive in response to OVA/CTB treatment, did not express Foxp3. Our results demonstrate that oral tolerance induced by CTB-conjugated Ag is associated with increase in TGF-beta and in both the frequency and suppressive capacity of Foxp3+ and CTLA-4+ CD25+ T(reg) together with the generation of both Foxp3+ and Foxp3-CD25- CD4+ T(reg).  相似文献   

18.
Thymus-derived CD4+ CD25+ T regulatory cells (Tregs) are essential for the maintenance of self-tolerance. What critical factors and conditions are required for the extra-thymic development of Tregs remains an important question. In this study, we show that the anti-inflammatory extracellular matrix protein, thrombospondin-1, promoted the generation of human peripheral regulatory T cells through the ligation of one of its receptor, CD47. CD47 stimulation by mAb or a thrombospondin-1 peptide induced naive or memory CD4+ CD25- T cells to become suppressive. The latter expressed increased amounts of CTLA-4, OX40, GITR, and Foxp3 and inhibited autologous Th0, Th1, and Th2 cells. Their regulatory activity was contact dependent, TGF-beta independent, and partially circumvented by IL-2. This previously unknown mechanism to induce human peripheral Tregs in response to inflammation may participate to the limitation of collateral damage induced by exacerbated responses to self or foreign Ags and thus be relevant for therapeutic intervention in autoimmune diseases and transplantation.  相似文献   

19.
This study shows that the normal thymus produces immunoregulatory CD25+4+8- thymocytes capable of controlling self-reactive T cells. Transfer of thymocyte suspensions depleted of CD25+4+8- thymocytes, which constitute approximately 5% of steroid-resistant mature CD4+8- thymocytes in normal naive mice, produces various autoimmune diseases in syngeneic athymic nude mice. These CD25+4+8- thymocytes are nonproliferative (anergic) to TCR stimulation in vitro, but potently suppress the proliferation of other CD4+8- or CD4-8+ thymocytes; breakage of their anergic state in vitro by high doses of IL-2 or anti-CD28 Ab simultaneously abrogates their suppressive activity; and transfer of such suppression-abrogated thymocyte suspensions produces autoimmune disease in nude mice. These immunoregulatory CD25+4+8- thymocytes/T cells are functionally distinct from activated CD25+4+ T cells derived from CD25-4+ thymocytes/T cells in that the latter scarcely exhibits suppressive activity in vitro, although both CD25+4+ populations express a similar profile of cell surface markers. Furthermore, the CD25+4+8- thymocytes appear to acquire their anergic and suppressive property through the thymic selection process, since TCR transgenic mice develop similar anergic/suppressive CD25+4+8- thymocytes and CD25+4+ T cells that predominantly express TCRs utilizing endogenous alpha-chains, but RAG-2-deficient TCR transgenic mice do not. These results taken together indicate that anergic/suppressive CD25+4+8- thymocytes and peripheral T cells in normal naive mice may constitute a common T cell lineage functionally and developmentally distinct from other T cells, and that production of this unique immunoregulatory T cell population can be another key function of the thymus in maintaining immunologic self-tolerance.  相似文献   

20.
Naturally occurring CD4(+)CD25(+) regulatory T cells (Treg) are crucial in immunoregulation and have great therapeutic potential for immunotherapy in the prevention of transplant rejection, allergy, and autoimmune diseases. The efficacy of Treg-based immunotherapy critically depends on the Ag specificity of the regulatory T cells. Moreover, the use of Ag-specific Treg as opposed to polyclonal expanded Treg will reduce the total number of Treg necessary for therapy. Hence, it is crucial to develop ex vivo selection procedures that allow selection and expansion of highly potent, Ag-specific Treg. In this study we describe an ex vivo CFSE cell sorter-based isolation method for human alloantigen-specific Treg. To this end, freshly isolated CD4(+)CD25(+) Treg were labeled with CFSE and stimulated with (target) alloantigen and IL-2 plus IL-15 in short-term cultures. The alloantigen-reactive dividing Treg were characterized by low CFSE content and could be subdivided by virtue of CD27 expression. CD27/CFSE cell sorter-based selection of CD27(+) and CD27(-) cells resulted in two highly suppressive Ag-specific Treg subsets. Each subset suppressed naive and Ag-experienced memory T cells, and importantly, CD27(+) Treg also suppressed ongoing T cell responses. Summarizing, the described procedure enables induction, expansion, and especially selection of highly suppressive, Ag-specific Treg subsets, which are crucial in Ag-specific, Treg-based immunotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号