首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Many candidates have been proposed as zona pellucida-binding proteins. Without precluding a role for any of those candidates, we focused on mouse sperm protein ZP3R/sp56, which is localized in the acrosomal matrix. The objective of this study was to analyze the role of ZP3R/sp56 in mouse fertilization. We expressed recombinant ZP3R/sp56 as a secreted protein in HEK293 cells and purified it from serum-free, conditioned medium. In the presence of reducing agents, the recombinant ZP3R/sp56 exhibited a molecular weight similar to that observed for the native ZP3R/sp56. Reminiscent of the native protein, recombinant ZP3R/sp56 formed a high molecular weight, disulfide cross-linked oligomer consisting of six or more monomers under non-reducing conditions. Recombinant ZP3R/sp56 bound to the zona pellucida of unfertilized eggs but not to 2-cell embryos, indicating that the changes that take place in the zona pellucida at fertilization affected the interaction of this protein with the zona pellucida. The extent of in vitro fertilization was reduced in a dose-dependent manner when unfertilized eggs were preincubated with recombinant ZP3R/sp56 (74% drop at the maximum concentrations assayed). Eggs incubated with the recombinant protein showed an absence of or very few sperm in the perivitelline space, suggesting that the reduction in the fertilization rate is caused by the inhibition of sperm binding and/or penetration through the zona pellucida. These results indicate that sperm ZP3R/sp56 is important for sperm-zona interactions during fertilization and support the concept that the acrosomal matrix plays an essential role in mediating the binding of sperm to the zona pellucida.  相似文献   

2.
Mammalian fertilization involves interactions of sperm surface receptors with ligands of the zona pellucida, an extracellular matrix surrounding the ovulated egg. In mouse, the zona is composed of three glycoproteins. One of them, ZP3, participates in primary sperm binding and in the subsequent triggering of the sperm's acrosome reaction. Considerable evidence suggests that carbohydrate determinants of ZP3 are responsible for binding to sperm and may be important for acrosomal exocytosis. A full-length cDNA encoding mouse ZP3 was assembled and cloned into expression vectors that contained either a cytomegalovirus (CMV) or a vaccinia (P11) promoter. Mouse L-929 cells were stably transformed with the pZP3-CMV constructs, and green monkey CV-1 cells were infected with a recombinant vaccinia virus containing ZP3. rZP3 was affinity purified from culture media and detected on Western blots as a single 60- to 70-kDa band, which differed in molecular weight from native ZP3 (mean, 83 kDa). Nevertheless, rZP3 is biologically active. rZP3 decreases sperm-zona binding with a potency equivalent to that of native zona pellucida and, like native ZP3, rZP3 triggers acrosomal exocytosis in capacitated mouse sperm. Thus, rZP3 isolated from both rodent and primate cells appears to contain those carbohydrate and protein structures necessary for ZP3's dual role in fertilization.  相似文献   

3.
For mammalian organism, fertilization begins with species-specific recognition between sperm and egg, a process depending upon egg zona pellucida glycoproteins and putative sperm interacting protein(s). In mouse, zona pellucida glycoprotein ZP3 is believed to be the primary receptor for sperm and inducer of sperm acrosomal reaction, and its function has been attributed to the specific O-linked oligosaccharides attached to polypeptide backbone. While lots of reports have focused on the role of ZP3's oligosaccharides in fertilization, there are few concerning its polypeptide backbone. To investigate whether mZP3 polypeptide backbone is involved in sperm-egg recognition, three partially overlapping cDNA fragments, together covering entire mouse ZP3, were cloned, expressed and purified under denaturing condition. Although all three refolded proteins possess native conformation, only one derived from the carboxyl terminal showed inhibitory effect to the sperm-zona binding during in vitro fertilization. This phenomenon could not be explained by enhanced acrosomal exocytosis rate, in that the acrosomal reaction assay demonstrated its inability to induce the acrosomal reaction. Our results suggest that the carboxyl terminal of mZP3 polypeptide backbone interacts with sperm and such interaction plays a significant role in sperm-zona binding, ultimately successful fertilization.  相似文献   

