首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
2.
Experiments were undertaken with field-grown potato (Solanum tuberosum L.) plants to test the hypothesis that altering leaf:tuber water potential gradients within a plant subjected to low soil moisture will allow greater Ca accumulation in tubers and reverse Ca deficiency-related tuber necrosis. Antitranspirant formulations containing a wax emulsion and a spreader/sticker surfactant increased leaf water potential during a drought episode, significantly reducing the potential gradient that develops between leaf and tuber during a period of stress. Increased leaf water potential in treated plants was associated with decreased leaf Ca and increased tuber Ca. Tuber necrosis was found to be reduced in treated plants, thus increasing tuber quality.  相似文献   

3.
The mobility of Cd in potato plants (Solanum tuberosum) was examined using both short‐term radioisotopic labelling with 109Cd and long‐term growth experiments in soil supplemented with Cd, with an emphasis on the pathways through which Cd is taken up by tubers. Split‐pot experiments showed that tubers and their associated stolons and stolon roots contribute only a minor fraction to the overall Cd absorption by the plant. Most of the Cd was absorbed by the basal roots. 109Cd absorbed from the soil was rapidly exported to other parts of the plant, especially the stem, with significant amounts appearing in the tubers within 30 h. Application of 109Cd to leaves showed that Cd can be rapidly distributed via the phloem to all tissues. The results suggest that unlike Ca, Cd has high mobility in plants in both xylem and phloem, and that stems may have an important role in transfer between these two pathways.  相似文献   

4.
The Transport of Sugar, Water, and Ions into Developing Potato Tubers   总被引:1,自引:0,他引:1  
BAKER  D. A.; MOORBY  J. 《Annals of botany》1969,33(4):729-741
Diurnal variations in the pattern of movement of sugars, water,and ions into developing tubers of the potato (Solanum tuberosumL.) were investigated. It was demonstrated using a recordingbalance that large increases in the fresh weight of tubers occurduring a dark period of reduced transpiration. Movement of assimilated14C did not reflect similar large changes and much of the weightchange observed is considered to be fluctuations in tuber watercontent. This water was shown to be moving predominantly throughthe xylem of the stolon by introducing labelled ions, 32P and89Sr into the plants. 32P, which moves in both xylem and phloem,was transported to the tuber at a constant rate whereas 89Sr,which behaves like calcium and is relatively immobile in thephloem, only moved into the tuber during the dark period. As well as the over-all long-term diurnal fluctuations severalsmaller rapid changes were recorded in the rate of water movement.Switching from darkness to light caused a transient increasefollowed by a rapid decrease in tuber weight. Switching fromlight to darkness caused a rapid increase in tuber weight. Insome experiments small oscillations in tuber weight were recorded.The possibility of these oscillations being directly relatedto cyclic changes in transpiration is considered. The resultsare discussed in relation to solute movement within plants.  相似文献   

5.
Autoradiographs of potato tubers (Solatium tuberosumL. cv. MansPiper) grown in the presence of "Ca revealed high activity inthe periderm, vascular ring (predominantly xyiem), phloem bundlesand pith. It is calculated that only 40 per cent of tubeT Caentered directly through the periderm and the possibility ofimport via the phloem is discussed. Chemical fractionation proceduresshowed that more than 90 per cent of tuber Ca could be consideredto be in a physiologically active form and very little in theform of insoluble components such as calcium oxalate. Microautoradiographyconfirmed the infrequent occurrence of specialized calcium oxalate-containingcells. When tubers were sprouted in trays in the dark water-solubleforms of "Ca were preferentially transported to the sproutGreater depletion occurred from the outermost tissues of thetuber but there was no indication of preferential mobilizationfrom tissues immediately adjacent to the sprouting region. Sproutswhich developed sub-apical tip necrosis showed a positive gradientof "Ca from the tip to the base.  相似文献   

