首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Thiazolidinediones (TZDs) are a commonly prescribed class of insulin sensitizing drugs that increase fatty acid re-esterification, in part through the induction of pyruvate dehydrogenase kinase 4 (PDK4). Owing to the deleterious side effects of TZDs the identification of alternative approaches with which to increase PDK4 is essential. We recently demonstrated that epinephrine increases PDK4 expression through p38 and peroxisome proliferator-activated receptor γ (PPARγ) dependent pathways in cultured adipose tissue from lean rats. The purpose of this study was to determine whether acute epinephrine treatment, in vivo, can induce PDK4 mRNA expression in adipose tissue from obese, insulin resistant rats and if the reputed signaling pathways mediating this effect are intact. To this end we fed male Wistar rats a chow or high-fat diet (HFD, 60% kcals from fat) for 6 weeks. Rats were then injected with a weight-adjusted bolus of epinephrine and tissue harvested. Despite a blunted activation of p38 epinephrine increased PDK4 mRNA expression to a similar extent in adipose tissue from chow and HFD rats. 5'AMP-activated protein kinase (AMPK) signaling was not altered by the HFD. Similar to epinephrine, 2 h of swim exercise, an intervention that increases plasma catecholamines, also increased PDK4 mRNA levels to a similar extent in adipose tissue from both lean and HFD rats. Collectively these findings demonstrate, for the first time, that acute elevations in catecholamines induce PDK4 in adipose tissue from HFD rats, that this effect is likely independent of p38, a reputed mediator of PDK4 expression and that exercise, similar to TZDs can induce PDK4 in adipose tissue from obese, insulin resistant rats.  相似文献   

2.
Fiber type specificity for expression of all three rat skeletal muscle pyruvate dehydrogenase kinase (PDK) isoforms (PDK1, 2, and 4) was determined in fed and 24-h fasted rats. PDK activity and isoform protein and mRNA contents were determined in white gastrocnemius (WG; fast-twitch glycolytic), red gastrocnemius (RG; fast-twitch oxidative), and soleus (Sol; slow-twitch oxidative) muscles. PDK activity was lower in WG compared with oxidative muscles (RG, Sol) in both fed and fasted rats. PDK activities from fed muscles were 0.12 +/- 0.04, 0.30 +/- 0.01, and 0.36 +/- 0.08 min(-1) in WG, Sol, and RG, respectively, and increased in fasted muscles (0.36 +/- 0.09, 0.68 +/- 0.18, and 0.80 +/- 0.14 min(-1)). This correlated with increased PDK4 protein and to a lesser extent with PDK4 mRNA. PDK2 protein was not different between fiber types in fed or fasted rats, but PDK2 mRNA content was twofold greater in RG from fasted rats compared with fed rats. PDK1 was unaltered by fasting in all muscle types at both the protein and mRNA level, but in both fed and fasted rats had much greater protein and mRNA content in the oxidative vs. glycolytic muscles. In conclusion, PDK activity and PDK1 and 4 protein and mRNA were lower in glycolytic vs. oxidative muscles from fed and fasted rats. Fasting for 24 h induced a two- to threefold increase in PDK activity that was mainly due to increases in PDK4 protein and mRNA. PDK1 and 2 protein and mRNA were generally unaltered by fasting in all fiber types, except for increased PDK2 mRNA in the fast oxidative fibers. Because the PDK isoforms vary greatly in their kinetic properties, their relative proportions in the three fiber types at any given time during fasting could significantly alter the acute regulation of the pyruvate dehydrogenase complex.  相似文献   