4.
During mammalian fertilization, sperm adhere to the extracellular coat of the egg, or zona pellucida, in a species-specific manner. In mouse, evidence suggests that sperm recognize and bind to specific oligosaccharide ligands within the zona pellucida glycoprotein, ZP3, via beta1,4-galactosyltransferase I (GalT I), a lectin-like receptor on the sperm surface. Although in vitro experiments using isolated gametes lend support to this model, recent in vivo studies of genetically altered mice question whether ZP3 and/or GalT I are solely responsible for sperm-egg binding. In this regard, sperm from GalT I-null mice bind poorly to ZP3 and fail to undergo a zona-induced acrosome reaction; however, they still bind to the ovulated egg coat in vitro. In this report, we characterize a novel ZP3- and GalT I-independent mechanism for sperm adhesion to the egg coat. Results show that the ovulated zona pellucida contains at least two distinct ligands for sperm binding: a ZP3-independent ligand that is peripherally associated with the egg coat and facilitates gamete adhesion; and a ZP3-dependent ligand that is present in the insoluble zona matrix and is recognized by sperm GalT I to facilitate acrosomal exocytosis. The ZP3-independent ligand is not a result of contamination by egg cortical granules, nor is it the mouse homolog of oviduct-specific glycoprotein. It behaves as a 250 kDa, WGA-reactive glycoprotein with a basic isoelectric point, distinguishing it from the acidic glycoproteins that form the insoluble matrix of the egg coat. When eluted from isoelectric focusing gels, the acidic matrix glycoproteins possess sperm-binding activity for wild-type sperm, but not for GalT I-null sperm, whereas the basic glycoprotein retains sperm-binding activity for both wild-type and GalT I-null sperm. Thus, GalT I-null sperm are able to resolve gamete recognition into at least two distinct binding events, leading to the characterization of a novel, peripherally associated, sperm-binding ligand on the ovulated zona pellucida.  相似文献   

5.
At fertilization, spermatozoa bind to the zona pellucida (ZP1, ZP2, ZP3) surrounding ovulated mouse eggs, undergo acrosome exocytosis and penetrate the zona matrix before gamete fusion. Following fertilization, ZP2 is proteolytically cleaved and sperm no longer bind to embryos. We assessed Acr3-EGFP sperm binding to wild-type and huZP2 rescue eggs in which human ZP2 replaces mouse ZP2 but remains uncleaved after fertilization. The observed de novo binding of Acr3-EGFP sperm to embryos derived from huZP2 rescue mice supports a ;zona scaffold' model of sperm-egg recognition in which intact ZP2 dictates a three-dimensional structure supportive of sperm binding, independent of fertilization and cortical granule exocytosis. Surprisingly, the acrosomes of the bound sperm remain intact for at least 24 hours in the presence of uncleaved human ZP2 regardless of whether sperm are added before or after fertilization. The persistence of intact acrosomes indicates that sperm binding to the zona pellucida is not sufficient to induce acrosome exocytosis. A filter penetration assay suggests an alternative mechanism in which penetration into the zona matrix initiates a mechanosensory signal transduction necessary to trigger the acrosome reaction.  相似文献   

6.
Fertilization requires taxon-specific gamete recognition, and human sperm do not bind to zonae pellucidae (ZP1-3) surrounding mouse eggs. Using transgenesis to replace endogenous mouse proteins with human homologues, gain-of-function sperm-binding assays were established to evaluate human gamete recognition. Human sperm bound only to zonae pellucidae containing human ZP2, either alone or coexpressed with other human zona proteins. Binding to the humanized matrix was a dominant effect that resulted in human sperm penetration of the zona pellucida and accumulation in the perivitelline space, where they were unable to fuse with mouse eggs. Using recombinant peptides, the site of gamete recognition was located to a defined domain in the N terminus of ZP2. These results provide experimental evidence for the role of ZP2 in mediating sperm binding to the zona pellucida and support a model in which human sperm-egg recognition is dependent on an N-terminal domain of ZP2, which is degraded after fertilization to provide a definitive block to polyspermy.  相似文献   

