首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
应用稳态荧光和纳秒时间分辨瞬态荧光技术,以不同性质猝灭剂探测了神经节苷脂GM3诱发的Ca 2+-ATP酶构象的变化.结果显示,GM3可使重建的Ca 2+-ATP酶蛋白内源荧光寿命明显延长;并且能不同程度地减弱离子性猝灭剂碘化钾(I-)和脂溶性猝灭剂竹红菌乙素(HB)对Ca 2+-ATP酶色氨酸(Trp)内源荧光的猝灭程度.进一步用时间分辨荧光猝灭动力学分析,当体系中有GM3存在时,HB对该蛋白不同荧光寿命组分的Trp内源荧光猝灭的幅度减小.猝灭常数(Ksv)明显降低.说明GM3依靠其亲水糖链和疏水的神经酰胺链作用,不仅可以改变重建Ca 2+-ATP酶蛋白嵌于膜脂疏水区内部的构象,使位于膜脂疏水区不同部位的Trp残基更加趋向排列于亲水-疏水域界面;而且还使Ca 2+-ATP酶亲水-疏水结构域之间更趋接近,致使整个酶蛋白分子呈现较“紧凑”的构象,表达较高的酶活力.  相似文献   

2.
DsbA蛋白是大肠杆菌周质空间内的巯基 /二硫键氧化酶 ,主要催化底物蛋白质二硫键的形成。利用定点突变结合色氨酸类似物标记技术 ,研究了DsbA蛋白的氧化还原性质和构象变化。结果显示 :(1 )DsbA蛋白的还原态比氧化态的结构更加稳定 ,说明DsbA的强氧化性来源于氧化态构象的紧张状态 ;(2 )DsbA氧化和还原态间特殊的荧光变化主要来源于Trp76在不同状态间微观环境的差异 ;(3 )色氨酸类似物标记不会对DsbA蛋白的结构和功能产生明显的影响 ,利用1 9F NMR进一步证实了DsbA氧化还原状态间的构象变化 ,而且这种变化主要影响Trp76的局部环境 ,而对Trp1 2 6的局部环境没有太大的影响  相似文献   

3.
五个氨基酸磷光性质的研究   总被引:1,自引:0,他引:1  
研究了5个氨基酸的磷光特性、光谱、寿命和最小检测量.以色氨酸(Trp)的磷光最强,在λexem=290/438 nm,最小检测量为1 ng,酪氨酸(Tyr)其次(284/390 nm)为Trp的1/10,苯丙氨酸(Phe)在276/386 nm,脯氨酸(Pro)在308/454 nm,组氨酸(His)在320/466 nm,其磷光只有Trp的1%.Phe与Trp磷光寿命最长,在7 s左右;His最短,只有0.49 s;Tyr 2.8 s,Pro 1.34 s.另外研究氨基酸在甲醇,乙醇,丙醇,丁醇中及pH对氨基酸磷光性质的影响.还计算了Stokes位移能量及激化态pK*a值.  相似文献   

4.
利用35S标记的氨基酸混合物喂养工程菌,成功地制备了35S标记的拟南芥钙调素亚型2(35S-ACaM2),对其纯度、放射活度、电泳行为及其灵敏性等进行了检测.结果表明从工程菌中制备的35S-ACaM2纯度高、放射活度高、Ca2+与EGTA存在时的电泳行为与未标记的ACaM2相同,可作为一种高灵敏性的探针用于检测钙调素结合蛋白.  相似文献   

5.
Mg2+对阿霉素引起心肌线粒体F1F0变化的保护   总被引:4,自引:0,他引:4  
抗肿瘤药物阿霉素(ADM)对心肌线粒体F1F0-复合体呈现抑制而对F1-ATPase无抑制,这表明ADM可能是通过膜脂起作用的,适当浓度Mg2+能降低ADM对复合体的抑制.经 31P-NMR和标记荧光探针NBD-PE,DPH,MC-540以及内源荧光等的测定,结果表明ADM可能首先通过诱导F1F0膜脂形成非双层脂结构,继而影响了膜脂的堆积程度和流动性,进而引起F1F0-复合体酶蛋白构象的改变,最终导致酶活力的降低.Mg2+则可能由于与ADM竞争与心磷脂的结合,而对ADM引起F1F0的变化产生保护作用.  相似文献   

