首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 622 毫秒
1.
Traumatic brain injury (TBI) results in neuronal apoptosis, autophagic cell death and necroptosis. Necroptosis is a newly discovered caspases-independent programmed necrosis pathway which can be triggered by activation of death receptor. Previous works identified that necrostatin-1 (NEC-1), a specific necroptosis inhibitor, could reduce tissue damage and functional impairment through inhibiting of necroptosis process following TBI. However, the role of NEC-1 on apoptosis and autophagy after TBI is still not very clear. In this study, the amount of TBI-induced neural cell deaths were counted by PI labeling method as previously described. The expression of autophagic pathway associated proteins (Beclin-1, LC3-II, and P62) and apoptotic pathway associated proteins (Bcl-2 and caspase-3) were also respectively assessed by immunoblotting. The data showed that mice pretreated with NEC-1 reduced the amount of PI-positive cells from 12 to 48?h after TBI. Immunoblotting results showed that NEC-1 suppressed TBI-induced Beclin-1 and LC3-II activation which maintained p62 at high level. NEC-1 pretreatment also reversed TBI-induced Bcl-2 expression and caspase-3 activation, as well as the ratio of Beclin-1/Bcl-2. Both 3-MA and NEC-1 suppressed TBI-induced caspase-3 activation and LC3-II formation, Z-VAD only inhibited caspase-3 activation but increased LC3-II expression at 24?h post-TBI. All these results revealed that multiple cell death pathways participated in the development of TBI, and NEC-1 inhibited apoptosis and autophagy simultaneously. These coactions may further explain how can NEC-1 reduce TBI-induced tissue damage and functional deficits and reflect the interrelationship among necrosis, apoptosis and autophagy.  相似文献   

2.
Raloxifene is a selective estrogen receptor modulator (SERM) that binds to the estrogen receptor (ER), and exhibits potent anti-tumor and autophagy-inducing effects in breast cancer cells. However, the mechanism of raloxifene-induced cell death and autophagy is not well-established. So, we analyzed mechanism underlying death and autophagy induced by raloxifene in MCF-7 breast cancer cells.Treatment with raloxifene significantly induced death in MCF-7 cells. Raloxifene accumulated GFP-LC3 puncta and increased the level of autophagic marker proteins, such as LC3-II, BECN1, and ATG12-ATG5 conjugates, indicating activated autophagy. Raloxifene also increased autophagic flux indicators, the cleavage of GFP from GFP-LC3 and only red fluorescence-positive puncta in mRFP-GFP-LC3-expressing cells. An autophagy inhibitor, 3-methyladenine (3-MA), suppressed the level of LC3-II and blocked the formation of GFP-LC3 puncta. Moreover, siRNA targeting BECN1 markedly reversed cell death and the level of LC3-II increased by raloxifene. Besides, raloxifene-induced cell death was not related to cleavage of caspases-7, -9, and PARP. These results indicate that raloxifene activates autophagy-dependent cell death but not apoptosis. Interestingly, raloxifene decreased the level of intracellular adenosine triphosphate (ATP) and activated the AMPK/ULK1 pathway. However it was not suppressed the AKT/mTOR pathway. Addition of ATP decreased the phosphorylation of AMPK as well as the accumulation of LC3-II, finally attenuating raloxifene-induced cell death.Our current study demonstrates that raloxifene induces autophagy via the activation of AMPK by sensing decreases in ATP, and that the overactivation of autophagy promotes cell death and thereby mediates the anti-cancer effects of raloxifene in breast cancer cells.  相似文献   