7.
Although details of the molecular mechanism are not yet clear, considerable evidence suggests that the egg-specific extracellular matrix component ZP3 regulates an essential event of sperm function, the acrosome reaction. Spatial control of this exocytotic event appears to be exerted by immobilization of the triggering ligand, ZP3, in the zona pellucida matrix surrounding the egg. Our data suggest that the signal transduction pathway in sperm activated by this ligand involves highly conserved components that are involved in many other eukaryotic signalling events. Recent experiments indicate that the murine zona pellucida glycoprotein ZP3 regulates acrosomal exocytosis by aggregating its corresponding receptors (ZP3-Rs) located in the mouse sperm plasma membrane. In other experiments, we have identified a putative ZP3-R of mouse sperm with Mr 95,000. Indirect immunofluorescence localizes this ZP3-R, termed p95, to the acrosomal region of the mouse sperm head, which is the anticipated location for ZP3-Rs. Membrane fractionation studies indicate that p95 cofractionates with a plasma membrane-enriched preparation from sperm that contains zona pellucida-receptor activity. In addition to its role as a ZP3-R, p95 also serves as a substrate for a tyrosine kinase in response to zona pellucida binding. On the basis of the data presented here, and borrowing heavily from findings for other signalling systems, we have formulated two testable hypotheses that are compatible with the available data: either p95 is itself a protein tyrosine kinase receptor, or p95 serves as a ZP3 receptor and is separate from a protein tyrosine kinase that is activated during gamete interaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
《The Journal of cell biology》1986,102(4):1363-1371
The extracellular coat, or zona pellucida, of mammalian eggs contains species-specific receptors to which sperm bind as a prelude to fertilization. In mice, ZP3, one of only three zona pellucida glycoproteins, serves as sperm receptor. Acrosome-intact, but not acrosome-reacted, mouse sperm recognize and interact with specific O- linked oligosaccharides of ZP3 resulting in sperm-egg binding. Binding, in turn, causes sperm to undergo the acrosome reaction; a membrane fusion event that results in loss of plasma membrane at the anterior region of the head and exposure of inner acrosomal membrane with its associated acrosomal contents. Bound, acrosome-reacted sperm are able to penetrate the zona pellucida and fuse with the egg's plasma membrane (fertilization). In the present report, we examined binding of radioiodinated, purified, egg ZP3 to both acrosome intact and acrosome reacted sperm by whole-mount autoradiography. Silver grains due to bound 125I-ZP3 were found localized to the acrosomal cap region of heads of acrosome-reacted sperm. Under the same conditions, 125I-fetuin bound at only bacKground levels to heads of both acrosome-intact and - reacted sperm, and 125I-ZP2, another zona pellucida glycoprotein, bound preferentially to acrosome-reacted sperm. These results provide visual evidence that ZP3 binds preferentially and specifically to heads of acrosome intact sperm; properties expected of the mouse egg's sperm receptor.  相似文献   

9.
During mammalian fertilization sperm bind to the egg's zona pellucida (ZP) after undergoing capacitation. Capacitated mouse sperm bind to mZP3 (one of three ZP glycoproteins), undergo the acrosome reaction, penetrate the ZP, and fuse with egg plasma membrane. Sperm protein 56 (sp56), a member of the C3/C4 superfamily of binding proteins, was identified nearly 20 years ago as a binding partner for mZP3 by photoaffinity cross‐linking of acrosome‐intact sperm. However, subsequent research revealed that sp56 is a component of the sperm's acrosomal matrix and, for sperm with an intact acrosome, should be unavailable for binding to mZP3. Recently, this dilemma was resolved when it was recognized that some acrosomal matrix (AM) proteins, including sp56, are released to the sperm surface during capacitation. This may explain why uncapacitated mammalian sperm are unable to bind to the unfertilized egg ZP.  相似文献   