6.
稀土La3+跨PC12细胞膜行为研究   总被引:1,自引:0,他引:1  
使用AR-CM-M1C阳离子测定系统,发展Fura-2荧光测定技术,将其应用于测定细胞内游离稀土离子La3+,并以此研究了La3+跨PC12细胞(大鼠嗜铬细胞瘤细胞)膜的行为.结果表明:在模拟细胞内离子组分,pH=7.05的溶液中,测得La3+-Fura-2的表观解离常数为3.27×10-11 mol·L-1.对于PC12细胞,静息条件下La3+不能跨越细胞膜进入胞内.与钙离子通道相关的KCl和去甲肾上腺素均不能刺激稀土La3+过膜.用哇巴因(ouabain)使胞内Na+超载后,La3+可过膜进入细胞内,且过膜量与胞外La3+浓度和胞内Na+超载程度有一定的浓度依赖关系,提示La3+可以经由Na+/La3+交换机制过膜而进入细胞内.  相似文献   

7.
大豆下胚轴质膜H+-ATPase质子转运的测定   总被引:4,自引:0,他引:4  
以大豆下胚轴为材料,采用改进的匀浆介质,通过两相法制得具有质子转运活力的高纯度质膜微囊.并且发现冻融处理可以促进质膜微囊的翻转而提高荧光猝灭效率.质子载体和质子转运特性分析表明,由Mg2+-ATP引发的荧光猝灭可以被质子载体CCCP恢复,并被质子通道抑制剂DCCD抑制;并且发现质膜H-ATPase专一抑制剂钒酸钠可以完全抑制荧光猝灭,同时发现荧光猝灭依赖于Mg2+,并受K刺激,最适pH为6.5.以上证明所测荧光猝灭是由质膜H-ATPase所进行的质子转运引起的.结果同时表明,维持H-ATPase合适构象和提高质膜微囊封闭性是制备具有H转运活力质膜微囊的两个关键因素.  相似文献   

8.
分别以 3H-UR, 14C-Leu, 125I-UdR为前体,采用三标记参入方法,更严格地在同一样品中同时观察了淋巴细胞染硒前后DNA,RNA,蛋白质的合成及变化。结果表明该方法可行,且显著提高了实验效率;三种受试硒化合物在10-8—10-4mol/L浓度范围内对DNA,RNA,蛋白质合成均具有双相性影响,在中毒浓度时,三种硒化合物的毒性顺序为:亚硒酸钠>硒酸钠>硒蛋氨酸。  相似文献   

9.
建立一种更加精确地分离鉴定胃癌特异肿瘤标志物的定量蛋白质组学技术.首先采用激光捕获显微切割技术(LCM)纯化胃腺癌细胞及胃黏膜良性上皮细胞,将裂解的样本总蛋白经过1D SDS-PAGE预分离,然后采用18O/16O分别标记两种样本酶切后的多肽混合物.结合纳升级液相色谱(Nano-HPLC-MS/MS)定量地鉴定胃癌细胞和胃黏膜良性上皮细胞的差异表达蛋白.共筛选出78个差异表达蛋白,其中42个蛋白质在胃癌组织中表达上调,36个蛋白质下调.Western blot 技术验证了其中几个差异蛋白(moesin, periostin, annexin A2, annexin A4)的表达,与蛋白质组学研究的结果一致.LCM技术结合18O稳定同位素标记的定量蛋白质组学技术,为研究胃癌发生机制、筛选胃癌的分子标志物提供了新的思路,亦为诸如胃癌等复杂体系蛋白质的分离鉴定提供了新的技术选择.  相似文献   

