首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
We found a hitherto unknown gland in the trochanter of several ant species. The gland occurs at the proximal ventral part of the trochanter in all legs. It consists of a thickening of the tegumental epithelium, the lining cuticle of which is characterized by narrow vertical pores that lead the secretion to the outside. Its function is probably that of producing lubricant substances to allow optimal manoeuvrability of the articulation between the trochanter and the coxa.  相似文献   

2.
Reproductive competition among males selects for a broad variety of strategies and traits from mate guarding to nuptial food gifts. Males of many dwarf spider species possess conspicuous secondary cephalic modifications, and the few studies available suggest that these cephalic structures are connected to extensive glandular tissue. Because females were observed to contact the male head structures during mating, these traits may have evolved in the context of sexual selection. We investigated the structure, glandular equipment, and sensory equipment of the cephalic regions of several species of the dwarf spider genus Oedothorax with varying degrees of sexual dimorphism using light and electron microscopy. In one Oedothorax species, there are two male morphs that exhibit a cephalic modification (O. gibbosus gibbosus) or not (O. gibbosus tuberosus). Our study demonstrates that all males investigated produce cephalic secretions, irrespective of the morphology of their cephalic region, however, they may differ in amount of secretion and in cellular organization. In males of O. apicatus, O. gibbosus gibbosus and O. retusus the gland cells are very abundant in the area of a cephalic hump, whereas in the less conspicuous O. agrestis, and O. gibbosus tuberosus the gland cells are restricted to a small area behind the ocular region or include the ocular region as in O. fuscus. The glandular tissue consists of two gland types in O. agrestis, O. fuscus, O. gibbosus tuberosus and O. retusus and of only one type in O. apicatus and O. gibbosus gibbosus. The setae present on the head structure of all species seem to function as mechano‐ and/or chemoreceptors. The implications of our findings for the evolution of secretory head structures are discussed along with their potential for driving speciation. J. Morphol. 2011. © 2011Wiley‐Liss, Inc.  相似文献   

3.
Summary The Neotropical ant Prionopelta amabilis, a cryptobiotic species in the phylogenetically primitive tribe Amblyoponini, lives in subterranean habitats, where it preys preferentially on campodeid diplurans and other small arthropods. Here we report that the species employs chemical recruitment and orientation trails during foraging and nest emigrations. The trail pheromone originates in a hitherto unknown basitarsal gland located in the basitarsus of the hindlegs. Trails are laid by a special foot dragging behavior. During the recruitment process the chemical trail signal is complemented by body shaking on the part of the recruiting ant. Foragers frequently wipe the basitarsal gland opening in the hindlegs with the grooming apparatus of the front legs. This latter structure is equipped with unusual glands evidently specialized for this purpose.  相似文献   

4.
Parapodial glandular organs (PGOs) of Spiophanes (Polychaeta: Spionidae) were studied using light and electron microscopy. These organs are found in parapodia of the mid body region, starting on chaetiger 5 and terminating with the appearance of neuropodial hooks (chaetiger 14 or 15 in adult individuals). Large PGOs in anterior chaetigers display different species‐specific types of openings whereas small PGOs in posterior parapodia of the mid body region always open in a simple vertical slit. Each PGO is composed of three main complexes: (1) the glandular sac with several distinct epithelia of secretory cells and secretory cell complexes and the reservoir filled with fibrous material, (2) the gland‐associated chaetal complex (including the region of chaetoblasts and follicle cells, follicular canals, two chaetal collector canals, the combined conducting canal, the chaetal spreader including the opening of the glandular organ with associated type‐1 secretory cells, and the gland‐associated chaetae), and (3) a bilayered musculature surrounding the gland. A considerable number of different cell types are involved in the secretory activity, in the guidance of the gland‐associated chaetae, and in the final expulsion of the fibrous secretion at the opening slit. Among these different cell types the type‐5 secretory cells of the proximal glandular complex with their cup‐shaped microvilli emanating thick microfibrils into the lumen of the glandular sac are most conspicuous. Secretory cells with cup‐shaped microvilli being involved in the production of β‐chitin microfibrils have so far only been reported from some representatives of the deep‐sea inhabiting Siboglinidae (Polychaeta). We suggest that the gland‐associated chaetae emerging from inside the PGOs of Spiophanes are typical annelid chaetae formed by chaetoblasts and follicle cells. Functional morphology implies the crucial role of PGOs in tube construction. Furthermore, the PGOs are discussed in consideration of phylogenetic aspects. J. Morphol., 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