10.
All vertebrates have an egg shell that surrounds ovulated eggs and plays critical roles in gamete recognition. This extracellular matrix is known as the zona pellucida in eutherian mammals and consists of three glycoproteins, ZP1, ZP2 and ZP3 in the mouse. To investigate the role of ZP1 in fertilization and early development, we have used targeted mutagenesis in embryonic stem cells to create mouse lines (Zp1(tm/tm)) lacking ZP1. Although a zona pellucida composed of ZP2 and ZP3 was formed around growing Zp1(tm/tm) oocytes, the matrix was more loosely organized than zonae around normal oocytes. In some Zp1 null follicles, this structural abnormality resulted in ectopic clusters of granulosa cells, lodged between the zona matrix and the oolemma, that perturbed normal folliculogenesis. Comparable numbers of eggs were ovulated from Zp1 null females and normal females following hormonal stimulation. However, after mating with males, fewer two-cell embryos were recovered from Zp1 null females, and their litters were significantly smaller than those produced by normal mice. Therefore, although mouse ZP1 is not essential for sperm binding or fertilization, it is required for the structural integrity of the zona pellucida to minimize precocious hatching and reduced fecundity.  相似文献   

11.
During fertilization in mice, acrosome-intact sperm bind via plasma membrane overlying their head to a glycoprotein, called ZP3, present in the egg extracellular coat or zona pellucida. Bound sperm then undergo the acrosome reaction, which results in exposure of inner acrosomal membrane, penetrate through the zona pellucida, and fuse with egg plasma membrane. Thus, in the normal course of events, acrosome-reacted sperm must remain bound to eggs, despite loss of plasma membrane from the anterior region of the head and exposure of inner acrosomal membrane. Here, we examined maintenance of binding of sperm to the zona pellucida following the acrosome reaction. We found that polyclonal antisera and monoclonal antibodies directed against ZP2, another zona pellucida glycoprotein, did not affect initial binding of sperm to eggs, but inhibited maintenance of binding of sperm that had undergone the acrosome reaction on the zona pellucida. On the other hand, polyclonal antisera and monoclonal antibodies directed against ZP3 did not affect either initial binding of acrosome-intact sperm to eggs or maintenance of binding following the acrosome reaction. We also found that soybean trypsin inhibitor, a protein reported to prevent binding of mouse sperm to eggs, did not affect initial binding of sperm to eggs, but, like antibodies directed against ZP2, inhibited maintenance of binding of sperm that had undergone the acrosome reaction on the zona pellucida. These and other observations suggest that ZP2 serves as a secondary receptor for sperm during the fertilization process in mice and that maintenance of binding of acrosome-reacted sperm to eggs may involve a sperm, trypsin-like proteinase.  相似文献   

12.
After liberation from the seminiferous epithelium, the spermatozoa (SPZ), undergo in the epididymis a serie of functional and metabolic modifications resulting the capacity to ensure fertilization. Fertilization is the fundamental process in sexual reproduction as it permits the initiation and the formation of a new being by the fusion of two germinal cells: the male gamete (spermatozoa) and the female gamete (oocyte). For fertilization to occur the SPZ must recognize the zona pellucida (ZP), bind to it, penetrate it and fuse with the oocyte plasma membrane. Sperm binding to the ZP is an early, crucial event leading to fertilization and pre-embryo development. In mammals, sperm-ZP binding follows a serie of steps that occur in a well-defined chronological order: a) A loose association between SPZ and ZP referred to as «attachment». This shortlived interaction is heterospecific. b) Attachment is followed by a more distinct and persistent association of SPZ with ZP, thus called «binding». This sperm-zona interaction is species-specific, irreversible and mediated by complementary receptors present on the SPZ head and the ZP. c) The bound SPZ then undergoes the acrosome reaction (AR). Which involves fusion and vesiculation of the SPZ outer acrosomal membrane and plasma membrane leading to the release of acrosomal contents and the exposure of the inner acrosomal membrane. This AR is essential for SPZ passage through the ZP and to access to the oocyte plasma membrane where gamete fusion occurs.  相似文献   

