首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Summary The presence of bioactive peptides in the gut and their possible electrophysiological effects on the intestinal epithelium were studied in two teleost species, the tilapia (Oreochromis mossambicus) and the goldfish (Carassius auratus). Vasoactive intestinal polypeptide-like immunoreactive nerve fibres were found beneath the intestinal epithelium of both species. Galanin-, metenkephalin-and calcitonin gene-related peptide-like immunoreactive nerve fibres were found exclusively in the mucosa of the tilapia. Both species had vasoactive intestinal polypeptide-, enkephalin- or neuropeptide Y-like immunoreactive endocrine cells; calcitonin gene-related peptide-like immunoreactive endocrine cells were additionally found in the tilapia. Somatostatin- and dopamine--hydroxylase-like immunoreactivities were not observed. Nerve cell bodies in the myenteric plexus of both species showed immunoreactivity for calcitonin gene-related peptide-, vasoactive intestinal polypeptide-, and galanin-like peptide. Enkephalin-like immunoreactive nerve cell bodies were present in the tilapia only. None of the peptides had a pronounced electrogenic effect. However, calcitonin gene-related peptide added to stripped intestinal epithelium of the tilapia, reduced the ion selectivity, and addition of galanin increased the ion selectivity. In goldfish intestine, both galanin and calcitonin gene-related peptide were without effect. Enkephalin counteracted the serotonin-induced reduction of the ion selectivity of the goldfish intestinal epithelium, but had no effect on the tilapia epithelium. In both species, vasoactive intestinal polypeptide reduced the ion selectivity of the intestinal epithelium, and neuropeptide Y induced an increase of the ion selectivity. Somatostatin showed no effect on the epithelial ion selectivity of either species. Tetrodotoxin did not inhibit the effects of the peptides studied. The changes in ion selectivity suggest that the enterocytes may be under the regulatory control of these peptides.  相似文献   

2.
Summary Single- and dual-labelling immunohistochemistry were used to determine the distribution and coexistence of neuropeptides in perivascular nerves of the large arteries and veins of the snake, Elaphe obsoleta, using antibodies for vasoactive intestinal polypeptide, substance P, calcitonin gene-related peptide, neuropeptide Y, galanin, somatostatin, and leu-enkephalin. Blood vessels were sampled from four regions along the body of the snake: region 1, arteries and veins anterior to the heart; region 2, central vasculature 5 cm anterior and 10 cm posterior to the heart; region 3, arteries and veins in a 30-cm region posterior to the liver; and region 4, dorsal aorta and renal arteries, renal and intestinal veins, 5–30 cm cephalad of the vent. A moderate to dense distribution of vasoactive intestinal polypeptide-like immunoreactive fibres was found in most arteries and veins of regions 1–3, but fibres were absent from the vessels of region 4. The majority of vasoactive intestinal polypeptide-like immunoreactive fibres contained colocalized substance P-like immunoreactivity, and these fibres were unaffected by either capsaicin or 6-hydroxydopamine (6-OHDA) pretreatment. In the anterior section of the snake, the vagal trunks contained many cell bodies with colocalized vasoactive intestinal polypeptide and substance P-like immunoreactivity. It is suggested that the vasoactive intestinal polypeptide/substance P-like immunoreactive cell bodies and fibres are parasympathetic postganglionic nerves. Neuropeptide Y-like immunoreactive fibres were observed in all arteries and veins, being most dense in regions 3 and 4. The majority of these fibres also contained colocalized galanin-like immunoreactivity, and were absent in tissues from 6-OHDA pretreated snakes, suggesting that neuropeptide Y and galanin are colocalized in adrenergic nerves. A small number of neuropeptide Y-like immunoreactive fibres contained vasoactive intestinal polypeptide but not galanin, and were unaffected by 6-OHDA treatment. All calcitonin gene-related peptide-like immunoreactive fibres contained colocalized substance P-like immunoreactivity, and these fibres were observed in all vessels, being particularly dense in the carotid artery and jugular veins. All calcitonin gene-related peptide/substance P-like immunoreactive fibres appeared damaged after capsaicin treatment suggesting they represent fibres from afferent sensory neurons. A sparse plexus of somatostatin-like immunoreactive fibres was observed in the vessels only from region 4. No enkephalin-like immunoreactive fibres were found in any blood vessels from any region. This study provides morphological evidence to suggest that there is considerable functional specialization within the components of the rat snake peripheral autonomic system controlling the circulation, in particular the regulation of venous capacitance.  相似文献   