3.
《Autophagy》2013,9(3):339-350
In vivo administration of the mitochondrial inhibitor 3-nitropropionic acid (3-NP) produces striatal pathology mimicking Huntington disease (HD). However, the mechanisms of cell death induced by metabolic impairment are not fully understood. The present study investigated contributions of p53 signaling pathway to autophagy activation and cell death induced by 3-NP. Rat striatum was intoxicated with 3-NP by stereotaxic injection. Morphological and biochemical analyses demonstrated activation of autophagy in striatal cells as evidenced by increased the formation of autophagosomes, the expression of active lysosomal cathepsin B and D, microtubule associate protein light chain 3 (LC3) and conversion of LC3-I to LC3-II. 3-NP upregulated the expression of tumor suppressor protein 53 (p53) and its target genes including Bax, p53-upregulated modulator of apoptosis (PUMA) and damage-regulated autophagy modulator (DRAM). 3-NP-induced elevations in pro-apoptotic proteins Bax and PUMA, autophagic proteins LC3-II and DRAM were significantly reduced by the p53 specific inhibitor pifithrin-α (PFT). PFT also significantly inhibited 3-NP-induced striatal damage. Similarly, 3-NP-induced DNA fragmentation and striatal cell death were robustly attenuated by the autophagy inhibitor 3-methyladenine (3-MA) and bafilomycin A1 (BFA). These results suggest that p53 plays roles in signaling both autophagy and apoptosis. Autophagy, at least partially, contributes to neurodegeneration induced by mitochondria dysfunction.  相似文献   

4.
5.
Zhang N  Chen Y  Jiang R  Li E  Chen X  Xi Z  Guo Y  Liu X  Zhou Y  Che Y  Jiang X 《Autophagy》2011,7(6):598-612
The epipolythiodioxopiperazines (ETPs) are fungal secondary metabolites proven to trigger both apoptotic and necrotic cell death of tumor cells. However, the underlying mechanism of their regulatory role in macroautophagy and the interplay between autophagy and apoptosis initiated by the ETPs, remain unexplored. In the current work, we found that 11'-deoxyverticillin A (C42), a member of the ETPs, induces autophagosome formation, accumulation of microtubule-associated protein 1 light chain 3-II (LC3-II ) and degradation of sequestosome 1 (SQSTM1/p62). In addition, the LC3-II accrual and p62 degradation occur prior to caspase activation and coincide with PARP activation. Inhibition of autophagy by either chemical inhibitors or by RNA interference single knockdown of essential autophagic genes partially reduces the cell death and the cleavage of both caspase 3 and PARP. Necrostatin-1, a specific inhibitor of necroptosis, inhibits both the augmentation of LC3-II and the cleavage of caspase 3, which was confirmed by depletion of receptor-interacting protein 1 (RIP-1), a crucial necrostatin-1-targeted adaptor kinase mediating cell death and survival. Moreover, inhibition of PARP by either chemical inhibitors or RNA interference provides obvious protection for cell viability and suppresses the LC3-II accretion caused by C42 treatment. Interestingly, double silencing of LC3 and p62 completely suppressed PARP cleavage and concurrently and maximally augmented the PAR formation induced by C42. Collectively, we have demonstrated that C42 enhances the cellular autophagic process, which requires both PARP and RIP-1 participation, preceding and possibly augmenting, the caspase-dependent apoptotic cell death.  相似文献   