13.
The binding of the spermatozoon to the zona pellucida is a species-specific phenomenon. We have previously shown that the binding of hamster sperm to the homologous zona pellucida involves a sperm 26-kDa glycoprotein, the P26h, originating in the epididymis. In order to establish to what extent this sperm protein is involved in the species-specific recognition of the egg's extracellular coat, we have compared the inhibitory properties of anti-P26h antibodies in a sperm-zona pellucida assay using hamster and mouse gametes. Anti-P26h IgGs inhibit, in a dose-dependent manner, gamete interactions in both species, although in a less efficient manner in the mouse than in the hamster. While anti-26kDa Fab fragments are as efficient as the intact IgG to inhibit hamster sperm-zona pellucida binding, they have no effect on mouse gamete interaction. ELISA, Western blot, and immunohistochemical experiments have been performed in order to characterize the mouse antigen(s) recognized by the anti-P26h antiserum. ELISA and Western blots showed that this antiserum recognized two proteins on mouse spermatozoa that are less reactive than the hamster P26h. These antigens are localized in the acrosomal region of epididymal spermatozoa of both species. These results indicate that the hamster P26H involved in zona pellucida interaction has certain unique epitopes, while others are common to the sperm of both species. © 1995 Wiley-Liss, Inc.  相似文献   

14.
The zona pellucida is an extracellular coat that surrounds mammalian eggs and early embryos. This insoluble matrix separates germ from somatic cells during folliculogenesis and plays critical roles during fertilization and early development. The mouse and human zona pellucida contain three glycoproteins (ZP1 or ZPB, ZP2, ZP3), the primary structures of which have been deduced by molecular cloning. Targeted mutagenesis of endogenous mouse genes and transgenesis with human homologues provide models to investigate the roles of individual zona components. Collectively, the genetic data indicate that no single mouse zona pellucida protein is obligatory for taxon-specific sperm binding and that two human proteins are not sufficient to support human sperm binding. An observed post-fertilization persistence of mouse sperm binding to "humanized" zona pellucida correlates with uncleaved ZP2. These observations are consistent with a model for sperm binding in which the supramolecular structure of the zona pellucida necessary for sperm binding is modulated by the cleavage status of ZP2.  相似文献   

15.
There is considerable evidence that mouse fertilization requires the binding of sperm to two of the three glycoproteins that form the zona pellucida (ZP), ZP3 and ZP2. Despite the biologic importance of this binding, no one has demonstrated that sperm express separate, saturable, and specific binding sites for ZP3 and for ZP2. Such a demonstration is a prerequisite for defining the distribution, numbers, affinities, and regulation of function of ZP3 and ZP2 binding sites on sperm. The experiments reported herein used fluorochrome-labeled ZP3 and ZP2 and quantitative image analysis to characterize the saturable binding of ZP3 and ZP2 to distinct sites on living, capacitated, acrosome-intact mouse sperm. Approximately 20% of the ZP3 binding sites were found over the acrosomal cap, and the remaining sites were located over the postacrosomal region of the head. In contrast, ZP2 binding sites were detected only over the postacrosomal region. Saturation analysis estimated numbers and affinities of the binding sites for ZP3 (B(max) approximately 185 000 sites per sperm; K(d) approximately 67 nM) and ZP2 (B(max) approximately 500 000 sites per sperm; K(d) approximately 200 nM). Use of unlabeled ZP3, ZP2, and ZP1 as competitive inhibitors of the binding of fluorochrome-labeled ZP3 and ZP2 demonstrated that ZP3 and ZP2 bound specifically to their respective sites on sperm. Finally, we demonstrate that extracellular calcium as well as capacitation and maturation of sperm are required for these sites to bind their respective ligands.  相似文献   