10.
揭示了吖啶橙的吸收光谱和荧光光谱对其浓度依赖性上的区域性特征,分析了测定溶酶体H转运时合理选用吖啶橙浓度及溶酶体用量的重要性、机理和原则,探讨了其与溶酶体的温育时间和K/H交换对测定H转运的明显影响.  相似文献   

11.
The apoflavodoxin protein from Azotobacter vinelandii harboring three tryptophan (Trp) residues, was biosynthetically labeled with 5-fluorotryptophan (5-FTrp). 5-FTrp has the advantage that chemical differences in its microenvironment can be sensitively visualized via 19F NMR. Moreover, it shows simpler fluorescence decay kinetics. The occurrence of FRET was earlier observed via the fluorescence anisotropy decay of WT apoflavodoxin and the anisotropy decay parameters are in excellent agreement with distances between and relative orientations of all Trp residues. The anisotropy decay in 5-FTrp apoflavodoxin demonstrates that the distances and orientations are identical for this protein. This work demonstrates the added value of replacing Trp by 5-FTrp to study structural features of proteins via 19F NMR and fluorescence spectroscopy.  相似文献   

12.
We present strategies for chemical shift assignments of large proteins by magic-angle spinning solid-state NMR, using the 21-kDa disulfide-bond-forming enzyme DsbA as prototype. Previous studies have demonstrated that complete de novo assignments are possible for proteins up to  ∼ 17 kDa, and partial assignments have been performed for several larger proteins. Here we show that combinations of isotopic labeling strategies, high field correlation spectroscopy, and three-dimensional (3D) and four-dimensional (4D) backbone correlation experiments yield highly confident assignments for more than 90% of backbone resonances in DsbA. Samples were prepared as nanocrystalline precipitates by a dialysis procedure, resulting in heterogeneous linewidths below 0.2 ppm. Thus, high magnetic fields, selective decoupling pulse sequences, and sparse isotopic labeling all improved spectral resolution. Assignments by amino acid type were facilitated by particular combinations of pulse sequences and isotopic labeling; for example, transferred echo double resonance experiments enhanced sensitivity for Pro and Gly residues; [2-13C]glycerol labeling clarified Val, Ile, and Leu assignments; in-phase anti-phase correlation spectra enabled interpretation of otherwise crowded Glx/Asx side-chain regions; and 3D NCACX experiments on [2-13C]glycerol samples provided unique sets of aromatic (Phe, Tyr, and Trp) correlations. Together with high-sensitivity CANCOCA 4D experiments and CANCOCX 3D experiments, unambiguous backbone walks could be performed throughout the majority of the sequence. At 189 residues, DsbA represents the largest monomeric unit for which essentially complete solid-state NMR assignments have so far been achieved. These results will facilitate studies of nanocrystalline DsbA structure and dynamics and will enable analysis of its 41-kDa covalent complex with the membrane protein DsbB, for which we demonstrate a high-resolution two-dimensional 13C-13C spectrum.  相似文献   

13.
Mammalian metallothionein (MT) contains 20 cysteine residues involved in the two metal clusters without a disulfide bond. The redox reaction of the Cys thiols was proposed to be associated with the metal distribution of MT. The E. coli DsbA protein is extremely active in facilitating thiol/disulfide exchange both in vivo and in vitro. To further investigate the redox properties of MT, reaction between MT and DsbA was carried out in vitro by fluorescence detection. Equilibrium characterization indicates that the reaction is stoichiometric (1:1) under certain conditions. Kinetic study gives a rate constant of the redox reaction of 4.42 × 105 sec–1 M–1, which is 103-fold larger than that of glutathione reacting with DsbA. Metal-free MT (apo-MT) shows a higher equilibrium reduction potential than MT, but exhibits an indistinguishable kinetic rate. Oxidation of MT by DsbA leads to metal release from the clusters. The characteristic fluorescence increase during reduction of DsbA may provide a sensitive probe for exploring the redox properties of some reductants of biological interest. The result also implies that oxidation of Cys thiols may influence the metal release or delivery from MT.  相似文献   