6.
Pre-eclampsia is a common complication during pregnancy; however, the underlying mechanisms of the crosstalk between low-density lipoprotein receptor-related protein 6 (LRP6) and autophagy in trophoblast cells are still not fully explored. Messenger RNA (mRNA) and protein levels of LRP6, beclin 1, Unc-51-like autophagy activating kinase 1 (ULK1), p62, vimentin, matrix metallopeptidase-9 (MMP-9), β-catenin, c-Myc, and Rab7, as well as the ratio of LC3-II/LC3-I, were analysed by quantitative real-time polymerase chain reaction or Western blot analysis, respectively. An MTT assay was used to measure cell growth, and transwell and wound healing assays were carried out to evaluate the invasion and migration abilities of the trophoblasts used. An immunofluorescence assay was used to measure LC3. The mRFP-GFP-LC3 tandem fluorescence assay was applied to detect autophagic flow. LRP6 overexpression was achieved by constructing pcDNA3.1-LRP6 vectors. LRP6 was expressed at low levels in HTR-8/SVneo cells under hypoxia/reoxygenation (H/R) conditions. H/R inhibited the activation of autophagy. LRP6 overexpression promoted cell proliferation and activated autophagy, which led to the upregulation of beclin 1 and ULK1, as well as the ratio of LC3-II/LC3-I and the downregulation of p62. Furthermore, LRP6 overexpression elevated the migration and invasion abilities of the indicated cells and increased vimentin and MMP-9 expression levels. Furthermore, LRP6 upregulated Rab7 and activated autophagy through the Wnt/β-catenin pathway. The late autophagy inhibitor bafilomycin A1 (Baf-A1) and the Wnt/β-catenin pathway inhibitor PKF115-584 reversed the effects of LRP6 on trophoblast autophagy, migration and invasion. LRP6 promotes Rab7-mediated autophagy by activating the Wnt/β-catenin pathway, which leads to increasing migration and invasion of trophoblast cells. Our study paves a new avenue for clinical treatment, and LRP6 may serve as an essential target in pre-eclampsia.  相似文献   

7.
We recently demonstrated that resveratrol induces caspase-dependent apoptosis in multiple cancer cell types. Whether apoptosis is also regulated by other cell death mechanisms such as autophagy is not clearly defined. Here we show that inhibition of autophagy enhanced resveratrol-induced caspase activation and apoptosis. Resveratrol inhibited colony formation and cell proliferation in multiple cancer cell types. Resveratrol treatment induced accumulation of LC3-II, which is a key marker for autophagy. Pretreatment with 3-methyladenine (3-MA), an autophagy inhibitor, increased resveratrol-mediated caspase activation and cell death in breast and colon cancer cells. Inhibition of autophagy by silencing key autophagy regulators such as ATG5 and Beclin-1 enhanced resveratrol-induced caspase activation. Mechanistic analysis revealed that Beclin-1 did not interact with proapoptotic proteins Bax and Bak; however, Beclin-1 was found to interact with p53 in the cytosol and mitochondria upon resveratrol treatment. Importantly, resveratrol depleted ATPase 8 gene, and thus, reduced mitochondrial DNA (mtDNA) content, suggesting that resveratrol induces damage to mtDNA causing accumulation of dysfunctional mitochondria triggering autophagy induction. Together, our findings indicate that induction of autophagy during resveratrol-induced apoptosis is an adaptive response.  相似文献   

8.
《Autophagy》2013,9(6):598-612
The epipolythiodioxopiperazines (ETPs) are fungal secondary metabolites proven to trigger both apoptotic and necrotic cell death of tumor cells. However, the underlying mechanism of their regulatory role in macroautophagy and the interplay between autophagy and apoptosis initiated by the ETPs, remain unexplored. In the current work, we found that 11'-deoxyverticillin A (C42), a member of the ETPs, induces autophagosome formation, accumulation of microtubule-associated protein 1 light chain 3-II (LC3-II ) and degradation of sequestosome 1 (SQSTM1/p62). In addition, the LC3-II accrual and p62 degradation occur prior to caspase activation and coincide with PARP activation. Inhibition of autophagy by either chemical inhibitors or by RNA interference single knockdown of essential autophagic genes partially reduces the cell death and the cleavage of both caspase 3 and PARP. Necrostatin-1, a specific inhibitor of necroptosis, inhibits both the augmentation of LC3-II and the cleavage of caspase 3, which was confirmed by depletion of receptor-interacting protein 1 (RIP-1), a crucial necrostatin-1-targeted adaptor kinase mediating cell death and survival. Moreover, inhibition of PARP by either chemical inhibitors or RNA interference provides obvious protection for cell viability and suppresses the LC3-II accretion caused by C42 treatment. Interestingly, double silencing of LC3 and p62 completely suppressed PARP cleavage and concurrently and maximally augmented the PAR formation induced by C42. Collectively, we have demonstrated that C42 enhances the cellular autophagic process, which requires both PARP and RIP-1 participation, preceding and possibly augmenting, the caspase-dependent apoptotic cell death.  相似文献   

