首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Developmental interactions and the constituents of quantitative variation   总被引:2,自引:0,他引:2  
Development is the process by which genotypes are transformed into phenotypes. Consequently, development determines the relationship between allelic and phenotypic variation in a population and, therefore, the patterns of quantitative genetic variation and covariation of traits. Understanding the developmental basis of quantitative traits may lead to insights into the origin and evolution of quantitative genetic variation, the evolutionary fate of populations, and, more generally, the relationship between development and evolution. Herein, we assume a hierarchical, modular structure of trait development and consider how epigenetic interactions among modules during ontogeny affect patterns of phenotypic and genetic variation. We explore two developmental models, one in which the epigenetic interactions between modules result in additive effects on character expression and a second model in which these epigenetic interactions produce nonadditive effects. Using a phenotype landscape approach, we show how changes in the developmental processes underlying phenotypic expression can alter the magnitude and pattern of quantitative genetic variation. Additive epigenetic effects influence genetic variances and covariances, but allow trait means to evolve independently of the genetic variances and covariances, so that phenotypic evolution can proceed without changing the genetic covariance structure that determines future evolutionary response. Nonadditive epigenetic effects, however, can lead to evolution of genetic variances and covariances as the mean phenotype evolves. Our model suggests that an understanding of multivariate evolution can be considerably enriched by knowledge of the mechanistic basis of character development.  相似文献   

2.
Several recent studies have shown a genetic influence on gene expression variation, including variation between the two chromosomes within an individual and variation between individuals at the population level. We hypothesized that genetic inheritance may also affect variation in chromatin states. To test this hypothesis, we analyzed chromatin states in 12 lymphoblastoid cells derived from two Centre d'Etude du Polymorphisme Humain families using an allele-specific chromatin immunoprecipitation (ChIP-on-chip) assay with Affymetrix 10K SNP chip. We performed the allele-specific ChIP-on-chip assays for the 12 lymphoblastoid cells using antibodies targeting at RNA polymerase II and five post-translation modified forms of the histone H3 protein. The use of multiple cell lines from the Centre d'Etude du Polymorphisme Humain families allowed us to evaluate variation of chromatin states across pedigrees. These studies demonstrated that chromatin state clustered by family. Our results support the idea that genetic inheritance can determine the epigenetic state of the chromatin as shown previously in model organisms. To our knowledge, this is the first demonstration in humans that genetics may be an important factor that influences global chromatin state mediated by histone modification, the hallmark of the epigenetic phenomena.  相似文献   

3.
Nick Lauter  John Doebley 《Genetics》2002,160(1):333-342
How new discrete states of morphological traits evolve is poorly understood. One possibility is that single-gene changes underlie the evolution of new discrete character states and that evolution is dependent on the occurrence of new single-gene mutations. Another possibility is that multiple-gene changes are required to elevate an individual or population above a threshold required to produce the new character state. A prediction of the latter model is that genetic variation for the traits should exist in natural populations in the absence of phenotypic variation. To test this idea, we studied traits that are phenotypically invariant within teosinte and for which teosinte is discretely different from its near relative, maize. By employing a QTL mapping strategy to analyze the progeny of a testcross between an F(1) of two teosintes and a maize inbred line, we identified cryptic genetic variation in teosinte for traits that are invariant in teosinte. We argue that such cryptic genetic variation can contribute to the evolution of novelty when reconfigured to exceed the threshold necessary for phenotypic expression or by acting to modify or stabilize the effects of major mutations.  相似文献   

4.
Heritable phenotypic variation in plants can be caused not only by underlying genetic differences, but also by variation in epigenetic modifications such as DNA methylation. However, we still know very little about how relevant such epigenetic variation is to the ecology and evolution of natural populations. We conducted a greenhouse experiment in which we treated a set of natural genotypes of Arabidopsis thaliana with the demethylating agent 5-azacytidine and examined the consequences of this treatment for plant traits and their phenotypic plasticity. Experimental demethylation strongly reduced the growth and fitness of plants and delayed their flowering, but the degree of this response varied significantly among genotypes. Differences in genotypes’ responses to demethylation were only weakly related to their genetic relatedness, which is consistent with the idea that natural epigenetic variation is independent of genetic variation. Demethylation also altered patterns of phenotypic plasticity, as well as the amount of phenotypic variation observed among plant individuals and genotype means. We have demonstrated that epigenetic variation can have a dramatic impact on ecologically important plant traits and their variability, as well as on the fitness of plants and their ecological interactions. Epigenetic variation may thus be an overlooked factor in the evolutionary ecology of plant populations.  相似文献   