14.
The mechanism of the disulfide-bond forming enzyme DsbA depends on the very low pKa of a cysteine residue in its active-site and on the relative instability of the oxidized enzyme compared to the reduced one. A thermodynamic cycle has been used to correlate its redox properties to the difference in the free energies of folding (deltadeltaGred/ox) of the oxidized and reduced forms. However, the relation was proved unsatisfied for a number of DsbA variants. In this study, we investigate the thermodynamic and redox properties of a highly destabilized variant DsbA(P151A) (substitution of cis-Pro151 by an alanine) by the means of intrinsic tryptophan fluorescence and by high-sensitivity differential scanning calorimetry (HS-DSC). When the value of deltadeltaGred/ox obtained fluorimetrically for DsbA(P151A) does not correlate with the value expected from its redox potential, the value of deltadeltaGred/ox provided by HS-DSC are in perfect agreement with the predicted thermodynamic cycle for both wild-type and variant. HS-DSC data indicate that oxidized wild-type enzyme and the reduced forms of both wild-type and variant unfold according to a two-state mechanism. Oxidized DsbA(P151A) shows a deviation from two-state behavior that implies the loss of interdomain cooperativity in DsbA caused by Pro151 substitution. The presence of chaotrope in fluorimetric measurements could facilitate domain uncoupling so that the fluorescence probe (Trp76) does not reflect the whole unfolding process of DsbA(P151A) anymore. Thus, theoretical thermodynamic cycle is respected when an appropriate method is applied to DsbA unfolding under conditions in which protein domains still conserve their cooperativity.  相似文献   

15.
The redox properties of periplasmic protein disulfide isomerase (DsbA) from Escherichia coli were analyzed by measuring the equilibrium constant of the oxidation of reduced DsbA by oxidized glutathione. The experiments are based on the finding that the intrinsic tryptophan fluorescence of DsbA increases about threefold upon reduction of the enzyme, which can be explained by the catalytic disulfide bridge quenching the fluorescence of a neighboring tryptophan residue. From the specific fluorescence of DsbA equilibrated in the presence of different ratios of reduced and oxidized glutathione at pH 7, an equilibrium constant of 1.2 x 10(-4) M was determined, corresponding to a standard redox potential (E'0) of DsbA of -0.089 V. Thus, DsbA is a significantly stronger oxidant than cytoplasmic thioredoxins and its redox properties are similar to those of eukaryotic protein disulfide isomerase. The equilibrium constants for the DsbA/glutathione equilibrium were found to be strongly dependent on pH and varied from 2.5 x 10(-3) M to 3.9 x 10(-5) M between pH 4 and 8.5. The redox state-dependent fluorescence properties of DsbA should allow detailed physicochemical studies of the enzyme as well as the quantitative determination of the oxidized protein by fluorescence titration with dithiothreitol and open the possibility to observe bacterial protein disulfide isomerase "at work" during catalysis of oxidative protein folding.  相似文献   

16.
The curry compound, curcumin exerts multiple health-promotive functions; however, its poor solubility and stability limits its biological applications. In this study, we illuminate intermolecular binding mechanisms in the nano-sized complex of curcumin with silkworm protein, 30Kc19. The intrinsic fluorescence of 30Kc19 was gradually quenched by the increase of curcumin concentrations, which demonstrates molecule-molecule complexations mediated by the fluorophore amino acid residues (Tyr, Trp) in the protein. The fluorescence quenching showed that the binding occurred at 1:1 molar ratio with binding constant of 3.28 × 104 M-1. The results from scanning electron microscopy and dynamic light scattering indicate that the complexes were formed with cubicle shapes and sizes of 200–250 nm at pH 8.0 (zeta-potential < ?20 mV). Along with Fourier transform infrared analysis, computational studies of protein-ligand docking simulation suggest a mechanism that curcumin and 30Kc19 forms complexes through specific amino acid residues (Trp174, Trp180, and Trp225) with minimum binding distance (4 Å). The complexation of curcumin with 30Kc19 protein effectively suppressed the degradation of curcumin over 10 h and improved its antioxidant activity up to 30%. These findings suggest an application of 30Kc19 for the delivery of waterinsoluble bioactive medicines.  相似文献   