9.
Helicobacter pylori vacuolating cytotoxin A (VacA) has been considered as an apoptosis-inducing factor. Here, we investigated the mechanism of VacA-induced apoptosis in relation to the defense mechanism and MAP kinases pathway in gastric epithelial cells. AGS cells exposed to enriched VacA extracts affected the level of SOD-1 and villin. We further investigated the role of VacA in those inductions using a functional recombinant VacA (rVacA). Activation of p38 MAPK and Bax dimerization by rVacA were increased in a dose-dependent manner. rVacA-induced ERK1/2 MAPK activation was maximal at 30 min and 4 h and 1-4 microg/ml of rVacA. rVacA-induced SOD-1 expression was considerably diminished by inhibiting ERK1/2 MAPK and it was slightly increased by inhibiting p38 MAPK. rVacA increased or decreased villin expression depending on dose and exposure time and its expression was mainly appeared in the contractile actin ring of the dividing cells. Despite its cytoprotective effect, SB-203580, a p38 inhibitor, was unlikely to reduce VacA-induced Bax dimerization and rather inhibited villin and Bcl2 expression, indicating that p38 may also play a role in cell proliferation or differentiation for survival after VacA intoxication. Furthermore, p38 inhibitor accelerated rVacA-induced cell death after exposure of AGS cells to H(2)O(2) but ERK1/2 inhibitor protected cells from H(2)O(2) insult. These results suggest that SOD-1 and villin are expressed differentially upon VacA insult depending on dose and exposure time via ERK and p38 MAP kinases; decrease in SOD-1 and villin expression coupled with Bax dimerization leads to apoptosis of gastric epithelial cells.  相似文献   

10.
Several lines of evidence suggest that the mechanism underlying drug-induced neuronal apoptosis is initiated by the increased production of reactive oxygen species (ROS). 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a neurotoxin, has been shown to initiate an apoptotic cascade by increasing ROS in the dopaminergic neurons of the substantia nigra, leading to the morphological and physiological features associated with Parkinson’s disease. Recently, it has been reported that autophagy, a type of programmed cell death independent of the apoptotic cascade, also plays a role in neuronal damage. Although autophagy is negatively regulated by the mammalian target of rapamycin receptor (mTOR), there is some evidence showing a novel function for the anti-apoptotic protein Bcl-2. Bcl-2 is proposed to play a role in negatively regulating autophagy by blocking an essential protein in the signaling pathway, Beclin 1. Nevertheless, it is unclear whether autophagy is also correlated with apoptotic signaling in 1-methyl-4-phenylpyridinium (MPP+) toxicity. Therefore, we hypothesized that the MPP+ toxicity generally associated with initiating the apoptotic signaling cascade also increases an autophagic phenotype in neuronal cells. Using the SK-N-SH dopaminergic cell lines, we demonstrate that MPP+ increases the expression of microtubule-associated protein light chain 3 (LC3-II), an autophagosome membrane marker and the mTOR signaling pathway, and Beclin 1 while decreasing the Bcl-2 levels. Moreover, these expressions correlate with a decreased binding ratio between Bcl-2 and Beclin 1, in effect limiting the regulation of the downstream autophagic markers, such as LC3-II. Our results indicate that MPP+ can induce autophagy in SK-N-SH cells by decreasing the Bcl-2/Beclin 1 complex.  相似文献   

