首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Winteraceae are traditionally regarded as the least-specialized descendents of the first flowering plants, based largely on their lack of xylem vessels. Since vessels have been viewed as a key innovation for angiosperm diversification, Winteraceae have been portrayed as declining relicts, limited to wet forest habitats where their tracheid-based wood does not impose a significant hydraulic constraints. In contrast, phylogenetic analyses place Winteraceae among angiosperm clades with vessels, indicating that their vesselless wood is derived rather than primitive, whereas extension of the Winteraceae fossil record into the Early Cretaceous suggests a more complex ecological history than has been deduced from their current distribution. However, the selective regime and ecological events underlying the possible loss of vessels in Winteraceae have remained enigmatic. Here we examine the hypothesis that vessels were lost as an adaptation to freezing-prone environments in Winteraceae by measuring the responses of xylem water transport to freezing for a diverse group of Winteraceae taxa as compared to Canella winterana (Canellaceae, a close relative with vessels) and sympatric conifer taxa. We found that mean percent loss of xylem water transport capacity following freeze-thaw varied from 0% to 6% for Winteraceae species from freezing-prone temperate climates and approximately 20% in those taxa from tropical (nonfreezing) climates. Similarly, conifers exhibit almost no decrease in xylem hydraulic conductivity following freezing. In contrast, water transport in Canella stems is nearly 85% blocked after freeze-thaw. Although vessel-bearing wood of Canella possesses considerably greaterhydraulic capacity than Winteraceae, nearly 20% of xylem hydraulic conductance remains, a value that is comparable to the hydraulic capacity of vesselless Winteraceae xylem, if the proportion of hydraulic flow through vessels (modeled as ideal capillaries) is removed. Thus, the evolutionary removal of vessels may not necessarily require a deleterious shift to an ineffective vascular system. By integrating Winteraceae's phylogenetic relationships and fossil history with physiological and ecological observations, we suggest that, as ancestors of modern Winteraceae passed through temperate conditions present in Southern Gondwana during the Early Cretaceous, they were exposed to selective pressures against vessel-possession and returned to a vascular system relying on tracheids. These results suggest that the vesselless condition is advantageous in freezing-prone areas, which is supported by the strong bias in the ecological abundance of Winteraceae to wet temperate and tropical alpine habitats, rather than a retained feature from the first vesselless angiosperms. We believe that vesselless wood plays an important role in the ecological abundance of Winteraceae in Southern Hemisphere temperate environments by enabling the retention of leaves and photosynthesis in the face of frequent freeze-thaw events.  相似文献   

2.
Vesselless wood represents a rare phenomenon within the angiosperms, characterizing Amborellaceae, Trochodendraceae and Winteraceae. Anatomical observations of bordered pits and their pit membranes based on light, scanning and transmission electron microscopy (SEM and TEM) are required to understand functional questions surrounding vesselless angiosperms and the potential occurrence of cryptic vessels. Interconduit pit membranes in 11 vesselless species showed a similar ultrastructure as mesophytic vessel‐bearing angiosperms, with a mean thickness of 245 nm (± 53, SD; n = six species). Shrunken, damaged and aspirated pit membranes, which were 52% thinner than pit membranes in fresh samples (n = four species), occurred in all dried‐and‐rehydrated samples, and in fresh latewood of Tetracentron sinense and Trochodendron aralioides. SEM demonstrated that shrunken pit membranes showed artificially enlarged, > 100 nm wide pores. Moreover, perfusion experiments with stem segments of Drimys winteri showed that 20 and 50 nm colloidal gold particles only passed through 2 cm long dried‐and‐rehydrated segments, but not through similar sized fresh ones. These results indicate that pit membrane shrinkage is irreversible and associated with a considerable increase in pore size. Moreover, our findings suggest that pit membrane damage, which may occur in planta, could explain earlier records of vessels in vesselless angiosperms.  相似文献   

3.

Background and Aims

In recent years considerable effort has focused on linking wood anatomy and key ecological traits. Studies analysing large databases have described how these ecological traits vary as a function of wood anatomical traits related to conduction and support, but have not considered how these functions interact with cells involved in storage of water and carbohydrates (i.e. parenchyma cells).

