首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The analysis of δ 13C and δ 18O in tree-ring archives offers retrospective insights into environmental conditions and ecophysiological processes. While photosynthetic carbon isotope discrimination and evaporative oxygen isotope enrichment are well understood, we lack information on how the isotope signal is altered by downstream metabolic processes.
In Pinus sylvestris , we traced the isotopic signals from their origin in the leaf water ( δ 18O) or the newly assimilated carbon ( δ 13C), via phloem sugars to the tree-ring, over a time-scale that ranges from hours to a growing season.
Seasonally, variable 13C enrichment of sugars related to phloem loading and transport did lead to uncoupling between δ 13C in the tree-ring, and the c i/ c a ratio at the leaf level. In contrast, the oxygen isotope signal was transferred from the leaf water to the tree-ring with an expected enrichment of 27‰, with time-lags of approximately 2 weeks and with a 40% exchange between organic oxygen and xylem water oxygen during cellulose synthesis.
This integrated overview of the fate of carbon and oxygen isotope signals within the model tree species P. sylvestris provides a novel physiological basis for the interpretation of δ 13C and δ 18O in tree-ring ecology.  相似文献   

2.
We used stable carbon (δ13C) and nitrogen (δ15N) isotopes to assess the importance of benthic algae for the zooplankton individual growth in winter in a shallow, clear subarctic lake. The δ13C values of calanoid ( Eudiaptomus graciloides ) and cyclopoid ( Cyclops scutifer ) zooplankton in autumn suggest a food resource of pelagic origin during the ice-free period. The zooplankton δ13C values were high in spring compared to autumn. E. graciloides did not grow over winter and the change in δ13C was attributed to a decrease in lipid content during the winter. In contrast, the increase in δ13C values of C. scutifer over the winter was explained by their growth on organic carbon generated by benthic algae. The δ15N of the C. scutifer food resource during winter was low compared to δ15N of the benthic community, suggesting that organic matter generated by benthic algae was mainly channelled to zooplankton via 15N-depleted heterotrophic bacteria. The results demonstrate that benthic algae can sustain zooplankton metabolic demands and growth during long winters, which, in turn, may promote zooplankton growth on pelagic resources during the summer. Such multi-chain omnivory challenges the view of zooplankton as mainly dependent on internal primary production and stresses the importance of benthic resources for the productivity of plankton food webs in shallow lakes.  相似文献   

3.
Summary The amounts of starch, soluble sugars, triacylglycerols, diacylglycerols and free fatty acids were studied in Scots pine (Pinus sylvestris L.) during an annual cycle in current-year needles and in 1-, 2- and 3-year-old needles collected shortly after bud break. Determination of the compounds was performed using specific enzymatic assays, capillary gas chromatography and thin layer chromatography. Newly emerging needles contained relatively large amounts of starch, but only trace amounts of fat. During autumn and winter, fat content rose, while starch content decreased; amounts of both these reserve materials were very high the next spring shortly before bud break and decreased again during shoot elongation. Concentration of intermediates in triacylglycerol biosynthesis (diacylglycerols and free fatty acids), were low in summer and high in winter. The same pattern was observed for fructose and glucose (the predominant soluble sugars), galactose/arabinose and raffinose/melibiose. In contrast, sucrose concentrations were highest in spring and in autumn. Mature needles of different ages collected in May showed significant differences only in their triacylglycerol and starch content. Concentration changes of reserve materials are discussed in relation to season, mobilization and translocation processes, dormancy, frost resistance and the possibility of carbohydrate-fat interconversions.  相似文献   

4.
Seasonal patterns of [14C]-labeled photosynthate distribution within two intensively cultured Populus clones with contrasting phenology ( P. tristis × P. balsamifera cv. 'Tristis no. 1'; P. × euramericana cv. Eugenei) were investigated during the establishment year. During active shoot elongation upper mature leaves exported 14C acropetally to the expanding leaves and elongating internodes, and basipetally to the stem. Little 14C was exported to lower mature leaves or lateral branches. At budset the 14C export pattern shifted dramatically in the basipetal direction, i.e., to the lower stem, hardwood cutting, and roots. The timing of budset was the primary factor determining the differences between the clones, except that in all cases Tristis exported more 14C to the roots than Eugenei. After budset lower mature leaves had a similar export pattern to upper leaves, but the quantity of 14C exported to the roots was slightly higher. The results confirm the importance of autumn foliage for root growth in poplar. Clonal differences in seasonal patterns of photosynthate distribution offer potential for the poplar breeder seeking to match a clone's growth pattern with the specific growing season of the site.  相似文献   