3.
Genome-wide association studies (GWAS) are a powerful tool for revealing genes associated with common human obesity. New loci associated with obesity have recently been reported, but their function and metabolic implications remain to be elucidated. In order to begin identifying the role of some of these obesity-related loci, the closest genes to the polymorphism of each locus were selected and their expression was compared in the hypothalamus, adipose tissue, liver, soleus muscle, and extensor digitorum longus muscle (EDL) of Long-Evans rats maintained on chow or a high-fat diet (HFD) for 6 weeks. From a total of 19 genes analyzed, seven genes (ETV5, FTO, GNPDA2, KCTD15, TMEM18, MC4R, and SH2B1) were down-regulated in the hypothalamus of HFD compared to chow-fed rats. In adipose tissue of rats fed on HFD, the mRNA levels of BCDIN3, KCTD15, and SULT1A1 were down-regulated, whereas those of MTCH2, PTER, and TUFM were up-regulated. In the liver, three genes were up-regulated (PTER, SULT1A1, and TUFM) in HFD relative to chow-fed rats, and TMEM18 was down-regulated. Finally, in soleus muscle of HFD-fed rats, BCDIN3, BDNF, and TMEM18 were down-regulated, and in the EDL muscle SH2B1 and TUFM were up-regulated. mRNA levels in the hypothalamus were compared between fed and fasted states, and only KCTD15 was down-regulated during fasting when fed a chow diet. In conclusion, novel genes found to be associated with obesity are regulated by a HFD and the mRNA levels of KCTD15 is dependent on the nutritional status. These results suggest a potential role of these genes in the regulation of energy balance.  相似文献   

4.
LXR (liver X receptor) and PPARα (peroxisome-proliferator-activated receptor α) are nuclear receptors that control the expression of genes involved in glucose and lipid homoeostasis. Using wild-type and PPARα-null mice fed on an LXR-agonist-supplemented diet, the present study analysed the impact of pharmacological LXR activation on the expression of metabolically important genes in skeletal muscle, testing the hypothesis that LXR activation can modulate PPAR action in skeletal muscle in a manner dependent on nutritional status. In the fed state, LXR activation promoted a gene profile favouring lipid storage and glucose oxidation, increasing SCD1 (stearoyl-CoA desaturase 1) expression and down-regulating PGC-1α (PPARγ co-activator-1α) and PDK4 (pyruvate dehydrogenase kinase 4) expression. PPARα deficiency enhanced LXR stimulation of SCD1 expression, and facilitated elevated SREBP-1 (sterol-regulatory-element-binding protein-1) expression. However, LXR-mediated down-regulation of PGC-1α and PDK4 was opposed and reversed by PPARα deficiency. During fasting, prior LXR activation augmented PPARα signalling to heighten FA (fatty acid) oxidation and decrease glucose oxidation by augmenting fasting-induced up-regulation of PGC-1α and PDK4 expression, effects opposed by PPARα deficiency. Starvation-induced down-regulation of SCD1 expression was opposed by antecedent LXR activation in wild-type mice, an effect enhanced further by PPARα deficiency, which may elicit increased channelling of FA into triacylglycerol to limit lipotoxicity. Our results also identified potential regulatory links between the protein deacetylases SIRT1 (sirtuin 1) and SIRT3 and PDK4 expression in muscle from fasted mice, with a requirement for PPARα. In summary, we therefore propose that a LXR-PPARα signalling axis acts as a metabolostatic regulatory mechanism to optimize substrate selection and disposition in skeletal muscle according to metabolic requirement.  相似文献   

5.
Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) is a master regulator of mitochondrial biogenesis and is controlled, at least in part, through AMP-activated protein kinase and p38-dependent pathways. There is evidence demonstrating that activation of these kinases and induction of PGC-1α in skeletal muscle are regulated by catecholamines. The purpose of the present study was to determine if consumption of a high-fat diet (HFD) impairs epinephrine and 5-aminoimidazole-4-carboxamide-1β-d-ribofuranoside (AICAR) signaling and induction of PGC-1α in rat skeletal muscle. Male Wistar rats were fed chow or a HFD for 6 wk and then given a weight-adjusted bolus injection of epinephrine (20, 10, or 5 μg/100 g body wt sc) or saline, and triceps muscles were harvested 30 min (signaling) or 2 and 4 h (gene expression) postinjection. Despite blunted increases in p38 phosphorylation, the ability of epinephrine to induce PGC-1α was intact in skeletal muscle from HFD-fed rats and was associated with normal increases in activation of PKA and phosphorylation of cAMP response element-binding protein, reputed mediators of PGC-1α expression. The attenuated epinephrine-mediated increase in p38 phosphorylation was independent of increases in MAPK phosphatase 1. At 2 h following AICAR treatment (0.5 g/kg body wt sc), AMP-activated protein kinase and acetyl-CoA carboxylase phosphorylation were similar in skeletal muscle from chow- and HFD-fed rats. Surprisingly, AICAR-induced increases in PGC-1α mRNA levels were greater in skeletal muscle from HFD-fed rats. Our results demonstrate that the ability of epinephrine and AICAR to induce PGC-1α remains intact in skeletal muscle from HFD-fed rats. These results question the existence of reduced β-adrenergic responsiveness in diet-induced obesity and demonstrate that increases in p38 phosphorylation are not required for induction of PGC-1α in muscle from obese rats.  相似文献   