Methods

We analyzed, in a phylogenetic context, the functional relationship between cell types performing each of the three xylem functions (conduction, support and storage) and wood density and theoretical conductivity using a sample of approx. 800 tree species from China.

Key Results

Axial parenchyma and rays had distinct evolutionary correlation patterns. An evolutionary link was found between high conduction capacity and larger amounts of axial parenchyma that is probably related to water storage capacity and embolism repair, while larger amounts of ray tissue have evolved with increased mechanical support and reduced hydraulic capacity. In a phylogenetic principal component analysis this association of axial parenchyma with increased conduction capacity and rays with wood density represented orthogonal axes of variation. In multivariate space, however, the proportion of rays might be positively associated with conductance and negatively with wood density, indicating flexibility in these axes in species with wide rays.

Conclusions

The findings suggest that parenchyma types may differ in function. The functional axes represented by different cell types were conserved across lineages, suggesting a significant role in the ecological strategies of the angiosperms.  相似文献   

4.
Today, angiosperms are fundamental players in the diversity and biogeochemical functioning of the planet. Yet despite the omnipresence of angiosperms in today's ecosystems, the basic evolutionary understanding of how the earliest angiosperms functioned remains unknown. Here we synthesize ecophysiological, paleobotanical, paleoecological, and phylogenetic lines of evidence about early angiosperms and their environments. In doing so, we arrive at a hypothesis that early angiosperms evolved in evermoist tropical terrestrial habitats, where three of their emblematic innovations – including net‐veined leaves, xylem vessels, and flowers – found ecophysiological advantages. However, the adaptation of early angiosperm ecophysiology to wet habitats did not initially promote massive diversification and ecological dominance. Instead, wet habitats were permissive for the ecological roothold of the clade, a critical phase of early diversification that entailed experimentation with a range of functional innovations in the leaves, wood, and flowers. Later, our results suggest that some of these innovations were co‐opted gradually for new roles in the evolution of greater productivity and drought tolerance, which are characteristics seen across the vast majority of derived and ecologically dominant angiosperms today.  相似文献   

5.
Size and function in conifer tracheids and angiosperm vessels   总被引:1,自引:0,他引:1  
The wide size range of conifer tracheids and angiosperm vessels has important consequences for function. In both conduit types, bigger is better for conducting efficiency. The gain in efficiency with size is maximized by the control of conduit shape, which balances end-wall and lumen resistances. Although vessels are an order of magnitude longer than tracheids of the same diameter, they are not necessarily more efficient because they lack the low end-wall resistance of tracheids with torus-margo pits. Instead, vessels gain conducting efficiency over tracheids by achieving wider maximum diameters. End-walls contributed 56-64% to total xylem resistance in both conduit types, indicating that length limits conducting efficiency. Tracheid dimensions may be more limited by unicellularity and the need to supply strength to homoxylous wood than by the need to protect against cavitation. In contrast, the greater size of the multicellular vessel is facilitated by fibers that strengthen heteroxylous wood. Vessel dimensions may be most limited by the need to restrict intervessel pitting and cavitation by air-seeding. Stressful habitats that promote narrow vessels should favor coexistence of conifers and angiosperms. The evolution of vessels in angiosperm wood may have required early angiosperms to survive a phase of mechanic and hydraulic instability.  相似文献   

6.
Gnetum (Gnetales) species are suggested to be unique extant gymnosperms that have acquired high photosynthetic and transpiration capacities as well as greater xylem hydraulic capacity and efficiency compared with all other extant gymnosperms. This is because Gnetum is the only extant gymnosperm lineage that combines vessels, broad pinnate-veined leaves and an ecological distribution in wet, productive lowland tropical rainforest habitats. Yet, field-based observations on the group's ecophysiological performance are lacking. To test a hypothesis that Gnetum species are ecophysiologically analogous to light-demanding woody tropical angiosperms, stem xylem hydraulic performance, photosynthesis and stomatal conductance were investigated in Gnetum as compared with a diverse group of co-occurring woody plants in a lowland tropical rainforest. It was found that Gnetum species combined low photosynthetic capacity and low stomatal conductances with a low stem water transport ability. The physiological observations are consistent with the general occurrence of Gnetum species in shady, primary forest habitats. These results on Gnetum ecophysiology indicate that the coupling of vessels, broad pinnate-veined leaves and the liana habit do not signal the evolution of a highly opportunistic, light-demanding life history in gymnosperms.  相似文献   