6.
Regulatory involvement of abscisic acid in potato tuber wound-healing   总被引:3,自引:0,他引:3  
Rapid wound-healing is crucial in protecting potato tubers frominfection and dehydration. Wound-induced suberization and theaccumulation of hydrophobic barriers to reduce water vapourconductance/loss are principal protective wound-healing processes.However, little is known about the cognate mechanisms that effector regulate these processes. The objective of this researchwas to determine the involvement of abscisic acid (ABA) in theregulation of wound-induced suberization and tuber water vapourloss (dehydration). Analysis by liquid chromatography–massspectrometry showed that ABA concentrations varied little throughoutthe tuber, but were slightly higher near the periderm and lowestin the pith. ABA concentrations increase then decrease duringtuber storage. Tuber wounding induced changes in ABA content.ABA content in wound-healing tuber discs decreased after wounding,reached a minimum by 24 h, and then increased from the 3rd tothe 7th day after wounding. Wound-induced ABA accumulationswere reduced by fluridone (FLD); an inhibitor of de novo ABAbiosynthesis. Wound-induced phenylalanine ammonia lyase activitywas slightly reduced and the accumulation of suberin poly(phenolics)and poly(aliphatics) noticeably reduced in FLD-treated tissues.Addition of ABA to the FLD treatment restored phenylalanineammonia lyase activity and suberization, unequivocally indicatingthat endogenous ABA is involved in the regulation of these wound-healingprocesses. Similar experiments showed that endogenous ABA isinvolved in the regulation of water vapour loss, a process linkedto wax accumulation in wound-healing tubers. Rapid reductionof water vapour loss across the wound surface is essential inpreventing desiccation and death of cells at the wound site;live cells are required for suberization. These results unequivocallyshow that endogenous ABA is involved in the regulation of wound-inducedsuberization and the processes that protect surface cells fromwater vapour loss and death by dehydration. Key words: Abscisic acid, poly(aliphatic), poly(phenolic), potato, Solanum tuberosum L., suberin  相似文献   

7.
The chronological relationships between stolon formation, stolon tip swelling, tuber initiation, flowering, senescence, growth and resorption of tubers were studied under field conditions in a diploid population of potato with 238 genotypes, the parental clones and seven tetraploid cultivars. Timing of tuber initiation was not closely related to the timing of stolon formation, flowering and duration of the plant cycle. Tuber initiation very often preceded stolon branching. The number and size distribution of tubers were largely influenced by the degree of stolon branching, the length of the stolon swelling period and tuber resorption. The peak production of stolons and swollen stolon tips largely took place within the flowering period, although in most genotypes, some stolon tip swelling took place until the end of the plant cycle. More information on the general temporal relationships between events related to tuber formation and plant development will contribute to a better understanding of the physiological and genetic basis of the processes leading to the production of harvestable tubers.  相似文献   

8.
K. J. Oparka  D. A. M. Prior 《Planta》1988,176(4):533-540
The fluorescent dye Lucifer Yellow CH (LYCH) was introduced directly into the symplast of potato (Solanum tuberosum L.) tuber storage parenchyma by microinjection and also into the apoplast through cuts made in the stolon cortex. Microinjected LYCH moved away rapidly from a single storage cell and spread radially via the symplast. When the microinjected tissue was subsequently fixed in glutaraldehyde and sectioned the dye was seen clearly to be localised in the cytoplasm but not in the vacuole. In comparison, when LYCH was introduced into cuts made in the stolon cortex the dye entered the tuber by the xylem and subsequently spread apoplastically. No movement of dye was observed in the phloem. In glutaraldehyde-fixed tissues, in which LYCH was introduced to the apoplast, the dye was found within xylem vessels, in the cell walls and in intercellular spaces. Wall regions, possibly associated with plasmodesmata, became stained by the dye as it moved through the apoplast. Three hours after introduction of the dye to the stolon, intense deposits of LYCH were found in the vacuoles of all cells in the tuber, many aligned along the tonoplast. Differentiating vascular parenchyma elements contained large amounts of dye within enlarging vacuoles. However, with the exception of plasmolysed and-or damaged cells, LYCH was absent from the cytoplasm following its introduction to the plasmalemma it is suggested that the most likely pathway from the cell wall to the vacuole was by endocytosis, the dye being transported across the cytoplasm in membrane-bound vesicles. Clathrin-coated vesicles were abundant in the storage cells, providing a possible endocytotic pathway for dye movement. The significance of these observations is discussed in relation to the movement of LYCH in plant tissues and to the movement of solutes within and between storage cells of the tuber.Abbreviation LYCH Lucifer Yellow CH  相似文献   