6.
Rats fed dietary fats rich in 20- and 22-carbon polyenoic fatty acids deposit less fat and expend more energy at rest than rats fed other types of fats. We hypothesized that this decrease in energetic efficiency was the product of: (a) enhanced peroxisomal fatty acid oxidation and/or (b) the up-regulation of genes encoding proteins that were involved with enhanced heat production, i.e. mitochondrial uncoupling proteins (UCP-2, UCP-3) and peroxisomal fatty acid oxidation proteins. Two groups of male Fisher 344 rats 3-4 week old (n=5 per group) were pair fed for 6 weeks a diet containing 40% of its energy fat derived from either fish oil or corn oil. Epididymal fat pads from rats fed the fish oil diet weighed 25% (P < 0.05) less than those found in rats fed corn oil. The decrease in fat deposition associated with fish oil ingestion was accompanied by a significant increase in the abundance of skeletal muscle UCP-3 mRNA. The level of UCP-2 mRNA skeletal muscle was unaffected by the type of dietary oil, but the abundance of UCP-2 mRNA in the liver and heart were significantly lower (P < 0.05) in rats fed fish oil than in rats fed corn oil. In addition to inducing UCP-3 expression, dietary fish oil induced peroxisomal acyl-CoA oxidase gene expression 2-3 fold in liver, skeletal muscle and heart. These data support the hypothesis that dietary fish oil reduces fat deposition by increasing the expression of mitochondrial uncoupling proteins and increasing fatty acid oxidation by the less efficient peroxisomal pathway.  相似文献   

7.
This study investigated the effects of a grape pomace extract (GPE) rich in phenolic compounds on brown-like adipocyte induction and adiposity in spontaneously hypertensive (SHR) and control normotensive Wistar–Kyoto (WKY) rats fed a high-fat diet (HFD). HFD consumption for 10 weeks significantly increased epididymal white adipose tissue (eWAT) in WKY but not in SHR rats. Supplementation with GPE (300 mg/kg body weight/day) reduced adipocyte diameter and increased levels of proteins that participate in adipogenesis and angiogenesis, i.e., peroxisome-proliferator activated receptor gamma (PPARγ), vascular endothelial grow factor-A (VEGF-A) and its receptor 2 (VEGF-R2), and partially increased the uncoupling protein 1 (UCP-1) in WKY. In both strains, GPE attenuated adipose inflammation. In eWAT from SHR, GPE increased the expression of proteins involved in adipose tissue “browning,” i.e., PPARγ-coactivator-1α (PGC-1α), PPARγ, PR domain containing 16 (PRDM16) and UCP-1. In primary cultures of SHR adipocytes, GPE-induced UCP-1 up-regulation was dependent on p38 and ERK activation. Accordingly, in 3T3-L1 adipocytes treated with palmitate, the addition of GPE (30 μM) activated the β-adrenergic signaling cascade (PKA, AMPK, p38, ERK). This led to the associated up-regulation of proteins involved in mitochondrial biogenesis (PGC-1α, PPARγ, PRDM16 and UCP-1) and fatty acid oxidation (ATGL). These effects were similar to those exerted by (−)-epicatechin and quercetin, major phenolic compounds in GPE. Overall, in HFD-fed rats, supplementation with GPE promoted brown-like cell formation in eWAT and diminished adipose dysfunction. Thus, winemaking residues, rich in bioactive compounds, could be useful to mitigate the adverse effects of HFD-induced adipose dysfunction.  相似文献   