11.
Helicobacter pylori vacuolating cytotoxin, VacA, induces vacuolation, mitochondrial damage, cytochrome c release, and apoptosis of gastric epithelial cells. To detect gastric proteins that serve as VacA receptors, we used VacA co-immunoprecipitation techniques following biotinylation of the cell surface and identified p250, a receptor-like protein-tyrosine phosphatase beta (RPTP beta) as a VacA-binding protein (Yahiro, K., Niidome, T., Kimura, M., Hatakeyama, T., Aoyagi, H., Kurazono, H., Imagawa, K., Wada, A., Moss, J., and Hirayama, T. (1999) J. Biol. Chem. 274, 36693-36699). VacA causes vacuolation of G401 cells, a human kidney tumor cell line, although they do not express RPTP beta. By co-immunoprecipitation with VacA, we identified p140 as a potential receptor in those cells. p140 purified by chromatography on a peanut agglutinin affinity matrix contained internal amino acid sequences of RGEENTDYVNASFIDGYRQK and AEGILDVFQTVK, which are identical to those in RPTP alpha. The peptide mass fingerprinting of p140 by time of flight-MS analysis also supported this identification. Treatment of G401 cells with RPTP alpha-morpholino antisense oligonucleotide before exposure to toxin inhibited vacuolation. These data suggest that RPTP alpha acts as a receptor for VacA in G401 cells. Thus, two receptor tyrosine phosphatases, RPTP alpha and RPTP beta, serve as VacA receptors.  相似文献   

12.
We reported in our previously executed studies that the fermented culture broth of Antrodia salmonea (AS), a mushroom used in Taiwanese folk medicine induced reactive oxygen species (ROS)-mediated apoptosis in human ovarian carcinoma cells. In this study, we studied the anticancer efficacies of AS (0–240 μg/ml) by examining the key molecular events implicated in cell death associated with autophagy in SKOV-3 and A2780 human ovarian carcinoma cells and clarified the fundamental molecular mechanisms. Treatment of ovarian carcinoma cells with AS-induced autophagic cell death mediated by increased microtubule-associated protein LC3-II, GFP-LC3 puncta, and acidic vesicular organelle (AVO) formation. These events are linked with the activation of p62/SQSTM1, the inhibition of ATG4B, the expression of ATG7, and the dysregulation of Beclin-1/Bcl-2 (i.e., B-cell lymphoma 2). N-acetylcysteine inhibited AS-induced ROS generation, which in turn constricted AS-induced LC3 conversion, AVO formation, and ATG4B inhibition, indicating ROS-mediated autophagy cell death. In addition, the 3-methyladenine (3-MA) or chloroquine (CQ)-induced autophagy inhibition decreased AS-induced apoptosis. Additionally, apoptosis inhibition by Z-VAD-FMK, a pan-caspase inhibitor, substantially suppressed AS-induced autophagy. Furthermore, AS-inhibited HER-2/ neu and PI3K/AKT signaling pathways which were reversed by autophagy inhibitors 3-MA and CQ. Thus, A. salmonea is a potential chemopreventive agent that is capable of activating ROS-mediated autophagic cell death in ovarian carcinoma cells.  相似文献   

13.
Impairments in mitochondrial energy metabolism are thought to be involved in many neurodegenerative diseases. The mitochondrial inhibitor 3-nitropropionic acid (3-NP) induces striatal pathology mimicking neurodegeneration in vivo. Previous studies showed that 3-NP also triggered autophagy activation and apoptosis. In this study, we focused on the high-mobility group box 1 (HMGB1) protein, which is important in oxidative stress signaling as well as in autophagy and apoptosis, to explore whether the mechanisms of autophagy and apoptosis in neurodegenerative diseases are associated with metabolic impairment. To elucidate the role of HMGB1 in striatal degeneration, we investigated the impact of HMGB1 on autophagy activation and cell death induced by 3-NP. We intoxicated rat striata with 3-NP by stereotaxic injection and analyzed changes in expression HMGB1, proapoptotic proteins caspase-3 and phospho-c-Jun amino-terminal kinases (p-JNK). 3-NP–induced elevations in p-JNK, cleaved caspase-3, and autophagic marker LC3-II as well as reduction in SQSTM1 (p62), were significantly reduced by the HMGB1 inhibitor glycyrrhizin. Glycyrrhizin also significantly inhibited 3-NP–induced striatal damage. Neuronal death was replicated by exposing primary striatal neurons in culture to 3-NP. It was clear that HMGB1 was important for basal autophagy which was shown by rescue of cells through HMGB1 targeting shRNA approach.3-NP also induced the expression of HMGB1, p-JNK, and LC3-II in striatal neurons, and p-JNK expression was significantly reduced by shRNA knockdown of HMGB1, an effect that was reversed by exogenously increased expression of HMGB1. These results suggest that HMGB1 plays important roles in signaling for both autophagy and apoptosis in neurodegeneration induced by mitochondrial dysfunction.  相似文献   