5.
13C NMR was used to detect sugars in detached fibrous and storage roots of carrots ( Daucus carota L. cv. Chantenay Red-Cored). The relative amounts of sucrose, glucose and fructose in storage roots of two ages and in fibrous roots were similar to those detected by a destructive, enzymatic sugar determination method. In tap roots all three sugars were present with glucose being marginally predominant in 8-week-old roots and sucrose being the major sugar present in 12-week-old roots. Glucose was the major sugar present in fibrous roots with small amounts of sucrose and no fructose detected. The results indicate that with some instrumental modification, 13C NMR could be used as a non-destructive method for measuring sugar levels in intact storage root systems during development.  相似文献   

6.
Three-year-old beech trees were fed 35S-sulphate in August 1993 via a flap in a mature leaf of an upper branch. Harvest of beech trees was performed 24 h after feeding 35S-sulphate, before leaf senescence, after leaf abscission, in early winter (January 1994). in late winter (March 1994). before bud break and after bud break. Twenty-four h after feeding 35S-sulphate, 0.7 ± 0.5% of the 35S-radioactivity taken up was exported out of the fed leaf. When trees were analysed 2 months later, i.e., before leaf senescence, this value had increased to 22 ± 7%. The exported 35S-radioactivity was located in the branch containing the fed leaf (2.8 ± 13%). in basipetal parts of the trunk (41 ± 77%) and in the main rool (21 ± 6%). Leaves and apical parts of the trunk were no sink organs for the exported sulphur. Along the tree axis the main proportion of the radiolabel was located in the wood, predominantly in the acid soluble fraction. In the bark the greater portion of the radiolabel was found in the acid insoluble fraction. In both tissues the bulk of the 35S of the soluble fraction was sulphate together with small amounts of glutathione. This pattern did not change until bud break. After bud break, basipetal parts of the trunk lost part of its 35S-radioactivity. Of the 35S-radioactivity which had been exported out of the fed leaf during the previous autumn, 16 ± 2% remained in the trunk, whereas 47 ± 7% of the 35S was found in branches, mainly in the newly developed leaves. The present results show that sulphur, mainly in the form of sulphate, is stored along the tree axis in both bark and wood of beech trees and is re-mobilised during leaf development in spring.  相似文献   

7.
Axial and radial transport and the accumulation of photoassimilates in carrot taproot were studied using 14C labelling and autoradiography. Axial transport of the 14C labelled assimilates inside the taproot was rapid and occurred mainly in the young phloem found in rows radiating from the cambium. The radial transport of the assimilate inward (to cambium, xylem zone and pith) and outward (to phloem zone and periderm) from the conducting phloem was an order of magnitude slower than the longitudinal transport and was probably mainly diffusive. The cambial zone of the taproot presented a partial barrier in the inward path of the assimilate to the xylem zone. We suggest that this is due to the cambium comprising a strong sink for the assimilate on the basis that our previous work has shown that it contains very low concentrations of free sucrose. By contrast, a high accumulation of nonsoluble 14C was found in the cambium region in good agreement with the active growth of this zone. Autoradiography following the feeding of 14C labelled sugars to excised sections of taproot indicated that only a ring of cells at and/or just within the cambium take up sugars from the apoplast. This indicates that radial movement in the phloem and pith must be symplastic. An apoplastic step between phloem and xylem is possible. The rapid uptake of sugars from the apoplast at this point might represent a mechanism for keeping photoassimilates away from the transpiration stream and re-location back to the leaves.  相似文献   

8.
We evaluated diurnal and seasonal patterns of carbon isotope composition of leaf dark-respired CO2 ( δ 13Cl) in the C3 perennial shrub velvet mesquite ( Prosopis velutina ) across flood plain and upland savanna ecosystems in the south-western USA. δ 13Cl of darkened leaves increased to maximum values late during daytime periods and declined gradually over night-time periods to minimum values at pre-dawn. The magnitude of the diurnal shift in δ 13Cl was strongly influenced by seasonal and habitat-related differences in soil water availability and leaf surface vapour pressure deficit. δ 13Cl and the cumulative flux-weighted δ 13C value of photosynthates were positively correlated, suggesting that progressive 13C enrichment of the CO2 evolved by darkened leaves during the daytime mainly resulted from short-term changes in photosynthetic 13C discrimination and associated shifts in the δ 13C signature of primary respiratory substrates. The 13C enrichment of dark-respired CO2 relative to photosynthates across habitats and seasons was 4 to 6‰ at the end of the daytime period (1800 h), but progressively declined to 0‰ by pre-dawn (0300 h). The origin of night-time and daytime variations in δ 13Cl is discussed in terms of the carbon source(s) feeding respiration and the drought-induced changes in carbon metabolism.  相似文献   