5.
Exocrine glands of blood‐feeding parasitic copepods are believed to be important in host immune response modulation and inhibition of host blood coagulation, but also in the production of substances for integument lubrication and antifouling. In this study, we aimed to characterize the distribution of different types of salmon louse (Lepeophtheirus salmonis) exocrine glands and their site of secretion. The developmental appearance of each gland type was mapped and genes specifically expressed by glands were identified. Three types of tegumental (teg 1–3) glands and one labial gland type were found. The first glands to appear during development were teg 1 and teg 2 glands. They have ducts extending both dorsally and ventrally suggested to be important in lubricating the integument. Teg 1 glands were found to express two astacin metallopeptidases and a gene with fibronectin II domains, while teg 2 glands express a heme peroxidase. The labial glands were first identified in planktonic copepodids, with reservoirs that allows for storage of glandular products. The last gland type to appear during development was named teg 3 and was not seen before the preadult I stage when the lice become more virulent. Teg 3 glands have ducts ending ventrally at the host‐parasite contact area, and may secrete substances important for the salmon lice virulence. Salmon lice teg 3 and labial glands are thus likely to be especially important in the host‐parasite interaction. Proteins secreted from the salmon louse glands to its salmonid host skin or blood represents a potential interface where the host immune system can meet and elicit effective responses to sea lice antigens. The present study thus represents a fundamental basis for further functional studies and identification of possible vaccine candidates. J. Morphol. 277:1616–1630, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

6.
A novel glandular epithelium lining the infrabuccal cavity and anterior pharynx is described in both workers and queens of the pharaoh's ant Monomorium pharaonis. The infrabuccal cavity, connected with the buccal tube, forms a ventral outgrowth of the anterior pharynx, and as such displays the tegumental lining with a cuticle and an epithelial layer. In its dorsal region, the cavity's epithelium reaches a thickness of approx. 11–12 μm in both workers and queens, which is considerably thicker than the epithelium lining the rest of the infrabuccal cavity. Also the possible role of the infrabuccal gland is discussed.  相似文献   

7.
Purba Pal 《Acta zoologica》2007,88(2):145-152
Within the clade Euthyneura the marine basommatophorans are particularly neglected. More morphological and molecular studies are needed because their phylogenetic relationships with other pulmonates remain unresolved. The present study examines the most conspicuous reproductive gland, the glandular complex in two marine limpets, Siphonaria capensis and S. serrata (Pulmonata: Basommatophora) at both gross and fine structural levels. These two sympatric species with different developmental modes were selected to compare the structure and function of this enormous glandular structure. In both S. capensis and S. serrata, the glandular complex shows an undifferentiated state composed of an acidophilic albumen gland and a basophilic mucous gland. The glands contain secretory cells and supporting cells (= ciliated cells) that are highly ciliated. When the histochemical properties of the glandular complex were compared with those of siphonariid egg masses (of each species) it could be established that the albumen gland was responsible for the production of perivitelline fluid whereas the mucous gland secreted substances that help in the assembly of mucous layers surrounding the egg capsules. We suggest that the presence of a single glandular complex comprised of two glands is the most primitive organization of reproductive glands in pulmonates. Furthermore, the histology, fine structure and histochemistry of these glands are very similar to those of the reproductive glands of opisthobranchs.  相似文献   

8.
Workers of the ant Amblyopone reclinata employ solitary prey retrieval when prey is small, but recruit nestmates to large prey. In the latter case, the scout forager paralyses the prey with its powerful sting, and quickly returns to the nest. During this homeward journey, it deposits a trail pheromone, that originates from the well developed footprint glands in its hindlegs. Recruited workers follow this trail to reach the prey, which is then jointly dragged to the nest. The footprint gland is only found in ants of the genus Amblyopone, and is formed by a glandular differentiation of the dorsal tegumental epidermis in the hindleg pretarsi. The secretory epithelium is approximately 15–20 μm thick, and shows apical microvilli and basal invaginations. The cytoplasm contains numerous mitochondria. Narrow pores with a diameter of 0.1 μm run through the cuticle, although they were not seen to open at the pretarsus external surface. Careful observation of trail-laying workers reveals that during trail-laying the hindleg pretarsus is twisted in a peculiar position, which explains how secretion from the dorsally located footprint gland is deposited onto the substrate.  相似文献   