16.
Han L  Monné M  Okumura H  Schwend T  Cherry AL  Flot D  Matsuda T  Jovine L 《Cell》2010,143(3):404-415
ZP3, a major component of the zona pellucida (ZP) matrix coating mammalian eggs, is essential for fertilization by acting as sperm receptor. By retaining a propeptide that contains a polymerization-blocking external hydrophobic patch (EHP), we determined the crystal structure of an avian homolog of ZP3 at 2.0 ? resolution. The structure unveils the fold of a complete ZP domain module in a homodimeric arrangement required for secretion and reveals how EHP prevents premature incorporation of ZP3 into the ZP. This suggests mechanisms underlying polymerization and how local structural differences, reflected by alternative disulfide patterns, control the specificity of ZP subunit interaction. Close relative positioning of a conserved O-glycan important for sperm binding and the hypervariable, positively selected C-terminal region of ZP3 suggests a concerted role in the regulation of species-restricted gamete recognition. Alternative conformations of the area around the O-glycan indicate how sperm binding could trigger downstream events via intramolecular signaling.  相似文献   

17.
《The Journal of cell biology》1994,126(6):1573-1583
Sperm surface beta 1,4-galactosyltransferase (GalTase) mediates fertilization in mice by binding to specific O-linked oligosaccharide ligands on the egg coat glycoprotein ZP3. Before binding the egg, sperm GalTase is masked by epididymally derived glycosides that are shed from the sperm surface during capacitation. After binding the egg, sperm- bound oligosaccharides on ZP3 induce the acrosome reaction by receptor aggregation, presumably involving GalTase. In this study, we asked how increasing the levels of sperm surface GalTase would affect sperm-egg interactions using transgenic mice that overexpress GalTase under the control of a heterologous promoter. GalTase expression was elevated in many tissues in adult transgenic animals, including testis. Sperm from transgenic males had approximately six times the wild-type level of surface GalTase protein, which was localized appropriately on the sperm head as revealed by indirect immunofluorescence. As expected, sperm from transgenic mice bound more radiolabeled ZP3 than did wild-type sperm. However, sperm from transgenic animals were relatively unable to bind eggs, as compared to sperm from wild-type animals. The mechanistic basis for the reduced egg-binding ability of transgenic sperm was attributed to alterations in two GalTase-dependent events. First, transgenic sperm that overexpress surface GalTase bound more epididymal glycoside substrates than did sperm from wild-type mice, thus masking GalTase and preventing it from interacting with its zona pellucida ligand. Second, those sperm from transgenic mice that were able to bind the zona pellucida were hypersensitive to ZP3, such that they underwent precocious acrosome reactions and bound to eggs more tenuously than did wild-type sperm. These results demonstrate that sperm-egg binding requires an optimal, rather than maximal, level of surface GalTase expression, since increasing this level decreases sperm reproductive efficiency both before and after egg binding. Although sperm GalTase is required for fertilization by serving as a receptor for the egg zona pellucida, excess surface GalTase is counterproductive to successful sperm-egg binding.  相似文献   