3.
Summary Immunocytochemical and radioimmunological techniques with region specific antisera have been used to identify a vasoactive intestinal polypeptide-like material in the anuran intestine. Seven species of Anura were investigated: Bombina bombina, Alytes obstetricans, Rana temporaria, Rana esculenta, Hyla arborea, Hyla crepitans and Bufo bufo.In five of the species (A. obstetricans, R. temporaria, H. arborea, H. crepitans and B. bufo) vasoactive intestinal polypeptide-like immunoreactive mucosal endocrine cells and nerve fibres in all layers of the gut wall, were detected by both immunofluorescence and peroxidase-antiperoxidase methods. In the other two species, R. esculenta and B. bombina, no mucosal endocrine cells were detected although the vasoactive intestinal polypeptide-immunoreactive nerve fibres were plentiful.Radioimmunoassay showed the presence of significant amounts of vasoactive intestinal polypeptide-immunoreactivity in intestinal extracts from all species. The highest quantities were present in those anurans with both immunostained cells and nerves. Gel permeation chromatography showed that most of the vasoactive intestinal polypeptide-like peptide eluted in a position identical to that of natural mammalian (porcine) vasoactive intestinal polypeptide.The results indicate that a vasoactive intestinal polypeptide-like peptide is well represented in the Anura and that it is immunologically very similar to the mammalian peptide.Part of this work was presented at the European Society of Comparative Endocrinology, 1979; see Buchan et al. 1980a  相似文献   

4.
The electron-immunocytochemical protein A-gold technique was employed to study the subcellular localization of vasoactive intestinal polypeptide-like material in dog ileum. The vasoactive intestinal polypeptide-like immunoreactivity was found within a population of large granular vesicles similar in structure in nerve varicosities of the myenteric plexus, the deep muscular plexus, the submucous plexus, the longitudinal muscular layer and the mucosa; none was found in nerve cell bodies. In the myenteric plexus, submucous plexus, the mucosa and the longitudinal muscular layer, varicosities containing similar large granular vesicles consistently remained unstained suggesting that within these plexuses morphologically indistinguishable by our technique large granular vesicles are not necessarily biochemically identical. In the deep muscular plexus, nearly all varicosities with large granular vesicles contained immunoreactivity for vasoactive intestinal polypeptide, but these varicosities often contained a few unstained large granular vesicles. This suggests that vasoactive intestinal polypeptide may share the same varicosity or the same vesicle with other neuropeptides present in this plexus (e.g., substance P or enkephalins) and that this plexus is a site where vasoactive intestinal polypeptide exerts its control over motility.  相似文献   

5.
Biogenic peptides and amines associated with the chromaffin tissue in Atlantic cod (Gadus morhua), rainbow trout (Oncorhynchus mykiss), European eel (Anguilla anguilla), spiny dogfish (Squalus acanthias) and Atlantic hagfish (Myxine glutinosa) were identified utilizing immunohistochemical techniques. Within the posterior cardinal vein (PCV) in cod, trout and eel, a subpopulation of chromaffin cells displayed immunoreactivity to tyrosine hydroxylase (TH) and dopamine--hydroxylase (DH) but not to phenylethanolamine-N-methyltransferase (PNMT). TH-like immunorectivity was observed within cells in hagfish hearts. Nerve fibres displaying vasoactive intestinal peptide (VIP) immunoreactivity and pituitary adenylyl cyclase activating peptide (PACAP) immunoreactivity innervated cod, trout and ell chromaffin cells. In eel, neuropeptide Y (NPY)-like and peptide YY (PYY)-like immunoreactivity was located within cells in the PCV, including chromaffin cells. Serotonin-like immunoreactivity was observed within eel and cod chromaffin cells and in hagfish hearts. In the dogfish axillary bodies, nerves displaying TH-like, VIP-like, PACAP-like, substance P-like and galanin-like immunoreactivity were observed. These results are compared with those of other vertebrates, and potential roles for these substances in the control of catecholamine release are suggested.  相似文献   