17.
HIV-1 protease (PR) has been extensively studied due to its importance as a target in AIDS therapy. The enzyme can be obtained via expression of its cloned gene in an appropriate system, or via chemical synthesis. We required a reliable source of fluorine-labeled HIV-1 protease for NMR studies. As our attempts to incorporate a labeling step in overexpression experiments in E. coli failed, we turned to chemical synthesis. Herein is described the first chemical synthesis of an active, 99 amino acid residue HIV-1 encoded protease using Fmoc-chemistry on a total PEG-based resin (CM resin), and labeled with 19F at the Phe residue. Also reported here are NMR studies of the labeled synthetic protein with a synthetic dimerization inhibitor.  相似文献   

18.
The disulfide oxidoreductase DsbA is a strong oxidant of protein thiols and is required for efficient disulfide bond formation in the bacterial periplasm. DsbA contains two tryptophans: W76 and W126. The fluorescence of W76 changes upon reduction of the disulfide bridge, as analyzed previously (Hennecke et al., Biochemistry 1997;36:6391-6400). The fluorescence of W126 is highly quenched. The only two potential side chain quenchers are Q74 and N127, and these were replaced by alanine, resulting in a threefold increase in fluorescence intensity. The fluorescence intensity increase is not due to the removal of dynamic quenchers but to an increase in the population with the longest lifetime. In this report, the possibility of a change in the conformation of W126 is investigated theoretically by using molecular mechanics and dynamic simulations and experimentally by using a reaction with N-bromosuccinimide. This reacts preferably with the most exposed microstate of tryptophan, which is responsible for the longest lifetime. The simulations and the experimental results reveal that the amino acid replacements allow W126 to increase the population of its antiperpendicular conformation. The selectivity of the N-bromosuccinimide reaction allows the visualization of the reshuffling kinetics at exhausting reagent concentration. To the authors' knowledge, this is the first time that the kinetics of Trp population reshuffling have been measured.  相似文献   

19.
Much of our understanding of protein folding mechanisms is derived from experiments using intrinsic fluorescence of natural or genetically inserted tryptophan (Trp) residues to monitor protein refolding and site-directed mutagenesis to determine the energetic role of amino acids in the native (N), intermediate (I) or transition (T) states. However, this strategy has limited use to study complex folding reactions because a single fluorescence probe may not detect all low-energy folding intermediates. To overcome this limitation, we suggest that protein refolding should be monitored with different solvent-exposed Trp probes. Here, we demonstrate the utility of this approach by investigating the controversial folding mechanism of ubiquitin (Ub) using Trp probes located at residue positions 1, 28, 45, 57, and 66. We first show that these Trp are structurally sensitive and minimally perturbing fluorescent probes for monitoring folding/unfolding of the protein. Using a conventional stopped-flow instrument, we show that ANS and Trp fluorescence detect two distinct transitions during the refolding of all five Trp mutants at low concentrations of denaturant: T1, a denaturant-dependent transition and T2, a slower transition, largely denaturant-independent. Surprisingly, some Trp mutants (UbM1W, UbS57W) display Trp fluorescence changes during T1 that are distinct from the expected U → N transition suggesting that the denaturant-dependent refolding transition of Ub is not a U → N transition but represents the formation of a structurally distinct I-state (U → I). Alternatively, this U → I transition could be also clearly distinguished by using a combination of two Trp mutations UbF45W-T66W for which the two Trp probes that display fluorescence changes of opposite sign during T1 and T2 (UbF45W-T66W). Global fitting of the folding/unfolding kinetic parameters and additional folding-unfolding double-jump experiments performed on UbM1W, a mutant with enhanced fluorescence in the I-state, demonstrate that the I-state is stable, compact, misfolded, and on-pathway. These results illustrate how transient low-energy I-states can be characterized efficiently in complex refolding reactions using multiple Trp probes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号