18.
The binding of sperm to the zona pellucida is an integral part of the mammalian fertilization process, investigated most extensively in the mouse. Several sperm receptors for the murine zona pellucida have been studied (Snell WJ, White JM. 1996. Cell 85:629-637; Wassarman PM. 1999. Cell 96:175-183), but the most compelling evidence exists for beta-1,4-galactosyltransferase (GalTase). Considering that GalTase is present on the surface of porcine sperm (Larson JL, Miller DJ. 1997. Biol Reprod 57:442-453), we investigated the role of GalTase in porcine sperm-zona binding. Sperm surface GalTase catalyzed the addition of uridine diphosphate-[(3)H]galactose to the 55 kDa group of the porcine zona pellucida proteins implicated in sperm binding, demonstrating that GalTase binds the porcine zona. The functional importance of GalTase-zona pellucida binding was tested. Addition of uridine diphosphate galactose, a substrate that completes the GalTase enzymatic reaction and disrupts GalTase mediated adhesion, had no effect on binding of sperm to porcine oocytes. Furthermore, removal of the GalTase zona ligand by incubation of oocytes with N-acetylglucosaminidase had no effect on binding of sperm to oocytes. These results suggest that GalTase is not necessary for sperm to bind to the zona pellucida. Digestion of isolated porcine zona proteins with N-acetylglucosaminidase did not affect the biological activity of soluble porcine zona proteins in competitive sperm-zona binding assays, suggesting that GalTase alone is not sufficient to mediate sperm-zona attachment. From these results, it appears that, although GalTase is able to bind porcine zona proteins, its function in porcine sperm-zona binding is not necessary or sufficient for sperm-zona binding. This supports the contention that porcine sperm-zona binding requires redundant gamete receptors.  相似文献   

19.
Epididymal protein CRISP1 participates in rat and mouse gamete fusion through its interaction with complementary sites on the egg surface. Based on in vivo observations, in the present study we investigated the possibility that CRISP1 plays an additional role in the sperm-zona pellucida (ZP) interaction that precedes gamete fusion. In vitro fertilization experiments using zona-intact rat and mouse eggs indicated that the presence of either an antibody against rat CRISP1 (anti-CRISP1) or rat native CRISP1 (rCRISP1) during gamete co-incubation produced a significant decrease in the percentage of fertilized eggs. However, differently to that expected for a protein involved in gamete fusion, no accumulation of perivitelline sperm was observed, suggesting that the inhibitions occurred at the sperm-ZP interaction level. Bacterially expressed recombinant CRISP1 (recCRISP1) also significantly inhibited egg fertilization. In this case, however, an increase in the number of perivitelline sperm was observed. Subsequent experiments evaluating the effect of anti-CRISP1 or rCRISP1 on the number of sperm bound per egg indicated that the protein is involved in the initial step of sperm-ZP binding. In agreement with these functional studies, indirect immunofluorescence experiments revealed that although rCRISP1 is capable of binding to both the ZP and the oolema, recCRISP1 only binds to the egg surface. The finding that deglycosylated rCRISP1 behaves as the untreated protein, whereas the heat-denatured rCRISP1 associated only with the oolema, indicates that the protein ZP-binding ability resides in the conformation rather than in the glycosydic portion of the molecule. The interaction between rCRISP1 and the ZP reproduces the sperm-ZP-binding behavior, as judged by the failure of the protein to interact with the ZP of fertilized eggs. Together, these results support the idea that CRISP1 participates not only in sperm-egg fusion but also in the prior stage of sperm-ZP interaction.  相似文献   

20.
The zona pellucida surrounding ovulated mouse eggs contains three glycoproteins, two of which (ZP2 and ZP3) are reported sperm receptors. After fertilization, the zona pellucida is modified ad minimus by cleavage of ZP2, and sperm no longer bind. Crosstaxa sperm binding is limited among mammals, and human sperm do not bind to mouse eggs. Using transgenesis to replace mouse ZP2 and/or ZP3 with human homologs, mouse lines with human-mouse chimeric zonae pellucidae have been established. Unexpectedly, mouse, but not human, sperm bind to huZP2 and huZP2/huZP3 rescue eggs, eggs fertilized in vitro with mouse sperm progress to two-cell embryos, and rescue mice are fertile. Also unanticipated, human ZP2 remains uncleaved after fertilization, and mouse sperm continue to bind early rescue embryos. These observations are consistent with a model in which the supramolecular structure of the zona pellucida necessary for sperm binding is modulated by the cleavage status of ZP2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号