6.
Summary The innervation of the swimbladder in four different teleost species has been studied by the use of immunohistochemical methods. The teleosts examined belong to two different groups regarding their swimbladder morphology: physoclists (the cod, Gadus morhua and the goldsinny wrasse, Ctenolabrus rupestris) and physostomes (the eel, Anguilla anguilla and the rainbow trout, Salmo gairdneri). Vasoactive intestinal polypeptide-like immunoreactivity was demonstrated in nerves of the swimbladder walls of all four species, and in the gas glands of the cod and the goldsinny wrasse. Substance P-like immunoreactivity was shown in swimbladders of the cod, eel and rainbow trout but not the goldsinny wrasse. Immunoreactivity to met-enkephalin antiserum was revealed in the swimbladder walls of the eel and the goldsinny wrasse, while neurotensin-like immunoreactivity was present in the goldsinny wrasse and rainbow trout swimbladders. Neurotensin-like immunoreactivity was also seen in the gas gland of the goldsinny wrasse. 5-Hydroxytryptamine immunoreactivity was found in endocrine cells in the pneumatic duct of the eel and in the swimbladder walls of the goldsinny wrasse and the rainbow trout. In conclusion, all teleosts examined showed a very close resemblance in the peptidergic/tryptaminergic innervation of the swimbladder to that of the gut, inasmuch as the immunoreactivity present in the swimbladders always occurred in the gut of the same species.  相似文献   

7.
Summary The pattern of distribution and reactivity of the neuropeptides vasopressin (AVP), vasoactive intestinal peptide (VIP), neuropeptide Y (NPY), substance P (SP), and thyrotropin-releasing hormone (TRH) were studied in the suprachiasmatic nucleus (NSC) of 20 Richardson's ground squirrels (and 7 European hedgehogs) of both sexes during hibernation and euthermia. The total area of immunostained structures revealed by application of the individual immunocytochemical techniques was measured by means of computer-aided image analysis. In both species, elements of all peptide systems examined were related to particular subdivisions of the NSC. The pattern of immunoreactivity was strongly correlated with the physiological stage of hibernation or euthermia both in ground squirrels and hedgehogs. The immunoreactivities to AVP and SP increased in area during hibernation (AVP: 25%; SP: 25%), whereas the respective area immunoreactive to NPY and VIP decreased (NPY: 45%; VIP: 100%) in comparison to nonhibernating controls. The TRH-immunoreactive nerve fibers were rare and rather scattered; thus, the quantitative procedure was not applicable for this immunoreaction.Abbreviations AVP argnine vasopressin - NPY neuropeptide Y - NSC suprachiasmatic nucleus - SP substance P - TRH thyrotropinreleasing hormone - VIP vasoactive intestinal peptide The results have been partly presented at the 10th International Symposium on Neurosecretion held in Bristol, UK, September 1987  相似文献   

8.
Summary Two neuropeptides, substance P and vasoactive intestinal polypeptide, have been shown to increase secretion of exocrine glands. We have studied immunohistochemically the intra- and exorbital lacrimal glands of the rat and the guinea pig for the presence of substance P-like and vasoactive intestinal polypeptide-like immunoreactive (SPLI and VIPLI, respectively) nerve fibers. Both SPLI and VIPLI nerve fibers were found surrounding glandular acini, secretory ducts and blood vessels. Their distribution, however, was uneven. The SPLI fibers predominated around the ducts whereas VIPLI fibers predominated around acini. The results suggest that the two neuropeptides may both regulate the lacrimal secretion, but they may have two different sites of actions because they prevail in different locations.  相似文献   

9.
Calcitonin gene-related peptide-like immunoreactivity was demonstrated in in sensory nerve fibers in the epidermis and dermis as free nerve endings and around blood vessels and hair follicles of the human finger pad and arm skin. The vast majority of the calcitonin gene-related immunoreactive fibers was shown to display also substance P-like immunoreactivity and a few fibers in the dermis were somatostatin positive. No fibers displaying both substance P and somatostatin-like immunoreactivity were found but a few substance P immunoreactive fibers in the dermis-epidermis region were found to contain also vasointestinal polypeptide-like immunoreactivity. In the sweat glands, abundant calcitonin gene-related peptide positive, but substance P negative, fibers were observed with a similar distribution pattern as the vasoactive intestinal polypeptide immunoreactive fibers and these fibers were suggested to be of sympathetic origin.  相似文献   