5.
6.
During mammalian evolution, complex systems of epigenetic gene regulation have been established: Epigenetic mechanisms control tissue-specific gene expression, X chromosome inactivation in females and genomic imprinting. Studying DNA sequence conservation in imprinted genes, it becomes evident that evolution of gene function and evolution of epigenetic gene regulation are tightly connected. Furthermore, comparative studies allow the identification of DNA sequence features that distinguish imprinted genes from biallelically expressed genes. Among these features are CpG islands, tandem repeats and retrotransposed elements that are known to play major roles in epigenetic gene regulation. Currently, more and more genetic and epigenetic data sets become available. In future, such data sets will provide the basis for more complex investigations on epigenetic variation in human populations. Therein, an exciting topic will be the genetic and epigenetic variability of imprinted genes and its input on human disease.  相似文献   

7.
Absolute constraints are limitations on genetic variation that preclude evolutionary change in some aspect of the phenotype. Absolute constraints may reflect complete absence of variation, lack of genetic variation that extends the range of phenotypes beyond some limit, or lack of additive genetic variation. This last type of absolute constraint is bidirectional, because the mean cannot evolve to be larger or smaller. Most traits do possess genetic variation, so bidirectional absolute constraints are most likely to be detected in a multivariate context, where they would reflect combinations of traits, or dimensions in phenotype space that cannot evolve. A bidirectional absolute constraint will cause the additive genetic covariance matrix (G) to have a rank less than the number of traits studied. In this study, we estimate the rank of the G-matrix for 20 aspects of wing shape in Drosophila melanogaster. Our best estimates of matrix rank are 20 in both sexes. Lower 95% confidence intervals of rank are 17 for females and 18 for males. We therefore find little evidence of bidirectional absolute constraints. We discuss the importance of this result for resolving the relative roles of selection and drift processes versus constraints in the evolution of wing shape in Drosophila.  相似文献   

8.
Epigenetics and plant evolution   总被引:16,自引:0,他引:16  
A fundamental precept of evolutionary biology is that natural selection acts on phenotypes determined by DNA sequence variation within natural populations. Recent advances in our understanding of gene regulation, however, have elucidated a spectrum of epigenetic molecular phenomena capable of altering the temporal, spatial, and abundance patterns of gene expression. These modifications may have morphological, physiological, and ecological consequences, and are heritable across generations, suggesting they are important in evolution. A corollary is that genetic variation per se is not always a prerequisite to evolutionary change. Here, we provide an introduction to epigenetic mechanisms in plants, and highlight some of the empirical studies illustrative of the possible connections between evolution and epigenetically mediated alterations in gene expression and morphology.  相似文献   

9.
Environmentally induced phenotypic plasticity is thought to play an important role in the adaption of plant populations to heterogeneous habitat conditions, and yet the importance of epigenetic variation as a mechanism of adaptive plasticity in natural plant populations still merits further research. In this study, we investigated populations of Vitex negundo var. heterophylla (Chinese chastetree) from adjacent habitat types at seven sampling sites. Using several functional traits, we detected a significant differentiation between habitat types. With amplified fragment length polymorphisms (AFLP) and methylation‐sensitive AFLP (MSAP), we found relatively high levels of genetic and epigenetic diversity but very low genetic and epigenetic differences between habitats within sites. Bayesian clustering showed a remarkable habitat‐related differentiation and more genetic loci associated with the habitat type than epigenetic, suggesting that the adaptation to the habitat is genetically based. However, we did not find any significant correlation between genetic or epigenetic variation and habitat using simple and partial Mantel tests. Moreover, we found no correlation between genetic and ecologically relevant phenotypic variation and a significant correlation between epigenetic and phenotypic variation. Although we did not find any direct relationship between epigenetic variation and habitat environment, our findings suggest that epigenetic variation may complement genetic variation as a source of functional phenotypic diversity associated with adaptation to the heterogeneous habitat in natural plant populations.  相似文献   