9.
Several glandular sources of trail pheromones have been discovered in army ants in general. Nevertheless, at present the understanding of the highly coordinated behavior of these ants is far from complete. The importance of trail pheromone communication for the coordination of raids and emigrations in the ponerine army ant Leptogenys distinguenda was examined, and its ecological function is discussed. The secretions of at least two glands organize the swarming activities of L. distinguenda. The pygidial gland is the source of an orientation pheromone holding the group of raiding workers together. The same pheromone guides emigrations to new nest sites. In addition, the poison sac contains two further components: one with a weak orientation effect and another which produces strong, but short-term attraction and excitement. The latter component is important in prey recruitment and characterizes raid trails. This highly volatile recruitment pheromone allows the extreme swarm dynamic characteristic of this species. Emigration trails lack the poison gland secretion. Due to their different chemical compositions, the ants are thus able to distinguish between raid and emigration trails. Nest emigration is not induced chemically, but mechanically, by the jerking movements of stimulating workers.  相似文献   

10.
In at least four closely related families of the diverse harvestmen lineage Gonyleptoidea, males may possess sexually dimorphic tarsal glands in the swollen tarsomeres of the basitarsus and/or metatarsus of leg I. The first histological and ultrastructural examination of the sexually dimorphic tarsal glands in leg I focused only on Manaosbiidae. In this study, we examine the morphology and ultrastructure of the sexually dimorphic glands, and their associated glandular openings, found in the basitarsus and/or metatarsus of leg I of males representing Cosmetidae, Gonyleptidae, and Cranaidae (glandular openings only). In cosmetids and gonyleptids, the tarsal glands are made up of 20–60 glandular units that form distinct groups within the prolateral and retrolateral half of the tarsomere. Each glandular unit consists of a pair of terminal secretory cells, an intercalary cell wrapped around the receiving canal, and a canal cell tightly wrapped around the length of the conducting canal. Cosmetidae, Gonyleptidae, and Cranaidae exhibit remarkably similar tarsal glands and gland openings although the location of the glands in the leg differs slightly among them. Males of these three families exhibit markedly different glands and glandular openings compared to males of the family Manaosbiidae. The sexually dimorphic tarsal glands may provide an important morphological character for determining phylogenetic relationships among gonyleptoid families. Finally, we provide morphological and ultrastructural data for the common tegumental glands. These data indicate that the sexually dimorphic tarsal glands are strikingly similar to, and may possibly be derived from, the tegumental glands. J. Morphol. 274:1203–1215, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
Summary The presence and distribution of gastrin-, gastrin-releasing peptide-, neurotensin-and vasoactive intestinal polypeptide-like immunoreactivity in the Harderian gland ofRana esculenta were studied at different times of the annual cycle. Gastrin-releasing peptide, neurotensin and vasoactive intestinal polypeptide-like substances were found either in the glandular cells, or in the nerve fibers surrounding the glandular acini. Gastrin-like immunoreactivity was confined to the glandular cells. The immunoreactivity varied during the annual cycle, with the greatest concentration being noted during the recovery phase of glandular secretory activity.  相似文献   

12.
日本沼虾消化道形态和组织学特点   总被引:10,自引:2,他引:8  
应用石蜡切片和扫描电镜技术对日本沼虾消化道进行了研究。结果表明,食道壁向腔内形成四个纵突,食道上皮由单层柱状细胞构成,上皮下的结缔组织中具有放射肌和皮肤腺,环肌层近于连续。食道和胃连结处的管腔背方具食道瓣,胃内具胃磨、滤器和滤沟等结构,胃的组织学结构中除无皮肤腺分布外与食道相似。中肠较长,约占整个消化道的717%,具一对中肠前盲囊。中肠上皮细胞大致有两种类型,基膜着色深,环肌层连续,纵肌成束分散排列。后肠为一短管,管腔呈迷路状,其中部为一球形膨大的直肠。后肠的组织学结构与前肠相似。  相似文献   

13.
A novel glandular structure is described within the metatibia in ants of the poneroid group. This metatibial gland has been considered a major synapomorphic character of the subfamilies belonging to the doryline section. Histological investigations combined with scanning electron micrograph studies revealed a remarkably complex gland, consisting of a glandular epithelium and a cuticular pore plate, the morphology of which varies considerably between the species. This gland is also present in species of the generaDiacamma andPachycondyla (Ponerini). Based on the morphology of glandular epithelia and pore plates, it is not possible to decide whether this structure is homologous or analogous to that of the doryline section subfamilies. In workers of certain species of the genusDiacamma, the secretions of this gland are involved in sexual calling behavior.  相似文献   