10.
Summary The presence, distribution and development of vasoactive intestinal polypeptide (VIP)-like immunoreactivity in the gastro-entero-pancreatic system of a cartilaginous fish Scyliorhinus stellaris (L.) was investigated by immunohistochemical methods utilizing mammalian VIP antisera. In the gut VIP-like immunoreactivity was observed in both nerves and endocrine cells. Endocrine cells with VIP-like material were only detected in the intestinal epithelium while nerve fibres containing VIP-like material were noted along the whole gastro-entero-pancreatic system, being more numerous in the pyloric sphincter and in the intestinal portion. Immunoreactive nerve cell bodies were encountered in the stomach and intestinal portions localized in the submucosa and in the myenteric plexus. Intestinal immunoreactive endocrine cells were already present in the first developmental stage considered (embryos aged 4 months). They grow in number and before birth reach a frequency higher than in adults. Nerves and cell bodies showing VIP-like immunoreactivity, appear later, before birth, as a few elements in the smooth muscular layer, but only after birth their distribution and frequency are similar to those found in adults. The faint immunofluorescence shown by the immunoreactive endocrine cells and their developmental pattern, which is always different from that observed in nervous elements, suggest the presence of at least two VIP-like substances in the gastro-entero-pancreatic system of S. stellaris.  相似文献   

11.
The distribution of intrinsic enteric neurons and extrinsic autonomic and sensory neurons in the large intestine of the toad, Bufo marinus, was examined using immunohistochemistry and glyoxylic acid-induced fluoresecence. Three populations of extrinsic nerves were found: unipolar neurons with morphology and location typical of parasympathetic postganglionic neurons containing immunoreactivity to galanin, somatostatin and 5-hydroxytryptamine were present in longitudinally running nerve trunks in the posterior large intestine and projected to the muscle layers and myenteric plexus throughout the large intestine. Sympathetic adrenergic fibres supplied a dense innervation to the circular muscle layer, myenteric plexus and blood vessels. Axons containing colocalized calcitonin gene-related peptide immunoractivity and substance P immunoreactivity distributed to all layers of the large intestine and are thought to be axons of primary afferent neurons. Five populations of enteric neurons were found. These contained immunoreactivity to vasoactive intestinal peptide, which distributed to all layers of the large intestine; galanin/vasoactive intestinal peptide, which projected to the submucosa and mucosa; calcitonin gene-related peptide/vasoactive intestinal peptide, which supplied the circular muscle, submucosa and mucosa; galanin, which projected to the submucosa and mucosa; and enkephalin, which supplied the circular muscle layer.  相似文献   

12.
Summary The pancreas from eleven species of snakes representing both advanced and primitive families has been investigated for the presence of eleven regulatory peptides reported to occur in the mammalian endocrine pancreas. Of the eleven peptides studied, insulin, pancreatic glucagon and somatostatin were present in endocrine cells within the islets of all the species investigated. The neuropeptide, vasoactive intestinal polypeptide, was located within nerve terminals innervating the islets in the Boidinae, Colubrinae, Elaphidae and Crotalidae but absent from the Natricinae investigated.No immunoreactivity was demonstrable with the antisera to substance P, met-enkephalin, C-terminal gastrin, bombesin, glicentin and gastric inhibitory polypeptide. Pancreatic polypeptide-like immunoreactivity was demonstrable only in the boid snakes and exclusively stained by a C-terminal specific antiserum.  相似文献   

13.
Indirect double immunofluorescence labelling for demonstrating nine neuropeptides in the kidney of the bullfrog, Rana catesbeiana, revealed for the first time the occurrence, distribution, and coexistence of certain neuropeptides in the kidney of the submammalian vertebrates. Substance P, neuropeptide Y, and calcitonin generelated peptide were localized in nerve fibers distributed along the afferent arterioles connected with the glomeruli, and along the capillary network between uriniferous tubules. Neuropeptide Y and calcitonin gene-related peptide immunoreactive fibers were more numerous than substance P immunoreactive fibers. In these two regions, about one half of the neuropeptide Y or calcitonin in gene-related peptide fibers contained substance P. No immunoreactivity of vasoactive intestinal polypeptide, somatostatin, FMRFamide, or leucine- and methionine-enkephalins was detected in the bullfrog kidney.  相似文献   