7.
Sarcandra is the only genus of Chloranthaceae hitherto thought to be vesselless. Study of liquid-preserved material of S. glabra revealed that in root secondary xylem some tracheary elements are wider in diameter and have markedly scalariform end walls combined with circular pits on lateral walls. Examination of these wider tracheary elements with scanning electron microscope (SEM) demonstrated various degrees of pit membrane absence in the end walls. Commonly a few threadlike fibrils traverse the pits (perforations); these as well as intact nature of pit membranes in pits at ends of some perforation plates are evidence that lack of pit membranes does not result from damage during processing. Some perforations lack any remnants of pit membranes. Although perforation plates and therefore vessels are present in Sarcandra roots, no perforations were observed in tracheary elements of stems or lignotubers. Further, stem tracheids do not have the prominently scalariform end walls that the vessel elements in roots do. Presence of vessels in Sarcandra removes at least one (probably several) hypothetical events of vessel origin that must be postulated to account for known patterns of vessel distribution in angiosperms, assuming that they are primitively vesselless. Seven (perhaps fewer) vessel origin events in angiosperms could account for these patterns; two of those events (Nelumbo and monocotyledons) are different from the others in nature. Widely accepted data on trends of vessel specialization in woody dicotyledons yield an unappreciated implication: vessel specialization has happened in a highly polyphyletic manner in dicotyledons, and therefore multiple vessel origins represent a logical extension backward in time. If a group of vesselless dictyoledons ancestral to other angiosperms existed, they can be hypothesized to have had a relatively homogeneous floral plan now that Sarcandra-like plants no longer need be imagined within that group. Sarcandra and other Chloranthaceae show that the borderline between vessel absence and presence is less sharp than generally appreciated.  相似文献   

8.
The very different evolutionary pathways of conifers and angiosperms are very informative precisely because their wood anatomy is so different. New information from anatomy, comparative wood physiology, and comparative ultrastructure can be combined to provide evidence for the role of axial and ray parenchyma in the two groups. Gnetales, which are essentially conifers with vessels, have evolved parallel to angiosperms and show us the value of multiseriate rays and axial parenchyma in a vessel-bearing wood. Gnetales also force us to re-examine optimum anatomical solutions to conduction in vesselless gymnosperms. Axial parenchyma in vessel-bearing woods has diversified to take prominent roles in storage of water and carbohydrates as well as maintenance of conduction in vessels. Axial parenchyma, along with other modifications, has superseded scalariform perforation plates as a safety mechanism and permitted angiosperms to succeed in more seasonal habitats. This diversification has required connection to rays, which have concomitantly become larger and more diverse, acting as pathways for photosynthate passage and storage. Modes of growth such as rapid flushing, vernal leafing-out, drought deciduousness and support of large leaf surfaces become possible, advantaging angiosperms over conifers in various ways. Prominent tracheid-ray pitting (conifers) and axial parenchyma/ray pitting to vessels (angiosperms) are evidence of release of photosynthates into conductive cells; in angiosperms, this system has permitted vessels to survive hydrologic stresses and function in more seasonal habitats. Flow in ray and axial parenchyma cells, suggested by greater length/width ratios of component cells, is confirmed by pitting on end walls of elongate cells: pits are greater in area, more densely placed, and are often bordered. Bordered pit areas and densities on living cells, like those on tracheids and vessels, represent maximal contact areas between cells while minimizing loss of wall strength. Storage cells in rays can be distinguished from flow cells by size and shape, by fewer and smaller pits and by contents. By lacking secondary walls, the entire surfaces of phloem ray and axial phloem parenchyma become conducting areas across which sugars can be translocated. The intercontinuous network of axial parenchyma and ray parenchyma in woods is confirmed; there are no “isolated” living cells in wood when three-dimensional studies are made. Water storage in living cells is reported anatomically and also in the form of percentile quantitative data which reveal degrees and kinds of succulence in angiosperm woods, and norms for “typically woody” species. The diversity in angiosperm axial and ray parenchyma is presented as a series of probable optimal solutions to diverse types of ecology, growth form, and physiology. The numerous homoplasies in these anatomical modes are seen as the informative results of natural experiments and should be considered as evidence along with experimental evidence. Elliptical shape of rays seems governed by mechanical considerations; unusually long (vertically) rays represent a tradeoff in favor of flexibility versus strength. Protracted juvenilism (paedomorphosis) features redirection of flow from horizontal to vertical by means of rays composed predominantly or wholly of upright cells, and the reasons for this anatomical strategy are sought. Protracted juvenilism, still little appreciated, occurs in a sizeable proportion of the world’s plants and is a major source of angiosperm diversification.  相似文献   