8.
9.
We found that UCP-1 and UCP-3 mRNA expression levels and the UCP-1 protein content in brown adipose tissue (BAT) were reduced in prediabetic OLETF rats than the lean LETO rats. Administration of dehydroepiandrosterone (DHEA) for 17 days induced remarkable weight loss, which was in part attributed to an enhanced utilization of ingested energy. DHEA administration significantly increased the levels of BAT UCP-1 and UCP-3 mRNA expression. Among the upstream signals for UCP-1 regulation, expression levels of the beta 3 adrenergic receptor (beta(3)AR) and PPAR gamma coactivator-1 (PGC-1) were significantly decreased in the OLETF rats and increased by DHEA administration. The decreased expression levels of UCP-1 and its upstream regulators, beta(3)AR and PGC-1, in BAT may contribute to inefficient energy utilization and obesity in OLETF rats, which was corrected by DHEA treatment.  相似文献   

10.
Ghrelin expression and secretion seem to be influenced by the fat content of the diet. However, data on the probable adverse effect of high fat diet (HFD) with different dietary fats and saturation level of fatty acids is inconclusive. This study aimed at investigating the effects of HFDs on fasting total and acyl-ghrelin plasma levels, gastric fundus and duodenum ghrelin mRNA expressions. Weaned Wistar rats (n=50) were randomly divided to five groups of HFDs with fish oil (HF-F), olive oil (HF-O), soy oil (HF-S), butter (HF-B) and the controls. After 8weeks, blood samples were collected. While the animals were fasting for 24h, their blood and tissue samples were obtained. Plasma parameters of total and acyl ghrelin and ghrelin mRNA expression level in stomach and duodenum were measured. The HF-B fed group had lower fasting plasma acyl ghrelin level than the control, HF-F and HF-O groups (P<0.05); furthermore, the HF-F group had significantly higher acyl ghrelin level than the HF-S one (P<0.05). After feeding, all the groups, except for the HF-B one, had a significantly lower plasma acyl ghrelin levels (P<0.05), compared with the fasting state. Ghrelin mRNA expression levels in the gastric fundus and duodenum were significantly lower in the HF-B as compared to the control group. Furthermore, the HF-F group had significantly higher mRNA level in the duodenum, in comparison with the HF-B and HF-S groups. As HF-F and HF-O diets had the highest stimulatory effect on fasting ghrelin expression and plasma level, consumption of these dietary oils can play an important role in ghrelin regulation, which might affect feeding behavior and energy intake.  相似文献   

11.
12.
13.
Lipid metabolism in a child may be altered when the mother has a high-fat diet (HFD), but it is unclear whether the lipid metabolism of future offspring (grandchildren) is also changed under these circumstances. In this study, we examined the influence of intake of an HFD beyond one generation on offspring in normal mice. Parent mice fed an HFD were bred and the resultant second and third generations were also fed an HFD. The diets used in the study had approximately 20% more energy than a standard chow diet. Changes in lipid metabolism were examined in each generation. Intake of an HFD from generation to generation promoted lipid accumulation in the white adipose tissue of female mice, increased lipid, glucose and insulin levels in the serum, increased the activities of enzymes associated with fatty acid metabolism in the liver, promoted lipid accumulation in hepatocytes and adipocytes and increased the mRNA levels of Cdkn1a in the liver and white adipose tissue. These results suggest that activation of Cdkn1a promoted lipid accumulation in the liver and white adipose tissue of third-generation female mice that were offspring from earlier generations fed HFDs. Moreover, intake of a high-energy diet beyond one generation led to offspring with obesity, fatty liver and hyperinsulinemia.  相似文献   

14.
Consumption of a high-fat diet decreases hypothalamic neuropeptide Y (NPY) and increases proopiomelanocortin (POMC) and brown adipose uncoupling protein (UCP)-1 mRNA in obesity-resistant SWR/J but not obesity-prone C57Bl/6J mice. Although leptin was elevated in both strains in response to a high-fat diet, its role in the development of diet-induced obesity has remained unclear since insulin and other factors that affect similar tissue targets are altered. Thus, we administered recombinant leptin by subcutaneous infusion to chow-fed mice to mimic the changes in plasma leptin across its broad physiologic range. We observed strain differences in responsiveness to reduced and elevated leptin levels. A reduction in leptin during fasting evoked a greater response in C57Bl/6J mice by decreasing energy expenditure and thyroxin, increasing corticosterone and stimulating food intake and weight gain during refeeding. However, C57Bl/6J mice were less responsive to an increase in leptin in the fed state. Conversely, the leptin-mediated response to fasting was blunted in SWR/J mice, whereas an increase in leptin profoundly reduced food intake and body weight in SWR/J mice fed ad libitum. Sensitivity to fasting in C57Bl/6J mice was associated with higher hypothalamic NPY mRNA and reduced POMC and UCP-1 mRNA expression, while the robust response to high leptin levels in SWR/J mice was associated with suppression of NPY mRNA. These results indicate that differences in leptin responsiveness between strains might occur centrally or peripherally, leading to alteration in the patterns of food intake, thermogenesis and energy storage.  相似文献   