14.
《Autophagy》2013,9(3):370-379
Host cell responses to Helicobacter pylori infection are complex and incompletely understood. Here, we report that autophagy is induced within human-derived gastric epithelial cells (AGS) cells in response to H. pylori infection. These autophagosomes were distinct and different from the large vacuoles induced during H. pylori infection. Autophagosomes were detected by transmission electron microscopy, conversion of LC3-I to LC3-II, GFP-LC3 recruitment to autophagosomes, and depended on Atg5 and Atg12. The induction of autophagy depended on the vacuolating cytotoxin (VacA) and, moreover, VacA was sufficient to induce autophagosome formation. The channel forming activity of VacA was necessary for inducing autophagy. Intracellular VacA partially co-localized with GFP-LC3, indicating that the toxin associates with autophagosomes. The inhibition of autophagy increased the stability of intracellular VacA, which in turn resulted in enhanced toxin-mediated cellular vacuolation. These findings suggest that the induction of autophagy by VacA may represent a host mechanism to limit toxin-induced cellular damage.  相似文献   

15.
Autophagy is associated with luteal cells death during regression of the corpus luteum (CL) in some species. However, the involvement of autophagy or the association between autophagy and apoptosis in CL regression are largely unknown. Therefore, we investigated the role of autophagy in CL regression and its association with apoptosis. Ovaries were obtained from pseudopregnant rats at Days 2 (early), 7 (mid-), and 14 and 20 (late-luteal stage) of the pseudopregnancy; autophagy-associated protein (microtuble-associated protein light chain 3 [LC3]) was immunolocalized and its expression level was measured. Luteal cell apoptosis was evaluated by measuring cleaved caspase 3 expression. LC3 expression increased slightly from early to mid-luteal stage, with maximal levels detected at the late-luteal stage in steroidogenic luteal cells. The expression level of the membrane form of LC3 (LC3-II) also increased during luteal stage progression, and reached a maximum at the end point of late-luteal stage (Day 20). This pattern coincided with cleaved caspase 3 expression. Furthermore, LC3-II expression increased, as did levels of cleaved caspase 3 in luteal cells cultured with prostaglandin F(2alpha) known to induce CL regression. These findings suggest that luteal cell autophagy is directly involved in CL regression, and is correlated with increased apoptosis. In addition, autophagic processes were inhibited using 3-methyladenine or bafilomycin A1 to evaluate the role of autophagy in apoptosis induction. Inhibition of autophagosome degradation by fusion with lysosomes (bafilomycin A1) increased apoptosis and cell death. Furthermore, inhibition of autophagosome formation (3-methyladenine) decreased apoptosis and cell death, suggesting that the accumulation of autophagosomes induces luteal cell apoptosis. In conclusion, these results indicate that autophagy is involved in rat luteal cell death through apoptosis, and is most prominent during CL regression.  相似文献   