9.
Summary The formation of adventitious shoots from potato tuber discs explanted onto a modified Murashige and Skoog (MS) medium containingN 6-benzylaminopurine (BAP) (3.0 mg/l), and α-naphthaleneacetic, acid (NAA) (0.01 mg/l), was affected by gibberellic acid (GA). The presence of GA in the explant medium was required for shoot formation and 3×10−10 M GA appeared optimum. However, microscopic examination of the tissue protuberances on the surface of the tuber discs from which shoots arose revealed that GA inhibited the formation of shoot meristems. Tuber discs cultured for 6 wk on MS medium containing BAP and NAA without GA did not initiate adventitious shoots that could be determined visually, but microscopic examination of the tissue protuberances revealed the presence of numerous shoot meristems. Subsequent transfer of these tuber discs to medium with GA but without BAP or NAA resulted in the formation of shoots from 100% of the recultrued dises. Thus it appears that although GA inhibits shoot meristem initiation from potato tuber discs, it is required for shoot development once meristems are initiated. This is Journal Paper 8297 of the Purdue University Agricultural Experiment Station. The research was supported by Purdue University Agricultural Experiment Station Program Improvement Funds. Potato tubers were supplied by Wm. Gehring Farms, Inc., Rensselaer, Indiana.  相似文献   

10.
Regulation of potato tuber protein accumulation by gibberellic Acid   总被引:2,自引:0,他引:2  
Many studies have shown that gibberellic acid (GA3) inhibits tuberization in potato (Solanum tuberosum L.). In this study, we have utilized the 40 kilodalton glycoprotein, patatin, as a marker for biochemical events associated with the process of tuberization. To determine the effects of exogenous applications of GA3 on the induction of the accumulation of this major tuber protein, we measured patatin levels in tubers from treated whole plants, petioles from a single-node cutting system with GA3 applied in a lanolin paste, and stolon tips cultured in vitro on an inductive medium supplemented with GA3. In all three systems, GA3 inhibited the accumulation of patatin and the major 15 and 22 kilodalton tuber proteins. This effect appeared to be selective since most of the other proteins were not affected and, in tubers, at least one protein was stimulated by GA3. These results suggest that GA3 can reverse biochemical events of tuberization in tubers as well as prevent the accumulation of the major tuber proteins in other inducible tissues.  相似文献   

11.

Background and Aims

The three-dimensional distributions of mineral elements in potato tubers provide insight into their mechanisms of transport and deposition. Many of these minerals are essential to a healthy human diet, and characterizing their distribution within the potato tuber will guide the effective utilization of this staple foodstuff.

Methods

The variation in mineral composition within the tuber was determined in three dimensions, after determining the orientation of the harvested tuber in the soil. The freeze-dried tuber samples were analysed for minerals using inductively coupled plasma-mass spectrometry (ICP-MS). Minerals measured included those of nutritional significance to the plant and to human consumers, such as iron, zinc, copper, calcium, magnesium, manganese, phosphorus, potassium and sulphur.

Key Results

The concentrations of most minerals were higher in the skin than in the flesh of tubers. The potato skin contained about 17 % of total tuber zinc, 34 % of calcium and 55 % of iron. On a fresh weight basis, most minerals were higher in tuber flesh at the stem end than the bud end of the tuber. Potassium, however, displayed a gradient in the opposite direction. The concentrations of phosphorus, copper and calcium decreased from the periphery towards the centre of the tuber.

Conclusions

The distribution of minerals varies greatly within the potato tuber. Low concentrations of some minerals relative to those in leaves may be due to their low mobility in phloem, whereas high concentrations in the skin may reflect direct uptake from the soil across the periderm. In tuber flesh, different minerals show distinct patterns of distribution in the tuber, several being consistent with phloem unloading in the tuber and limited onward movement. These findings have implications both for understanding directed transport of minerals in plants to stem-derived storage organs and for the dietary implications of different food preparation methods for potato tubers.  相似文献   