10.
Variation of DNA methylation is thought to play an important role for rapid adjustments of plant populations to dynamic environmental conditions, thus compensating for the relatively slow response time of genetic adaptations. However, genetic and epigenetic variation of wild plant populations has not yet been directly compared in fast changing environments. Here, we surveyed populations of Viola elatior from two adjacent habitat types along a successional gradient characterized by strong differences in light availability. Using amplified fragment length polymorphisms (AFLP) and methylation‐sensitive amplification polymorphisms (MSAP) analyses, we found relatively low levels of genetic (Hgen = 0.19) and epigenetic (Hepi = 0.23) diversity and high genetic (?ST = 0.72) and epigenetic (?ST = 0.51) population differentiation. Diversity and differentiation were significantly correlated, suggesting that epigenetic variation partly depends on the same driving forces as genetic variation. Correlation‐based genome scans detected comparable levels of genetic (17.0%) and epigenetic (14.2%) outlier markers associated with site specific light availability. However, as revealed by separate differentiation‐based genome scans for AFLP, only few genetic markers seemed to be actually under positive selection (0–4.5%). Moreover, principal coordinates analyses and Mantel tests showed that overall epigenetic variation was more closely related to habitat conditions, indicating that environmentally induced methylation changes may lead to convergence of populations experiencing similar habitat conditions and thus may play a major role for the transient and/or heritable adjustment to changing environments. Additionally, using a new MSAP‐scoring approach, we found that mainly the unmethylated (?ST = 0.60) and CG‐methylated states (?ST = 0.46) of epiloci contributed to population differentiation and putative habitat‐related adaptation, whereas CHG‐hemimethylated states (?ST = 0.21) only played a marginal role.  相似文献   

11.
Adaptive evolution in invasive species   总被引:1,自引:0,他引:1  
Many emerging invasive species display evidence of rapid adaptation. Contemporary genetic studies demonstrate that adaptation to novel environments can occur within 20 generations or less, indicating that evolutionary processes can influence invasiveness. However, the source of genetic or epigenetic variation underlying these changes remains uncharacterised. Here, we review the potential for rapid adaptation from standing genetic variation and from new mutations, and examine four types of evolutionary change that might promote or constrain rapid adaptation during the invasion process. Understanding the source of variation that contributes to adaptive evolution in invasive plants is important for predicting future invasion scenarios, identifying candidate genes involved in invasiveness, and, more generally, for understanding how populations can evolve rapidly in response to novel and changing environments.  相似文献   

12.
In species where males provide neither direct benefits nor paternal care, it is typically assumed that female preferences are maintained by indirect selection reflecting genetic benefits to offspring of preferred males. However, it remains unclear whether populations harbour sufficient genetic variation in fitness to support costly female preferences – a problem called the ‘lek paradox’. Here, we ask whether indirect selection on female preferences can be maintained by nongenetic inheritance. We construct a general model that can be used to represent either genetic or nongenetic inheritance, depending on the choice of parameter values. Interestingly, we find that costly preference is most likely to evolve and persist when fitness depends on an environmentally induced factor that can be transmitted over a single generation only, such as an environment‐dependent paternal effect. Costly preference can also be supported when fitness depends on a highly mutable factor that can persist over multiple generations, such as an epigenetic mark, but the necessary conditions are more restrictive. Our findings show that nongenetic inheritance provides a plausible hypothesis for the maintenance of costly female preferences in species where males provide no direct benefits to females. Nongenetic paternal inheritance of fitness can occur in species lacking conventional forms of paternal care. Indeed, transmission of paternal condition via sperm‐borne nongenetic factors may be more likely to evolve than conventional forms of paternal investment because sperm‐borne effects are protected from cuckoldry. Our results furnish a novel example of an interaction between genetic and nongenetic inheritance that can lead to otherwise unexpected evolutionary outcomes.  相似文献   