9.
The variations in δ 13C in both leaf carbohydrates (starch and sucrose) and CO2 respired in the dark from the cotyledonary leaves of Phaseolus vulgaris L. were investigated during a progressive drought. As expected, sucrose and starch became heavier (enriched in 13C) with decreasing stomatal conductance and decreasing p i/ p a during the first half (15 d) of the dehydration cycle. Thereafter, when stomata remained closed and leaf net photosynthesis was near zero, the tendency was reversed: the carbohydrates became lighter (depleted in 13C). This may be explained by increased p i/ p a but other possible explanations are also discussed. Interestingly, the variations in δ 13C of CO2 respired in the dark were correlated with those of sucrose for both well-watered and dehydrated plants. A linear relationship was obtained between δ 13C of CO2 respired in the dark and sucrose, respired CO2 always being enriched in 13C compared with sucrose by ≈ 6‰. The whole leaf organic matter was depleted in 13C compared with leaf carbohydrates by at least 1‰. These results suggest that: (i) a discrimination by ≈ 6‰ occurs during dark respiration processes releasing 13C-enriched CO2; and that (ii) this leads to 13C depletion in the remaining leaf material.  相似文献   

10.
Water deficit and high temperature often occur simultaneously, but their effects on plants are usually investigated separately. The aim of this study was to test how interactions between water stress and nocturnal warming affect carbon allocation in the perennial grass, Leymus chinensis . Plant biomass, dry mass allocation, 14C partitioning and carbon isotope composition (δ13C) were measured. Severe and extreme water stress during nocturnal warming decreased the allocation of dry mass and 14C partitioning below ground to the roots, but moderate water stress significantly increased the below-ground allocation of dry mass and 14C, especially at the lower night temperature. The δ13C values were more positive at day/night temperatures of 30/20°C than at 30/25°C, and greater in the roots than in the leaves. By plotting the δ13C values of the leaves against the δ13C values of the roots, the slopes of regressions were steeper at low than at high night temperature, also indicating that nocturnal warming reduces carbon allocation below ground to the roots. The results suggest that nocturnal warming may weaken acclimation during water stress in this species by regulating carbon allocation between source and sink organs.  相似文献   

11.
The roots of a mature, field-grown maize plant are dimorphic: the primary root and those from the oldest nodes are bare with a heavily lignified cortex arid sloughed epidermis; those from younger nodes, except for a bare elongation zone, have an intact epidermis surrounded by a persistent soil sheath. Sheathed roots consistently have more layers of cortical cells, but the ratio of volumes of cortex to stele (ca 4) and the cross-sectional area of phloem (ca3× 10−2 mm2) are similar in each type. Assimilated carbon (from 14 C applied to a small area of one leaf) was translocated to all roots and actively metabolized in cortex and stele of both types. After 1 to 2 days the proportion of 14C exuded from a given length of mature root into its soil sheath, or into the adjacent unattached soil in the case of bare roots, was the same (5%) in both root types when compared with the ethanol-soluble 14C in the tissues of this length. Up to 75% of the ethanol-soluble label in the roots was in a cationic fraction (amino acids and unidentified compounds), ca 1% was in an anionic fraction and the remainder was in a neutral fraction (sugars). Approximately equal amounts of soluble 14C were found in the stele, cortex and laterals.  相似文献   

12.
Developing grains of pearl millet ( Pennisetum typhoides Burm. S & H cv. PIB 155) were sampled and analyzed for starch and its free-sugar precursors. The activities of invertase, sucrose-ADP (UDP) glucosyl transferase and of α-amylase and β-amylase in relation to the rate of starch accumulation in the developing grain were assayed. By culturing detached ears, the incorporation of 14C from free sugar precursors to starch was studied. The starch content gradually increased until grain maturity. The rate of starch accumulation was maximum around 12 days after anthesis. Around this period, the activities of sucrose-ADP(UDP) glucosyl transferase and α-amylase, β-amylase were also at a peak. Invertase activity was high during the early period of grain development but gradually declined as the grains matured. In the most actively metabolising milky grains, incorporation of 14C from [14C]-sugars to starch was maximum in the mid mid-milky grains. Addition of 20 m M K+ to the culture solution did not affect the incorporation of 14C from supplied sucrose to the free sugar pool and to the starch of the grain, but Mg2+ supply at 20 m M concentration lowered 14C incorporation from exogenous sucrose to grain free sugars, although the utilization of the latter for starch synthesis was enhanced.  相似文献   