12.
Potato plants (Solanum tuberosum L.) were grown in water culture.About 14 d after tuber initiation no significant differenceswere found between apical and basal tuber parts in 14C-uptakeand partitioning into various fractions from 14C-labelled photosynthate.Thus, the fresh weight of these tubers could be used as a parameterfor the sink size. The 14C-content per tuber (sink strength)20 h after 14CO2-supply to the foliage was significantly correlatedwith the tuber fresh weight. No correlation was found betweenthe 14C-concentration of the tuber (sink activity; ct. ming fr. wt.) and tuber fresh weight. Consequently, tuberfresh weight (sink size) per se must have been a factor whichinfluenced sink strength. Stolon parameters characterizing theirgrowth prior to tuber initiation (e.g. stolon volume) and theircapacity for photosynthate transport (diameter, length) weremeasured at the time of tuber initiation. Significant correlationswere found between these stolon parameters and subsequent growthof individual tubers. Anatomical studies on the proportion ofvarious tissues in the cross sectional area of stolons supportthe idea of a negative relation between growth of individualtubers and transport resistance in the phloem of the stolons.It is concluded that in the initial phase of tuber growth, mainlyfactors outside of the tuber determine its growth rate. In laterstages of tuber growth, when the sink strength increases, thecompeting strength of individual tubers for photosynthate isdominated mainly by factors within the tuber itself, such astheir sink size and sink activity. Key words: Potato tuber, sink size, tuber initiation, transport resistance  相似文献   

13.
GA biosynthesis and catabolism has been shown to play an important role in regulating tuberization in potato. Active GAs are inactivated in the stolon tips shortly after induction to tuberization. Overexpression of a GA inactivation gene results in an earlier tuberization phenotype, while reducing expression of the same gene results in delayed tuberization. In addition, overexpression of genes involved in GA biosynthesis results in delayed tuberization, while decreased expression of those genes results in earlied tuberization. The final step in GA biosynthesis is catalysed by StGA3ox1 and StGA3ox2 activity, that convert inactive forms of GA into active GA1 and GA4. In this study we cloned StGA3ox2 gene in an RNAi construct and used this construct to transform potato plants. The StGA3ox2 silenced plants were smaller and had shorter internodes. In addition, we assayed the concentrations of various GAs in the transgenic plants and showed an altered GA content. No difference was observed on the time point of tuber initiation. However, the transgenic clones had increased number of tubers with the same yield, resulting in smaller average tuber weight. In addition, we cloned the promoter of StGA3ox2 to direct expression of the GUS reporter gene to visualize the sites of GA biosynthesis in the potato plant. Finally, we discuss how changes of several GA levels can have an impact on shoot, stolon and tuber development, as well as the possible mechanisms that mediate feed-forward and feed-back regulation loops in the GA biosynthetic pathway in potato.  相似文献   

14.
Schreiber L  Franke R  Hartmann K 《Planta》2005,220(4):520-530
Native and wound periderm was isolated enzymatically from potato (Solanum tuberosum L. cv. Desirée) tubers at different time intervals between 0 days up to 4 weeks after harvesting. Wound periderm formation was induced by carefully removing native periderm from freshly harvested tubers before storage. The chemical composition of lipids (waxes) obtained by chloroform extraction, as well as the monomeric composition of native and wound suberin polymer after transesterification by boron trifluoride/methanol, was analyzed using gas chromatography and mass spectrometry. Both types of periderm contained up to 20% extractable lipids. Besides linear long-chain aliphatic wax compounds, alkyl ferulates were detected as significant constituents. In wound periderm they amounted to more than 60% of the total extracts. Within 1 month of storage, suberin amounts in the polymer increased 2-fold in native periderm (180 g cm–2), whereas in wound periderm about 75.0 g cm–2 suberin polymer was newly synthesized. Native potato tuber periderm developed a very efficient transport barrier for water with permeances decreasing from 6.4×10–10 m s–1 to 5.5×10–11 m s–1 within 1 month of storage. However, the water permeability of wound periderm was on average 100 times higher with permeances decreasing from 4.7×10–8 m s–1 after 3 days to only 5.4×10–9 m s–1 after 1 month of storage, although suberin and wax amounts in wound periderm amounted to about 60% of native periderm. From this result it must be concluded that the occurrence of suberin with wax depositions in cell walls does not necessarily allow us to conclude that these cell walls must be nearly perfect barriers to water transport. In addition to the occurrence of the lipophilic biopolymer suberin and associated waxes, the still unknown molecular arrangement and precisely localized deposition of suberin within the cell wall must contribute to the efficiency of suberin as a barrier to water transport.  相似文献   