9.
Cambial injury has been reported to alter wood structure in broad-leaved trees. However, the duration and extension of associated anatomical changes have rarely been analysed thoroughly. A total of 18 young European ash (Fraxinus excelsior L.) trees injured on the stem by a spring flood were sampled with the aim of comparing earlywood vessels and rays formed prior to and after the scarring event. Anatomical and hydraulic parameters were measured in five successive rings over one-quarter of the stem circumference. The results demonstrate that mechanical damage induces a decrease in vessel lumen size (up to 77%) and an increase in vessel number (up to 475%) and ray number (up to 115%). The presence of more earlywood vessels and rays was observed over at least three years after stem scarring. By contrast, abnormally narrow earlywood vessels mainly developed in the first ring formed after the event, increasing the thickness-to-span ratio of vessels by 94% and reducing both xylem relative conductivity and the index for xylem vulnerability to cavitation by 54% and 32%, respectively. These vessels accumulated in radial groups in a 30° sector immediately adjacent to the wound, raising the vessel grouping index by 28%. The wound-induced anatomical changes in wood structure express the functional need of trees to improve xylem hydraulic safety and mechanical strength at the expense of water transport. Xylem hydraulic efficiency was restored in one year, while xylem mechanical reinforcement and resistance to cavitation and decay lasted over several years.  相似文献   

10.
Urban trees are sensitive to extreme weather events under climate change. Freeze-thaw induced hydraulic failure could induce urban tree dieback and nullify the services they provide. Plant height is a simple but significant trait for plant ecological strategies. Understanding how urban trees with different heights adapt to freeze-thaw stress is increasingly important under climate change. We investigated the relationship between tree height and stem hydraulic functional traits of six common urban tree species in North China to explore tree height-related hydraulic strategies to cope with freeze-thaw stress. Results showed that tall trees had wider vessels, higher hydraulic conductivity, more winter embolism, but lower vessel and wood densities. Positive relationships were found between tree height and vessel diameter, hydraulic conductivity, and freeze-thaw induced embolism, and negative relationships were found between tree height and vessel and wood densities, which implied that short trees employ more conservative ecological strategies than tall trees. Tall and short tree species were well separated by multiple stem hydraulic functional traits; this is consistent with the fact that tall and short trees occupy different niches and indicates that different hydraulic strategies for freeze-thaw stress exist between them. Tall trees might face more pressure to survive under extreme cold weather caused by climate change in the future. Therefore, more attention should be paid to tall urban tree management in North China to cope with extreme cold weather.  相似文献   

11.

Key message

Along the stem axis phloem’s sieve elements increase in diameter basally at rates comparable to those of xylem conduits and in agreement with principles of hydraulic optimization.

Abstract

Plant physiology relies on the efficiency of the two long-distance transport systems of xylem and phloem. Xylem architecture comprises conduits of small dimensions towards the stem apex, where transpiration-induced tensions are the highest along the root-to-leaves hydraulic pathway, and widen basally to minimize the path length resistance to water flow. Instead, information on phloem anatomy and allometry is extremely scarce, although potentially relevant for the efficiency of sugar transportation. We measured the hydraulic diameter (Dh) of both xylem conduits and phloem sieve elements in parallel at different heights along the stem of a small tree of Picea abies, Fraxinus excelsior and Salix eleagnos. Dh increased from the stem apex to base in both xylem and phloem, with a higher scaling exponent (b) of sieve elements than that of tracheids in the conifer (0.19 vs. 0.14) and lower than that of vessels in the angiosperms (0.14–0.22 vs. 0.19–0.40). In addition, sieve elements were larger than tracheids in P. abies and narrower than angiosperms vessels at any height along the stem. In conclusion, axial conduit widening would seem to be a key feature of both xylem and phloem long-distance transport architectures.  相似文献   