13.
We investigated the extent to which plant water and nutrient status are affected by intraspecific competition intensity and microsite quality in a monodominant tussock grassland. Leaf gas exchange and stable isotope measurements were used to assess the water relations of Stipa tenacissima tussocks growing along a gradient of plant cover and soil depth in a semi-arid catchment of Southeast Spain. Stomatal conductance and photosynthetic rate decreased with increasing intensity of competition during the wet growing season, leading to foliar δ 18O and δ 13C enrichment. A high potential for runoff interception by upslope neighbours exerted strong detrimental effects on the water and phosphorus status of downslope S. tenacissima tussocks. Foliar δ 15N values became more enriched with increasing soil depth. Multiple stepwise regression showed that competition potential and/or rhizosphere soil depth accounted for large proportions of variance in foliar δ 13C, δ 18O and δ 15N among target tussocks (57, 37 and 64%, respectively). The results presented here highlight the key role that spatial redistribution of resources (water and nutrients) by runoff plays in semi-arid ecosystems. It is concluded that combined measurement of δ 13C, δ 18O and nutrient concentrations in bulk leaf tissue can provide insight into the intensity of competitive interactions occurring in natural plant communities.  相似文献   

14.
Abstract. Tree-ring indices (TRIs) of annual growth rings in stems of Douglas-fir ( Pseudotsuga menziesii ) growing near a copper smelter showed reduced growth during two multi-year time periods in the past. These periods coincided with World Wars I and II, which are known to represent periods of particularly high SO2 emissions from the smelter. Reduced growth was correlated with less negative stable carbon isotope composition (δ13C) in cellulose purified from wood formed in such years. Based on current models for 13C/12C in plants, these results indicate that exposure to air pollution resulted in reduced concentration of CO2 in the intercellular air spaces of the needles. This is consistent with the hypothesis that stomatal closure resulted in impaired photosynthesis and reduced growth during past episodes of high air pollution. The pollution-related change in δ13C was superimposed on a change with time in δ13C, independent of growth, by - 1.4 per mil from 1902 to 1984.  相似文献   

15.
Both export of 14C from the source leaves of roses (Rosa × hybrida cv. Golden Times) and import of 14C to the petals were reduced by plant exposure to low night temperature. However, the import was affected to a greater extent than the export. During all stages of flower bud development the concentration of reducing sugars in petals of roses grown at reduced night temperature was lower than in petals of plants grown at higher night temperature. There was no significant difference in starch content in response to the night temperature, and the content of starch decreased toward complete flower bud opening. The concentration of sucrose in flowers at the low night temperature remained low during all stages of flower bud development, while at the high night temperature the concentration of sucrose increased during flower bud development, reaching a peak at the stage when petals start to unfold. At both temperatures the concentration of sucrose declined at complete flower opening. The activity of sucrose synthase (EC 2.4.1.14) was inhibited by low temperature in young rose shoots more than in the petals, while the activity of acid invertase (EC 3.2.1.26) was affected similarly in both tissues by the temperature treatments.  相似文献   

16.
Seasonal patterns of N translocation in the xylem sap of Betula pendula were studied, to determine whether specific amino acids were recovered in spring as a consequence of N remobilization. Seedlings were grown in sand culture and provided with 15NH415NO3 (at 2·2 atom percent excess) for one growing season. The following winter dormant trees were transplanted into fresh sand and given N at natural abundance thereafter. Destructive harvests were taken during bud burst and leaf growth to determine the pattern of 15N remobilization and N uptake, along with isolation of xylem sap for analysis of their amino acid profiles and 15N enrichment by GC-MS. 15N remobilization occurred immediately following bud burst, while N derived from root uptake did not appear in the leaves until 12 d after bud burst. During N remobilization there was a 10-fold increase in the concentration of N in the xylem sap, due predominantly to increases in citrulline and glutamine. The 15N enrichment of these two amino acids demonstrated the increase in their concentration in the xylem sap following bud burst was due to N remobilization. These results are discussed in relation to measuring N remobilization and storage capacity of trees in the field.  相似文献   