15.
16.
17.
18.
Mice overexpressing human UCP-3 in skeletal muscle (UCP-3tg) are lean despite overeating, have increased metabolic rate, and their skeletal muscle mitochondria show increased proton conductance. The true function of UCP-3 however, has yet to be determined. It is assumed that UCP-3tg mice have increased fatty acid beta-oxidation to fuel their increased metabolic rate. In this study we have quantified skeletal muscle mRNA levels of a number of genes involved in fatty acid metabolism. mRNA levels of uncoupling protein-2, carnitine palmitoyl transferase-1beta and fatty acid binding proteins, and transporters were unchanged when compared to wild-type mice. Lipoprotein lipase mRNA was slightly, but significantly, increased by 50%. The most notable change in gene expression was a threefold increase in mitochondrial thioesterase (MTE-1) expression. In the face of a chronic increase in mitochondrial uncoupling these changes suggest that increased flux of fatty acids through the beta-oxidation pathway does not necessarily require marked changes in expression of genes involved in fatty acid metabolism. The large increase in MTE-1 both confirms the importance of this gene in situations where mitochondrial beta-oxidation is increased and supports the hypothesis that UCP-3 exports fatty acids generated by MTE-1 in the mitochondrion.  相似文献   

19.
Cilostazol is a drug licensed for the treatment of intermittent claudication. Its main action is to elevate intracellular levels of cyclic monophosphate (cAMP) by inhibiting the activity of type III phosphodiesterase, a cAMP-degrading enzyme. The effects of cilostazol on fatty acid oxidation (FAO) are as yet unknown. In this study, we report that cilostazol can elevate complete FAO and decrease both triacylglycerol (TAG) accumulation and TAG secretion. This use of cilostazol treatment increases expression of PGC-1α and, subsequently, its target genes, such as ERRα, NOR1, CD36, CPT1, MCAD, and ACO. Expression of these factors is linked to fatty acid β-oxidation but this effect is inhibited by H-89, a specific inhibitor of the PKA/CREB pathway. Importantly, knockdown of PGC-1α using siRNA abolished the effects of cilostazol in fatty acid oxidation (FAO) and TAG metabolism. These findings suggested that the PKA/CREB/PGC-1α pathway plays a critical role in cilostazol-induced fatty acid oxidation and TAG metabolism.  相似文献   

20.
Relatively little is known concerning the regulation of uncoupling proteins (UCPs) in the heart. We investigated in the adult rodent heart 1) whether changes in workload, substrate supply, or cytokine (TNF-alpha) administration affect UCP-2 and UCP-3 expression, and 2) whether peroxisome proliferator-activated receptor alpha (PPARalpha) regulates the expression of either UCP-2 or UCP-3. Direct comparisons were made between cardiac and skeletal muscle. UCP-2, UCP-3, and PPARalpha expression were reduced when cardiac workload was either increased (pressure overload by aortic constriction) or decreased (mechanical unloading by heterotopic transplantation). Similar results were observed during cytokine administration. Reduced dietary fatty acid availability resulted in decreased expression of both cardiac UCP-2 and UCP-3. However, when fatty acid (the natural ligand for PPARalpha) supply was increased (high-fat feeding, fasting, and STZ-induced diabetes), cardiac UCP-3 but not UCP-2 expression increased. Comparable results were observed in rats treated with the specific PPARalpha agonist WY-14,643. The level of cardiac UCP-3 but not UCP-2 expression was severely reduced (20-fold) in PPARalpha-/- mice compared to wild-type mice. These results suggest that in the adult rodent heart, UCP-3 expression is regulated by PPARalpha. In contrast, cardiac UCP-2 expression is regulated in part by a fatty acid-dependent, PPARalpha-independent mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号