14.
The structure of the penial bulb and male efferent duct system of Grania species may be used in addition to setal pattern and spermathecal shape to distinguish species. Six penial bulb types are distinguished: (1) a simple, small, glandular bulb surrounding the male pore; (2) a small, glandular bulb, with a large, associated, dorso-medial gland mass; (3) a small glandular bulb, medial to the male pore, with an elongate male bursa (the aglandular sac), the vas deferens exitting directly into the invaginated male pore; (4) a glandular bulb with an aglandular sac and a small, cuticular stylet embedded in the bulb, extending from the ectal end of the vas deferens; (5) a glandular bulb and an aglandular sac with a long stylet extending from the vas deferens, through the bulb into the sac; and (6) glandular bulb reduced or absent, with or without an aglandular sac; with a long stylet and other prominent modifications, usually muscular, of the vas deferens. The details of the male duct structure were consistent within specimens grouped on the basis of setal distribution and shape and detailed spermathecal structure. Diverse male duct patterns are found within the polytypic species G. macrochaeta and G. postclitellochaeta. The positions of the spermathecal and male pores in their respective segments are distinctive for some species.  相似文献   

15.
The morphological organization and functional anatomy of prosomal defensive (scent) glands in Paranemastoma quadripunctatum, a representative of the dyspnoid harvestmen, was investigated by means of histological semithin sections, software‐based 3D‐reconstruction and scanning electron microscopy. Scent glands comprise large, hollow sacs on either side of the prosoma, each of these opening to the outside via one orifice (ozopore) immediately above coxa I. In contrast to the situation known from laniatorean, cyphophthalmid and some eupnoid Opiliones, ozopores are not exposed but hidden in a depression (atrium), formed by a dorsal integumental fold of the carapace and the dorsal parts of coxae I. Glandular sacs are connected to ozopores via a short duct which is equipped with a specific closing mechanism in its distal part: A layer of modified epidermal cells forms a kind of pad‐like tissue, surrounding the duct like a valve. Several muscles attached to the anterior parts of the glandular reservoir and to the epithelial pad may be associated with ozopore‐opening. The actual mechanism of secretion discharge seems to be highly unusual and may be hypothesized on the basis of corroborating data from behavioral observations, scent gland anatomy and secretion chemistry as follows: Enteric fluid is considered to be directed towards the ozopores via cuticular grooves in the surface of the coxapophyses of legs I. Then, the fluid is sucked into the anterior part of the scent gland reservoirs by the action of dorsal dilator muscles that widen the reservoir and produce a short‐term negative pressure. After dilution/solution of the naphthoquinone‐rich scent gland contents, a secretion‐loaded fluid is thought to be discharged with the help of transversal compressor muscles. This is the first detailed study on the functional anatomy of scent glands and the mechanisms of secretion discharge in the Dyspnoi. J. Morphol. 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

16.
Although gastropods have been crawling through the ocean and on the land for 60 million years, we still know very little about the sticky mucus produced in their foot. Most research has been focused on marine species in particular and, to a lesser extent, on the well‐known terrestrial species Arion vulgaris and Cornu aspersum. Within this study, we aim to characterize the foot anatomy of a smaller representative of the family Helicidae, the banded snail Cepaea hortensis. We are particularly interested in the microanatomy of the foot glands, their position, and the histochemical nature of their secretory content. Characterization of the dorsal foot region of Cepaea hortensis reveals four glands, differing in their size and in the granules produced. Histochemically, three of them react positively for sugars (PAS staining and lectin affinity tests for mannose, glucose and N‐acetyl‐d ‐glucosamine) and acidic proteins (positive Alcian blue and Toluidine blue staining), indicating the presence of acidic glycosaminoglycans. The fourth gland type does not react to any of these dyes. The ventral pedal region includes two different gland types, which are positive for the presence of acidic glycoproteins, with a lectin affinity for mannose only. A comparison with Helix pomatia indicates differences regarding the number of glands and their contents. In Helix, only three gland types are described in the dorsal region of the foot, which show a similar granular appearance but nevertheless differ in their chemical composition. Congruently, there are two gland types in the ventral region in both species, whereas in Helix an additional sugar moiety is found. This raises the question whether these differences between the pedal glandular systems of both helicid species are the result of protection or size‐related adaptations, as they occur in the same habitat.  相似文献   