15.
Cell division and cell enlargement during potato tuber formation   总被引:14,自引:0,他引:14  
Cell division and cell enlargement were studied to reveal the developmental mechanism of potato tuberization using both in vivo in vitro culture systems. Distribution of cells in S-phase was visualized by immunolabelling of incorporated bromodeoxyuridine (BrdU). Mitosis was detected in DAPI (4,6-di-amidino-2-phenylindole) or toluidine blue-stained sections. Timing and frequency of cell division were determined by daily cell counting, and cell enlargement was deduced from measurements of cell diameters.Under in vivo conditions, lateral underground buds developed into stolons due to transverse cell divisions and cell elongation in the apical region of the buds. At the onset of tuber formation, the elongation of stolons stopped and cells in pith and cortex enlarged and divided longitudinally, resulting in the swelling of the stolon tip. When tubers had a diameter of 0.8 cm, longitudinal divisions had stopped but randomly oriented division and cell enlargement occurred in the perimedullary region and continued until tubers reached their final diameter.In vitro tubers were formed by axillary buds on single node cuttings cultured under tuber-including conditions. They stopped growing at a diameter of 0.8 cm. Pith and cortex were involved in tuberization such as that found during the early stage of in vivo tuberization (<0.8 cm in diameter). The larger size of in vivo tubers is, however, due to further development of the perimedullary region, which is lacking in vitro conditions.Keywords: Cell division, cell enlargement, DNA synthesis, in vitro culture, potato, tuber formation.   相似文献   

16.
The response of the tubers to NO3 was studied in comparison to the other organs of Solanum tuberosum var. Sava, with special focus on: (a) whether tubers are capable of primary N assimilation; (b) whether N assimilation is stimulated by NO3; and (c) whether primary N assimilation in tubers is important for tuber growth. NO3 reduction via nitrate reductase (NR; EC 1.6.6.1) and NH4+ assimilation via glutamine synthetase (GS; EC 6.3.1.2) occurred predominantly in the shoots, but up to 20% was contributed by the tubers under low‐NO3 conditions. NR activation was highest in tubers (up to 90%) and declined in all organs with increasing NO3 supply. NR and GS activity responded with a decline in tubers and roots as opposed to an increase in the shoots. This corresponded to relative organ growth: growth of tubers and roots was stimulated relative to that of shoots at a limiting NO3 supply. Absolute growth of all organs was stimulated by NO3, whereas tuber number declined. The concentration of N compounds increased with NO3 supply in all organs: NO3 increased most dramatically in the shoots (81‐fold), free amino acids most markedly in the tubers (three‐fold). The amount of patatin and of the 22 kDa protein complex in the tuber reached a minimum when the amount of Rubisco in the shoot reached maximum as a response to NO3 supply. Tuber sucrose and starch increased by 40%, whereas glucose and fructose declined two‐fold as plant N status increased. It is concluded that tubers are potentially N autotroph organs with capacity for de novo synthesis of amino acids. Primary N assimilation in tubers, however, declines with increasing NO3 supply and is not of major importance for tuber growth.  相似文献   

17.
The trichome‐bearing wild potatoes Solanum berthaultii (Hawkes) and Solanum tarijense (Hawkes) (Solanaceae) have noted resistance to leaf‐feeding insect herbivores; however, little is known about their resistance to tuber‐feeding herbivores. This study evaluates resistance in tubers of these two species to attack by the potato tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae). Tubers from a range of accessions were presented to recently emerged neonate tuber moth larvae. Resistance to neonates varied between accessions and was generally higher in accessions of S. tarijense. The contribution to observed resistance of periderm vs. cortex factors was assessed by perforating tuber periderm in paired‐tuber experiments. Across species and accessions, an average of 62% of resistance was attributed to periderm‐related factors. All larvae entered tubers through the eyes. Unidentified cortex‐related factors affected larval development time and pupal weight. Sprouting compromised resistance by reducing the protective value of the periderm. The degree of sprouting also decreased larval development times and increased pupal weights in one of two accessions examined. These results demonstrate the potential of S. berthaultii and S. tarijense as sources of tuber‐resistance and identify accessions of both species with notably high periderm‐based protection. Levels of periderm resistance were not correlated to levels of cortex resistance and represent an independent resistance source compatible with the food value of crop potato.  相似文献   