12.
Hong-Fang Li  Shu-Miaw Chaw 《Flora》2011,206(6):595-600
For almost 150 years, the two monotypic genera Trochodendron and Tetracentron (Trochodendraceae) have been considered to share an unusual and primitive feature in angiosperms - the lack of vessels in their wood. Therefore, they have been classified in a basal position in the angiosperms. Our observations by light microscopy, low-vacuum environmental scanning electron microscopy (ESEM) and high-vacuum scanning electron microscopy (SEM) both in fresh and FAA-fixed materials consistently showed the presence of tracheary elements differentiated into two types in both genera. In Trochodendron, the tracheary elements can be divided into perforate vessel elements and imperforate fiber-tracheids and tracheids. The vessel elements show end and lateral walls. The pits on the end walls are elongate- broadened and do not have membranes or only a few remnants of them forming the perforation plates. The fiber-tracheids show crossfield pit pairs and sharp ends, and the tracheids show bordered pits. In Tetracentron, the tracheary elements comprise vessel elements and fibers. The vessel elements are similar to those of Trochodendron, whereas the fibers have no crossfield pit pairs but, rather, elliptical pits and sharp ends. Thus, both Trochodendron and Tetracentron are vessel bearing rather than vesselless, although their vessel elements are primitive.  相似文献   

13.
Lianas and other climbing plants are known for their extraordinarily wide vessels. Wide vessels are thought to contribute to the extreme hydraulic efficiency of lianas and to play a part in their ability to dominate many tropical habitats, and even their globally increasing abundance with anthropic disturbance. However, recent hydraulic optimality models suggest that the average vessel diameter of plants generally is the result of tip-to-base vessel widening reflecting the effects of selection buffering conductive path length-imposed hydraulic resistance. These models state that mean vessel diameter should be predicted by stem length, by implication even in lianas. We explore vessel–stem relations with 1409 samples from 424 species in 159 families of both self- and non-self-supporting plants. We show that, far from being exceptional in their vessel diameter, lianas have average natural (not hydraulically weighted) vessel diameters that are indistinguishable for a given stem length from those in self-supporting plants. Lianas do, however, have wider variance in vessel diameter. They have a small number of vessels that are wider than those in self-supporting plants of similar stem lengths, and also narrower vessels. This slightly greater variance is sufficient to make hydraulically weighted vessel diameters in lianas higher than those of self-supporting counterparts of similar stem lengths. Moreover, lianas have significantly more vessels per unit of wood transection than self-supporting plants do. This subtle combination of slightly higher vessel diameter variance and higher vessel density for a given stem length is likely what makes lianas hydraulically distinctive, rather than their having vessels that are truly exceptionally wide.  相似文献   

14.
Aims As vascular plants evolve from ferns to gymnosperms and angiosperms, their physiological structures and functions are assumed more adaptable to arid environment. Whether the three plant groups from early to late evolved lineages have improved their water transport and use efficiency has been studied on the basis of the morphological structure of leaf veins and stomata.Moreover, the water transportation rate was directly measured in the angiosperms. Therefore, we measured structural and functional traits related to water relations in all three plant groups simultaneously, to test the hypothesis on the evolutionary process of plant hydraulics. Methods We selected three species in each group grown in South China Botanical Garden, Guangzhou, China, including ferns (Dicranopteris pedata, Cyclosorus parasiticus and Blechnum orientale), gymnosperms (Podocarpus macrophyllus, Podocarpus nagi and Taxodium distichum) and angiosperms (Manglietia fordiana var. hainanensis, Sindora tonkinensis and Bauhinia purpurea). Important findings Sapwood and leaf specific hydraulic conductivities (KS and KL, respectively), and leaf conductance (Kleaf) significantly increased from ferns, gymnosperms to angiosperms. However, no significant trends were found in transpiration rate (E) and intrinsic water use efficiency. Meanwhile, neither the size and density of stomata nor wood density showed significant difference among three plant groups. The hydraulic functional traits (KS, KL and Kleaf) had significantly positive correlations with each other, but had no relationships with the two measured structural traits. Phylogenetic independent contrasts analyses showed that the coordination between KS and Kleaf, and between KS and E were independent of the phylogeny. Based on the nine vascular species, this study demonstrated that water transport related traits are improved as vascular plants evolved, and the co-evolution between water transport and transpiration traits were identified. For further study, it is necessary to consolidate our data with investigations of more detailed water-transport structures in more species from different evolutionary lineages. © 2018 Editorial Office of Chinese Journal of Plant Ecology. All rights reserved.  相似文献   