13.
Epigenetic inheritance systems enable the environmentally induced phenotypes to be transmitted between generations. Jablonka and Lamb (1991, 1995) proposed that these systems have a substantial role during speciation. They argued that divergence of isolated populations may be first triggered by the accumulation of (heritable) phenotypic differences that are later followed and strengthened by genetic changes. The plausibility of this idea is examined in this paper. At first, we discuss the "exploratory" behaviour of an epigenetic inheritance system on a one peak adaptive landscape. If a quantitative trait is far from the optimum, then it is advantageous to induce heritable phenotypic variation. Conversely, if the genotypes get closer to the peak, it is more favorable to canalize the phenotypic expression of the character. This process would lead to genetic assimilation. Next we show that the divergence of heritable epigenetic marks acts to reduce or to eliminate the genetic barrier between two adaptive peaks. Therefore, an epigenetic inheritance system can increase the probability of transition from one adaptive state to another. Peak shift might be initiated by (i) slight changes in the inducing environment or by (ii) genetic drift of the genes controlling epigenetic variability. Remarkably, drift-induced transition is facilitated even if phenotypic variation is not heritable. A corollary of our thesis is that evolution can proceed through suboptimal phenotypic states, without passing through a deep adaptive valley of the genotype. We also consider the consequences of this finding on the dynamics and mode of reproductive isolation.  相似文献   

14.
Epigenetic changes can provide a pathway for organisms to respond to local environmental conditions by influencing gene expression. However, we still know little about the spatial distribution of epigenetic variation in natural systems, how it relates to the distribution of genetic variation and the environmental structure of the landscape, and the processes that generate and maintain it. Studies examining spatial patterns of genetic and epigenetic variation can provide valuable insights into how ecological and population processes contribute to epigenetic divergence across heterogeneous landscapes. Here, we perform a comparative analysis of spatial genetic and epigenetic variation based on 8,459 single nucleotide polymorphisms (SNPs) and 8,580 single methylation variants (SMVs) from eight populations of the Puerto Rican crested anole, Anolis cristatellus, an abundant lizard in the adaptive radiations of anoles on the Greater Antilles that occupies a diverse range of habitats. Using generalized dissimilarity modelling and multiple matrix regression, we found that genome‐wide epigenetic differentiation is strongly correlated with environmental divergence, even after controlling for the underlying genetic structure. We also detected significant associations between key environmental variables and 96 SMVs, including 42 located in promoter regions or gene bodies. Our results suggest an environmental basis for population‐level epigenetic differentiation in this system and contribute to better understanding how environmental gradients structure epigenetic variation in nature.  相似文献   

15.
Phenotypic plasticity is an important mechanism for populations to buffer themselves from environmental change. While it has long been appreciated that natural populations possess genetic variation in the extent of plasticity, a surge of recent evidence suggests that epigenetic variation could also play an important role in shaping phenotypic responses. Compared with genetic variation, epigenetic variation is more likely to have higher spontaneous rates of mutation and a more sensitive reaction to environmental inputs. In our review, we first provide an overview of recent studies on epigenetically encoded thermal plasticity in animals to illustrate environmentally‐mediated epigenetic effects within and across generations. Second, we discuss the role of epigenetic effects during adaptation by exploring population epigenetics in natural animal populations. Finally, we evaluate the evolutionary potential of epigenetic variation depending on its autonomy from genetic variation and its transgenerational stability. Although many of the causal links between epigenetic variation and phenotypic plasticity remain elusive, new data has explored the role of epigenetic variation in facilitating evolution in natural populations. This recent progress in ecological epigenetics will be helpful for generating predictive models of the capacity of organisms to adapt to changing climates.  相似文献   