18.
Discs of cortical and perimedullary tissue from tubers of potato (Solanum tuberosum L. cv. Superior) formed adventitious shoots when cultured on a medium containing Murashige and Skoog's salts, myo-inositol, 100 mg/l; folic acid, 0.5 mg/l; D-biotin, 0.05 mg/l; gibberellic acid (GA3), 0.5 mg/l; thiamine ˙ HCl, 0.1 mg/l; glycine, 2.0 mg/l; pyridoxine ˙ HCl, 0.5 mg/l; nicotinic acid, 0.5 mg/l; sucrose, 25 g/l; casein hydrolysate, 1 g/l; Bacto agar, 9.0 g/l; and a cytokinin [N6-benzylaminopurine (BAP), N6-γ,γ-dimethylallylaminopurine (2iP), or N6-furfurylaminopurine (kinetin)]. Discs of pith tissue either failed to survive or produced callus but did not undergo morphogenesis. Cytokinin was essential for explant survival, while BAP at 3.0 mg/l was most efficacious in promoting shoot initiation. Auxin was not essential for shoot initiation or development; however, a low concentration (0.03 mg/l) of α-naphthaleneacetic acid (NAA) stimulated both explant survival and the number of shoots produced per disc. Indole-3-butyric acid (IBA) and indole-3-acetic acid (IAA) did not stimulate shoot initiation. GA3 was essential for both shoot initiation and subsequent shoot development. The highest incidence of morphogenesis (over 100 shoots in 12 weeks) occurred from tuber discs cultured at 18°C constant and under a photon flux density of 60 μE m-2s-1. No difference in regenerative ability was found in explants taken from source tubers stored for 0 to 20 weeks at 4°C. A histological examination indicated that shoots developed from small clusters of meristematic cells which were initiated from within small protuberances on the surface of the tuber disc 3 weeks after transfer.  相似文献   

19.
The biological control activity of Pythium oligandrum against black scurf of potato caused by Rhizoctonia solani AG-3 was evaluated in field experiments after treatment of potato seed tubers with P. oligandrum. Seed tubers infected with black scurf sclerotia were dipped for a few seconds in a suspension of 103, 104 or 105 mL?1 P. oligandrum oospores and were then air-dried. Each level of P. oligandrum-treatment significantly reduced the disease rates of stolon at a level similar to that achieved by chemical control. When P. oligandrum populations adherent to the surface of seed tubers were determined, oospore counts on tubers treated with 104 or 105 oospores mL?1 were about 540/cm2 or about 22,000/cm2 just after dipping and decreased to about 170/cm2 or 2900/cm2 after a 3-week incubation, respectively. Confocal laser scanning microscopic observation with an immuno-enzymatic staining procedure showed that P. oligandrum hyphae had colonized the sclerotia and established close contact by coiling around the R. solani hyphae present on the surface of seed tubers, in a manner similar to that observed in the dual-culture test. Quantification of R. solani DNA by PCR indicated that the R. solani population was reduced on the seed tubers treated with P. oligandrum compared to untreated tubers. Furthermore, the ability of P. oligandrum to induce resistance against black scurf was determined using a potato tuber disk assay. Treatment of tuber disks with the cell wall protein fraction of P. oligandrum enhanced the expression of defense-related genes such as 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase, lipoxygenase and basic PR-6 genes, and reduced disease severity upon challenge with R. solani compared with untreated controls. These results suggest that biocontrol mechanisms employed by P. oligandrum against black scurf involve both mycoparasitism and induced resistance.  相似文献   

20.
Kim CK  Han JS  Lee HS  Oh JY  Shigaki T  Park SH  Hirschi K 《Plant cell reports》2006,25(11):1226-1232
Previously, we made a chimeric Arabidopsis thaliana vacuolar transporter CAX2B [a variant of N-terminus truncated form of CAX2 (sCAX2) containing the “B” domain from CAX1] that has enhanced calcium (Ca2+) substrate specificity and lost the manganese (Mn2+) transport capability of sCAX2. Here, we demonstrate that potato (Solanum tuberosum L.) tubers expressing the CAX2B contain 50–65% more calcium (Ca2+) than wild-type tubers. Moreover, expression of CAX2B in potatoes did not show any significant increase of the four metals tested, particularly manganese (Mn2+). The CAX2B-expressing potatoes have normally undergone the tuber/plant/tuber cycle for three generations; the trait appeared stable through the successive generations and showed no deleterious alternations on plant growth and development. These results demonstrate the enhanced substrate specificity of CAX2B in potato. Therefore, CAX2B can be a valuable tool for Ca2+ nutrient enrichment of potatoes with reduced accumulation of undesirable metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号