17.
Carbon dioxide fixation in orchid aerial roots   总被引:1,自引:0,他引:1  
Acidity fluctuation, CO2 gas exchange, δ13C value, PEP carboxylase and RuBP carboxylase activities in aerial roots of selected thick-leaved orchid hybrids ( Arachnis and Aranthera ) were studied. Both aerial roots and leaves showed acidity fluctuation over a 24 h period. Dark acidification in aerial roots was enhanced at low temperature (15°C). Aerial roots had δ13C values close to those of leaves which have been previously demonstrated to possess crassulacean acid metabolism. Variation in δ13C values along the length of the roots was observed; the root tip having a less negative δ13C value (—13.34%‰) than the older portions of the roots (—14.55%‰). There was no net CO2 fixation by aerial root, although 1432CO2 fixation was observed in light and in darkness. The pattern of fluctuation in activities of PEP carboxylase and RuBP carboxylase in aerial roots was similar to that obtained for the leaves. In both aerial roots and leaves, PEP carboxylase activity was several times higher than that of RuBP carboxylase.  相似文献   

18.
This report demonstrates that during the torpor phase of hibernation, hamsters utilize 14C and 13C glucose in torpor-specific brain metabolic pathways. Microdialysis of 14C glucose into the striatum rapidly induced a steady state labeling of extracellular fluid (ECF) lactate and labeling of tissue GABA, glutamate, glutamine, and alanine in ipsilateral and contralateral striata. The same tissue metabolites were labeled in cortex, hypothalamus, and brainstem after microdialysis of 14C lactate into the lateral ventricle. Serine, aspartate, glycine, taurine, tyrosine, and methionine were not synthesized from glucose or lactate during torpor. ECF levels of amino and organic acids were low and unchanging during torpor and increased late during arousal to cenothermia. Labeled intracellular 14C GABA and glutamate were not communicated to the striatal ECF or ventricular space during torpor. 13C NMR demonstrated rapid formation of lactate and functional tricarboxylic acid cycles in GABAergic and glutamatergic neurons, and enrichment of glutamine and alanine after i.v. 13C glucose. Large changes in tissue levels of amino acids occur prior to or during entrance into torpor but not during torpor. It is proposed that cerebral intracellular dehydration, the enlargement of ECF and the biochemistries associated with brain water homeostasis may have a role in regulating hibernation.  相似文献   

19.
Abstract: Polyunsaturated fatty acids are needed for normal neonatal brain development, but the degree of conversion of the 18-carbon polyunsaturated fatty acid precursors consumed in the diet to their respective 20-and 22-carbon polyunsaturates accumulating in the brain is not well known. In the present study, in vivo 13C nuclear magnetic resonance spectroscopy was used to monitor noninvasively the brain uptake and metabolism of a mixture of uniformly 13C-enriched 16-and 18-carbon polyunsaturated fatty acid methyl esters injected intragastrically into neonatal rats. In vivo NMR spectra of the rat brain at postnatal days 10 and 17 had larger fatty acid signals than in uninjected controls, but changes in levels of individual fatty acids could not be distinguished. One day after injection of the U-13C-polyunsaturated fatty acid mixture, 13C enrichment (measured by isotope ratio mass spectrometry) was similar in brain phospholipids, free fatty acids, free cholesterol, and brain aqueous extract; 13C enrichment remained high in the phospholipids and cholesterol for 15 days. 13C enrichment was similar in the main fatty acids of the brain within 1 day of injection but 15 days later had declined in all except arachidonic acid while continuing to increase in docosahexaenoic acid. These changes in 13C enrichment in brain fatty acids paralleled the developmental changes in brain fatty acid composition. We conclude that, in the neonatal rat brain, dietary 16-and 18-carbon polyunsaturates are not only elongated and desaturated but are also utilized for de novo synthesis of long-chain saturated and monounsaturated fatty acids and cholesterol.  相似文献   

20.
The present study investigated the relative importance of leaf and root carbon input for soil invertebrates. Experimental plots were established at the Swiss Canopy Crane (SCC) site where the forest canopy was enriched with 13C depleted CO2 at a target CO2 concentration of c . 540 p.p.m. We exchanged litter between labelled and unlabelled areas resulting in four treatments: (i) leaf litter and roots labelled, (ii) only leaf litter labelled, (iii) only roots labelled and (iv) unlabelled controls. In plots with only 13C-labelled roots most of the soil invertebrates studied were significantly depleted in 13C, e.g. earthworms, chilopods, gastropods, diplurans, collembolans, mites and isopods, indicating that these taxa predominantly obtain their carbon from belowground input. In plots with only 13C-labelled leaf litter only three taxa, including, e.g. juvenile Glomeris spp. (Diplopoda), were significantly depleted in 13C suggesting that the majority of soil invertebrates obtain its carbon from roots. This is in stark contrast to the view that decomposer food webs are based on litter input from aboveground.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号