14.
Summary Calcitonin gene-related peptide-like immunoreactivity was demonstrated in in sensory nerve fibers in the epidermis and dermis as free nerve endings and around blood vessels and hair follicles of the human finger pad and arm skin. The vast majority of the calcitonin generelated immunoreactive fibers was shown to display also substance P-like immunoreactivity and a few fibers in the dermis were somatostatin positive. No fibers displaying both substance P and somatostatin-like immunoreactivity were found but a few substance P immunoreactive fibers in the dermis-epidermis region were found to contain also vasointestinal polypeptide-like immunoreactivity. In the sweat glands, abundant calcitonin gene-related peptide positive, but substance P negative, fibers were observed with a similar distribution pattern as the vasoactive intestinal polypeptide immunoreactive fibers and these fibers were suggested to be of sympathetic origin.  相似文献   

15.
Summary The innervation of the pulmonary vasculature of the semi-arboreal rat snake,Elaphe obsoleta, was examined with glyoxylic acid-induced catecholamine histochemistry, peptide immunohistochemistry, and in vitro perfusion of the pulmonary vasculature. An adrenergic innervation was present on the pulmonary artery, the smaller pulmonary arteries, the veins draining the lung, and the main pulmonary vein. Vasoactive intestinal polypeptide-like immunoreactive axons were observed on the pulmonary artery and vein, small arteries, and occasionally small veins within the lung parenchyma. A dense plexus of substance P-like immunoreactive (SP-LI) axons was observed on the distal extrinsic pulmonary artery. SP-LI axons were found on the more distal arteries within the lung parenchyma, but not on the veins. The distribution of calcitonin gene-related peptide- and SP-LI axons was similar suggesting that the axons are sensory nerves. In the perfused pulmonary vasculature, vagal stimulation caused a predominant vasoconstriction which was abolished by atropine indicating it was cholinergic in nature. A post-stimulus vasodilatation was abolished by bretylium and propranolol indicating it was adrenergic in nature. The responses to nerve stimulation were located in both the extrinsic and intrinsic pulmonary vasculature. No evidence for non-adrenergic, noncholinergic transmission to the vascular smooth muscle was found. The extensive, functional innervation of the main pulmonary artery, as well as the more distal vasculature within the lung, may reflect adaptation to cardiovascular problems imposed by an elongated body and arboreal habits.Abbreviations VIP vasoactive intestinal polypeptide - VIP-LI vasoactive intestinal polypeptide-like immunoreactive - SP substance P - SP-LI substance P-like immunoreactive - SOM somatostatin - SOM-LI somatostatin-like immunoreactive - CGRP calcitonin gene-related peptide - CGRP-LI calcitonin gene-related peptide-like immunoreactive - NANC non-adrenergic noncholinergic - PI perfusion inflow  相似文献   

16.
The hypothalamic suprachiasmatic nucleus is centrally involved in generation of several circadian rhythms. Neurons of the mammalian suprachiasmatic nucleus express a number of neuropeptides including vasopressin. The suprachiasmatic nucleus of the mink (Mustela vison) is easily distinguished from neighbouring hypothalamic areas and the underlying optic chiasm as a small nucleus containing densely packed parvocellular neurons. A dorsal and ventral subdivision were clearly recognized within the midportion and caudal part of the nuclcus. Using immunohistochemistry, we have identified vasopressin-, neurophysin-, and vasoactive intestinal peptide-immunoreactive neuronal elements in the hypothalamus of the mink. Vasoactive intestinal peptide-immunoreactive neurons can be observed in the ventral aspect of the suprachiasmatic nucleus, but to our surprise, no vasopressin immunoreactive perikarya are found within the suprachiasmatic nucleus, this absence being independent of the experienced annual cycle. The hypothalamic paraventricular and supraoptic nuclei contain large numbers of vasopressin-, neurophysin-and vasoactive intestinal peptide-immunoreactive magnocellular neurons with extensive projections towards the infundibulum and neurohypophysis. A comparative analysis of the distribution of vasopressin-immunoreactive elements in a number of conventional laboratory animals has demonstrated that, in contrast to the rat, golden hamster and Mongolian gerbil, neither vasopressin-containing perikarya in the suprachiasmatic nucleus nor fine calibered immunoreactive fibres entering the adjacent subparaventricular zone are present in the mink. The mink is a photodependent seasonal breeder, and thus vasopressin-immunoreactive neurons in the suprachiasmatic nuclei may not be essential for the photoperiodic regulation of reproduction and seasonal events experienced by this species.  相似文献   