15.
? The lack of extant lianescent vessel-less seed plants supports a hypothesis that liana evolution requires large-diameter xylem conduits. Here, we demonstrate an unusual example of a lianoid vessel-less angiosperm, Tasmannia cordata (Winteraceae), from New Guinea. ? Wood mechanical, hydraulic and structural measurements were used to determine how T. cordata climbs and to test for ecophysiological shifts related to liana evolution vs 13 free-standing congeners. ? The tracheid-based wood of T. cordata furnished low hydraulic capacity compared with that of vessel-bearing lianas. In comparison with most nonclimbing relatives, T. cordata possessed lower photosynthetic rates and leaf and stem hydraulic capacities. However, T. cordata exhibited a two- to five-fold greater wood elastic modulus than its relatives. ? Tasmannia cordata provides an unusual example of angiosperm liana evolution uncoupled from xylem conduit gigantism, as well as high plasticity and cell type diversity in vascular development. Because T. cordata lacks vessels, our results suggest that a key limitation for a vessel-less liana is that strong and low hydraulically conductive wood is required to meet the mechanical demands of lianescence.  相似文献   

16.
Reproductive strategies can be associated with ecological specialization and generalization. Clonal plants produce lineages adapted to the maternal habitat that can lead to specialization. However, clonal plants frequently display high phenotypic plasticity (e.g. clonal foraging for resources), factors linked to ecological generalization. Alternately, sexual reproduction can be associated with generalization via increasing genetic variation or specialization through rapid adaptive evolution. Moreover, specializing to high or low quality habitats can determine how phenotypic plasticity is expressed in plants. The specialization hypothesis predicts that specialization to good environments results in high performance trait plasticity and specialization to bad environments results in low performance trait plasticity. The interplay between reproductive strategies, phenotypic plasticity, and ecological specialization is important for understanding how plants adapt to variable environments. However, we currently have a poor understanding of these relationships. In this study, we addressed following questions: 1) Is there a relationship between phenotypic plasticity, specialization, and reproductive strategies in plants? 2) Do good habitat specialists express greater performance trait plasticity than bad habitat specialists? We searched the literature for studies examining plasticity for performance traits and functional traits in clonal and non-clonal plant species from different habitat types. We found that non-clonal (obligate sexual) plants expressed greater performance trait plasticity and functional trait plasticity than clonal plants. That is, non-clonal plants exhibited a specialist strategy where they perform well only in a limited range of habitats. Clonal plants expressed less performance loss across habitats and a more generalist strategy. In addition, specialization to good habitats did not result in greater performance trait plasticity. This result was contrary to the predictions of the specialization hypothesis. Overall, reproductive strategies are associated with ecological specialization or generalization through phenotypic plasticity. While specialization is common in plant populations, the evolution of specialization does not control the nature of phenotypic plasticity as predicted under the specialization hypothesis.  相似文献   