17.
Geophis belongs to the goo‐eating dipsadine assemblage of snakes that are known to feed exclusively on earthworms, snails, and slugs. Although the unusual feeding strategies of the goo‐eating dipsadines are well known (but poorly documented), little attention has been paid to their internal anatomy. Here, we describe a new and noteworthy morphological and histochemical condition of the infralabial glands in three species of Geophis (G. brachycephalus, G. nasalis and G. semidoliatus), all earthworm feeders. Their infralabial glands are constituted of two distinct parts: an anterolateral portion composed of mucous and seromucous cells that stretches from the tip of the dentary to the corner of the mouth, and a tubular posteromedial portion that is exclusively seromucous. The anterolateral portion receives fibers of the levator anguli oris muscle that attaches on its posterodorsal extremity while the posteromedial portion extends posteriorly to the corner of the mouth where it receives fibers of the adductor mandibulae externus medialis muscle. Furthermore, the posteromedial portion of the infralabial gland is constituted by large acini filled with secretion that is periodic acid‐Schiff positive. These acini release their secretion directly into a large lumen located in the middle of the glandular portion. In the three species examined, the supralabial glands show a traditional configuration, being constituted of mucous and seromucous cells and retaining an enlarged part in its caudal region that resembles a Duvernoy's gland. The presence in Geophis of an expanded lumen in part of the infralabial gland that is compressed by an adjacent muscle suggests a more specialized role for the secretion produced by these glands that may not be related to envenomation but rather to prey transport and mucus control. J. Morphol. 275:87–99, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
Summary An immunocytochemical method was used to differentiate between immunoreactive substances in glandular cells in the corpora cardiaca (CC) and in certain cerebral neurons in 2 insect species, Locusta migratoria migratorioides and Periplaneta americana. The staining properties of antisera raised to different parts of the decapeptide adipokinetic hormone (AKH) were compared and their specificity was determined by preabsorption with AKH and related peptides. Antibodies raised to the N-terminal part of AKH (serum 433) and the central and C-terminal part (serum 241) were found to have different staining properties.In the CC of the locust both antisera show a strong immunoreactivity with glandular cells, we therefore suggest that at least one of the compounds revealed is AKH. Some of the glandular cells in the locust and large numbers of glandular cells in the CC of the cockroach are revealed by the N-terminal specific antiserum. On the other hand, neurons in the central nervous system are revealed only by the C-terminal specific antiserum. The possible identity of the various substances revealed by these two antisera is discussed.  相似文献   

19.
To elucidate the functional significance of the three distinct types of generation glands that have been identified among cordylid lizards, we mapped gland type to the terminal taxa in the most recent phylogenetic tree for the Cordylidae. We used the phylogenetic programme Mesquite and applied the principle of parsimony to infer character states for the ancestral nodes in the tree. For those species where information on gland type was not available from the literature, we conducted a histological investigation of generation gland morphology, using standard histological techniques. We included two species of the sister family Gerrhosauridae in the analysis to serve as outgroups. In both Gerrhosaurus typicus and G. flavigularis, scales immediately anterior to the femoral pores displayed glandular activity, but differed from generation glands of cordylids in the absence of mature glandular generations. Among the cordylids investigated, we identified a fourth type of generation gland in Pseudocordylus subviridis, P. spinosus, and in the two Hemicordylus species, one where the glands consistently comprise of two mature glandular generations. In H. capensis, both single‐ and two‐layer type glands are present. Our reconstruction of ancestral character states suggests a minimum of six transformations from one gland type to another during the evolutionary history of the family. The reconstruction furthermore suggests that the single‐layer type gland reappeared at least once (in Hemicordylus) in the Cordylinae after having been lost. The reconstruction also unequivocally shows that the pit‐like multiple‐layer type gland evolved directly from the single‐layer type and not from the protruding multiple‐layer type. The two‐layer type gland appears to be an intermediary condition between the multiple‐layer and single‐layer types. The evolutionary transformation of generation gland type appears to be linked to changes in lifestyle and associated changes in degree of territoriality and the need for chemical communication. J. Morphol. 275:456–464, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
New World species of the Hystricognathi comprise a group of rodents that exhibit poorly understood social behaviour. One such species, the echimyid Thrichomys apereoides, has a behavioural and social repertoire which suggests the use of its eversible anal gland in communication between individuals; however, no information on the morphology of this gland is available. In this study, the anal gland of nineteen adult individuals (11 males and 8 females) was analysed through histological and histochemical techniques. The gland was located in the submucosal of the anal region, cranial to the anus, and had an opening located dorsally in the rectum mucosa at approximately 1 mm from the anus. The gland was characterized as seromucous, secreting neutral glycoprotein. Not all individuals studied presented secretion in the glandular ducts, indicating a possible functional variation in the gland. This was the first record of an anal gland of the seromucous type in rodents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号