16.
17.
Duveau F  Félix MA 《PLoS biology》2012,10(1):e1001230
Robust biological systems are expected to accumulate cryptic genetic variation that does not affect the system output in standard conditions yet may play an evolutionary role once phenotypically expressed under a strong perturbation. Genetic variation that is cryptic relative to a robust trait may accumulate neutrally as it does not change the phenotype, yet it could also evolve under selection if it affects traits related to fitness in addition to its cryptic effect. Cryptic variation affecting the vulval intercellular signaling network was previously uncovered among wild isolates of Caenorhabditis elegans. Using a quantitative genetic approach, we identify a non-synonymous polymorphism of the previously uncharacterized nath-10 gene that affects the vulval phenotype when the system is sensitized with different mutations, but not in wild-type strains. nath-10 is an essential protein acetyltransferase gene and the homolog of human NAT10. The nath-10 polymorphism also presents non-cryptic effects on life history traits. The nath-10 allele carried by the N2 reference strain leads to a subtle increase in the egg laying rate and in the total number of sperm, a trait affecting the trade-off between fertility and minimal generation time in hermaphrodite individuals. We show that this allele appeared during early laboratory culture of N2, which allowed us to test whether it may have evolved under selection in this novel environment. The derived allele indeed strongly outcompetes the ancestral allele in laboratory conditions. In conclusion, we identified the molecular nature of a cryptic genetic variation and characterized its evolutionary history. These results show that cryptic genetic variation does not necessarily accumulate neutrally at the whole-organism level, but may evolve through selection for pleiotropic effects that alter fitness. In addition, cultivation in the laboratory has led to adaptive evolution of the reference strain N2 to the laboratory environment, which may modify other phenotypes of interest.  相似文献   

18.
The relationship between genotype (which is inherited) and phenotype (the target of selection) is mediated by environmental inputs on gene expression, trait development, and phenotypic integration. Phenotypic plasticity or epigenetic modification might influence evolution in two general ways: (1) by stimulating evolutionary responses to environmental change via population persistence or by revealing cryptic genetic variation to selection, and (2) through the process of genetic accommodation, whereby natural selection acts to improve the form, regulation, and phenotypic integration of novel phenotypic variants. We provide an overview of models and mechanisms for how such evolutionary influences may be manifested both for plasticity and epigenetic marking. We point to promising avenues of research, identifying systems that can best be used to address the role of plasticity in evolution, as well as the need to apply our expanding knowledge of genetic and epigenetic mechanisms to our understanding of how genetic accommodation occurs in nature. Our review of a wide variety of studies finds widespread evidence for evolution by genetic accommodation.  相似文献   

19.
Population genetic theory predicts that the availability of appropriate standing genetic variation should facilitate rapid evolution when species are introduced to new environments. However, few tests of rapid evolution have been paired with empirical surveys for the presence of previously identified adaptive genetic variants in natural populations. In this study, we examined local adaptation to soil Al toxicity in the introduced range of sweet vernal grass (Anthoxanthum odoratum), and we genotyped populations for the presence of Al tolerance alleles previously identified at the long‐term ecological Park Grass Experiment (PGE, Harpenden, UK) in the species native range. We found that markers associated with Al tolerance at the PGE were present at appreciable frequency in introduced populations. Despite this, there was no strong evidence of local adaptation to soil Al toxicity among populations. Populations demonstrated significantly different intrinsic root growth rates in the absence of Al. This suggests that selection on correlated root growth traits may constrain the ability of populations to evolve significantly different root growth responses to Al. Our results demonstrate that genotype–phenotype associations may differ substantially between the native and introduced parts of a species range and that adaptive alleles from a native species range may not necessarily promote phenotypic differentiation in the introduced range.  相似文献   

20.
《Epigenetics》2013,8(7):843-848
Epigenetic silencing is a pervasive mode of gene regulation in multicellular eukaryotes: stable differentiation of somatic cell types requires the maintenance of subsets of genes in an active or silent state. The variety of molecules involved, and the requirement for active maintenance of epigenetic states, creates the potential for errors on a large scale. When epigenetic errors - or epimutations - activate or inactivate a critical gene, they may cause disease. An epimutation that occurs in the germline or early embryo can affect all, or most, of the soma and phenocopy genetic disease. But the stochastic and reversible nature of epigenetic phenomena predicts that epimutations are likely to be mosaic and inherited in a nonmendelian manner; epigenetic diseases will thus rarely behave in the comfortably predictable manner of genetic diseases but will display variable expressivity and complex patterns of inheritance. Much phenotypic variation and common disease might be explained by epigenetic variation and aberration. The known examples of true epigenetic disease are at present limited, but this may reflect only the difficulty in distinguishing causal epigenetic aberrations from those that are merely consequences of disease, a challenge further extended by the impact of environmental agents on epigenetic mechanisms. The rapidly developing molecular characterization of epigenomes, and the new ability to survey epigenetic marks on whole genomes, may answer many questions about the causal role of epigenetics in disease; these answers have the potential to transform our understanding of human disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号