17.
Summary Using an antiserum against the tetrapeptide FMRFamide, we have studied the distribution of FMRFamide-like substances in the brain and suboesophageal ganglion of the sphinx mothManduca sexta. More than 2000 neurons per hemisphere exhibit FMRFamide-like immunoreactivity. Most of these cells reside within the optic lobe. Particular types of FMRFamide-immunoreactive neurons can be identified. Among these are neurosecretory cells, putatively centrifugal neurons of the optic lobe, local interneurons of the antennal lobe, mushroom-body Kenyon cells, and small-field neurons of the central complex. In the suboesophageal ganglion, groups of ventral midline neurons exhibit FMRFamide-like immunoreactivity. Some of these cells have axons in the maxillary nerves and apparently give rise to FMRFamide-immunoreactive terminals in the sheath of the suboesophageal ganglion and the maxillary nerves. In local interneurons of the antennal lobe and a particular group of protocerebral neurons, FMRFamide-like immunoreactivity is colocalized with GABA-like immunoreactivity. This suggests that FMRFamide-like peptides may be cotransmitters of these putatively GABAergic interneurons. All FMRFamide-immunoreactive neurons are, furthermore, immunoreactive with an antiserum against bovine pancreatic polypeptide, and the vast majority is also immunoreactive with an antibody against the molluscan small cardioactive peptide SCPB. Therefore, it is possible that more than one peptide is localized within many FMRFamide-immunoreactive neurons. The results suggest that FMRFamide-related peptides are widespread within the nervous system ofM. sexta and might function as neurohormones and neurotransmitters in a variety of neuronal cell types.Abbreviations AL antennal lobe - BPPLI bovine pancreatic polypeptide-like immunoreactivity - FLI FMRFamide-like immunoreactivity - GLI GABA-like immunoreactivity - NSC neurosecretory cell - SCP B LI small cardioactive peptideB-like immunoreactivity - SLI serotonin-like immunoreactivity - SOG suboesophageal ganglion  相似文献   

18.
Summary Endocrine cells containing bombesin-, enkephalin-, gastrin/CCK-, 5-HT-, and substance P-like material were demonstrated in the alimentary tract of Poecilia reticulata and Leuciscus idus melanotus. Endocrine cells with neuropeptide-Y-like immunoreactivity were found only in P. reticulata, those with VIP-like immunoreactivity only in L. idus melanotus. Gut nerves showing bombesin-, G/CCK-5-HT-, neurotensin-, substance P-and VIP-like immunoreactivity were observed in both species investigated, enkephalin- and neuropeptide Y-like immunoreactivity in P. reticulata alone. The distribution and amount of endocrine cells and nerves along the gut as visualized with the appropriate antisera varied in both teleosts. Histologically, the intestinal tract of these stomachless fish can be divided into three regions. A large number of endocrine cells with VIP-like immunoreactivity was noted in the rectum of L. idus melanotus. Endocrine cells containing bombesin-, enkepha-lin- and substance P-like material were found only in intestinal parts I and II in L. idus melanotus. Neuropeptide Y-like immunoreactivity was absent from intestinal part I of P. reticulata. The influence of starvation on the immunoreactivity of nerves and enteroendocrine cells in the teleost intestine was examined. After a starvation period of more than 6 weeks, no alterations were observed either in the appearance or amount of nerve and endocrine cell immunoreactivity.  相似文献   

19.
The indirect immunofluorescence technique was used to determine the distribution of peptide-containing axons in the gall bladder of the cane toad, Bufo marinus. In addition, the adrenergic innervation of the gall bladder was examined by use of immunoreactivity to the catecholamine-synthesizing enzyme, tyrosine hydroxylase, and glyoxylic acid-induced fluorescence. On the basis of peptide coexistence, two intrinsic populations of neurones and their projecting fibres could be distinguished substance P neurones and vasoactive intestine peptide neurones. Neither of these two types of neurones contained any other colocalized neuropeptides. Four populations of nerve fibres arising from cell bodies outside the gall bladder were identified: nerves containing colocalized galanin, somatostatin and vasoactive intestinal peptide; nerves containing colocalized calcitonin gene-related peptide and substance P; adrenergic nerves containing neuropeptide Y; and nerves containing only adrenaline.  相似文献   

20.
Summary Serotonin has been demonstrated in the epidermal sacciform glandular cells of the clingfish Lepadogaster candollei by use of immunocytochemistry.Serotonin immunoreactivity is found both in the peripheral cytoplasm of the glandular cells and their luminal secretion. The presence of serotonin in the sacciform glandular cells parallels that located by both biochemical and immunocytochemical procedures in the cutaneous glands of many amphibian species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号