17.
The effect of freezing on stem xylem hydraulic conductivity and leaf chlorophyll a fluorescence was measured in 12 tree and shrub species from a treeline heath in Tasmania, Australia. Reduction in stem hydraulic conductivity after a single freeze-thaw cycle was minimal in conifers and the vessel-less angiosperm species Tasmannia lanceolata (Winteraceae), whereas mean loss of conductivity in vessel-forming angiosperms fell in the range 17-83%. A positive linear relationship was observed between percentage loss of hydraulic conductivity by freeze-thaw and the average conduit diameter across all 12 species. This supports the hypothesis that large-diameter vascular conduits have a greater likelihood of freeze-thaw cavitation because larger bubbles are produced, which are more likely to expand under tension. Leaf frost tolerances, as measured by a 50% loss of maximum PSII quantum yield, varied from -6 to -13°C, indicating that these species were more frost-sensitive than plants from northern hemisphere temperate forest and treeline communities. There was no evidence of a relationship between frost tolerance of leaves and the resilience of stem water transport to freezing, suggesting that low temperature survival and the resistance of stem water transport to freezing are independently evolving traits. The results of this study bear on the ecological importance of stem freezing in the southern hemisphere treeline zones.  相似文献   

18.
The purpose of this study was to investigate the xylem anatomy and hydraulic characteristics of the mangrove Laguncularia racemosa grown under contrasting salinities. The study addressed the hypothesis that, at high salinity, water transport capacity may decrease in association with higher water use efficiency. Plants were grown in media to which 0, 15 and 30 NaCl was added. Vessel density and diameter were determined in transverse sections of stem and midrib leaves in terminal shoots, and hydraulic parameters were measured. In stems, the vessel density increased with salinity, while the anatomical diameter (d(a)) and hydraulic diameter (d(h)) declined; in leaves, these parameters remained unchanged with salinity. Huber value and hydraulic and specific conductivities decreased with salinity. Leaf blade resistance increased with salinity and represented the largest fraction of twig resistance. Xylem anatomy and leaf tissue of L. racemosa appeared to be modulated by salinity, which led to a coordinated decline in hydraulic properties as salinity increased. Therefore, these structural changes would reflect functional water use characteristics of leaves under salinity.  相似文献   

19.
The general wood structure, vessel size and distribution along the stem xylem radius and in petioles were studied in Laurus azorica trees living in a Tenerife laurel forest. The fractions of volume occupied by dry matter, water and air in percentage of wood fresh volume were also studied. The wood showed a diffuse-porous structure, with solitary vessels or vessels somewhat clustered in small radially oriented groups. Vessels had a diameter ranging from 20 to 130 µm. This diameter was minimal close to the pith, increased more than 2-fold with age, and reached its maximum width close to the cambium. Vessel density decreased from 36 vessels mm-2 near the pith to about 13 vessels mm-2 near the cambium. Accordingly, the lumen area was small in young xylem close to the pith (0.0015 mm2), reaching a value 5 times larger (0.007 mm2) near the cambium than in the centre of the stem. Lumen area of vessels in petioles was about 1.5% of petiole cross-sectional area and thus much lower than in stems. Mean hydraulic diameter of these vessels was about 20 µm, and mean vessel density about 136 per petiole. There were only small differences in proportions of dry matter, water and air along stem radius. The relevance of each one of these fractions in the wood is discussed as evidence of the possible existence of a number of embolized vessels dispersed in the total functional cross-sectional area of the xylem.  相似文献   

20.
In most gymnosperms, resistance to the flow of water per unit path length through the main stem is less than that of lateral branches. Using branches, leaders, and branches that have replaced missing leaders ('branch-leaders'), we tested the hypothesis that branch-leaders are at a hydraulic disadvantage. Reduced xylem transport efficiency in branch-leaders relative to leaders could be expected both because of an initial disparity in hydraulic capacity, and because of the relatively impermeable compression wood formed in branch-leaders during shoot reorientation. By subsampling branch-leaders, we also tested the hypothesis that opposite wood (formed directly opposite compression wood) is more permeable than normal wood, and could, therefore, compensate for the presence of compression wood at the whole shoot level. Fifteen months after leader removal, branch-leaders were intermediate between branches and leaders in their ability to supply foliage with water, suggesting a transition towards leader status that was not yet complete. Increased hydraulic capacity in branch-leaders was the result of increased xylem cross-sectional area per unit foliage, rather than an increase in permeability. Among subsampled wood types from basal branch-leader segments, opposite wood was significantly less permeable than normal wood, suggesting that it does not compensate for the presence of compression wood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号