16.
The histone deacetylase inhibitor (HDACi) LBH589 has been verified as an effective anticancer agent. The identification and characterization of new targets for LBH589 action would further enhance our understanding of the molecular mechanisms involved in HDACi therapy. The role of the tumor suppressor death-associated protein kinase (DAPK) in LBH589-induced cytotoxicity has not been investigated to date. Stable DAPK knockdown (shRNA) and DAPK overexpressing (DAPK+++) cell lines were generated from HCT116 wildtype colon cancer cells. LBH589 inhibited cell proliferation, reduced the long-term survival, and up-regulated and activated DAPK in colorectal cancer cells. Moreover, LBH589 significantly suppressed the growth of colon tumor xenografts and in accordance with the in vitro studies, increased DAPK levels were detected immunohistochemically. LBH589 induced a DAPK-dependent autophagy as assessed by punctuate accumulation of LC3-II, the formation of acidic vesicular organelles, and degradation of p62 protein. LBH589-induced autophagy seems to be predominantly caused by DAPK protein interactions than by its kinase activity. Caspase inhibitor zVAD increased autophagosome formation, decreased the cleavage of caspase 3 and PARP but didn’t rescue the cells from LBH589-induced cell death in crystal violet staining suggesting both caspase-dependent as well as caspase-independent apoptosis pathways. Pre-treatment with the autophagy inhibitor Bafilomycin A1 caused caspase 3-mediated apoptosis in a DAPK-dependent manner. Altogether our data suggest that DAPK induces autophagy in response to HDACi-treatment. In autophagy deficient cells, DAPK plays an essential role in committing cells to HDACi-induced apoptosis.  相似文献   

17.
Calpain, calcium-dependent cysteine protease, is reported here to impose the crucial influence on oridonin-induced L929 cell apoptosis and autophagy. We found that inhibition of calpain increased oridonin-induced Bax activation, cytochrome c release and PARP cleavage, indicating that calpain plays an anti-apoptotic role in oridonin-induced L929 cell apoptosis. To explore this potential anti-apoptotic mechanism, we inhibited calpain and proteasome activity in oridonin-induced L929 cell apoptosis, and discovered that the inducible IκBα proteolysis was partially blocked by the inhibition of either calpain or proteasome, but completely blocked by the inhibition of both. It demonstrated that calpain and proteasome were two distinct pathways participating in IκBα degradation. To further study the role of calpain in oridonin-induced L929 cell autophagy, we discovered that calpain inhibitor decreased oridonin-induced autophagy, as well as Beclin 1 activation and the conversion from LC3-I to LC3-II. Moreover, Inhibition of autophagy by 3-MA increased oridonin-induced apoptosis. In conclusion, besides suppressing apoptosis, calpain promotes autophagy in oridonin-induced L929 cell death, and inhibition of autophagy might contribute to up-regulation of apoptosis.  相似文献   

18.
Wang K  Liu R  Li J  Mao J  Lei Y  Wu J  Zeng J  Zhang T  Wu H  Chen L  Huang C  Wei Y 《Autophagy》2011,7(9):966-978
Quercetin, a dietary antioxidant present in fruits and vegetables, is a promising cancer chemopreventive agent that inhibits tumor promotion by inducing cell cycle arrest and promoting apoptotic cell death. In this study, we examined the biological activities of quercetin against gastric cancer. Our studies demonstrated that exposure of gastric cancer cells AGS and MKN28 to quercetin resulted in pronounced pro-apoptotic effect through activating the mitochondria pathway. Meanwhile, treatment with quercetin induced appearance of autophagic vacuoles, formation of acidic vesicular organelles (AVOs), conversion of LC3-I to LC3-II, recruitment of LC3-II to the autophagosomes as well as activation of autophagy genes, suggesting that quercetin initiates the autophagic progression in gastric cancer cells. Furthermore, either administration of autophagic inhibitor chloroquine or selective ablation of atg5 or beclin 1 using small interfering RNA (siRNA) could augment quercetin-induced apoptotic cell death, suggesting that autophagy plays a protective role against quercetin-induced apoptosis. Moreover, functional studies revealed that quercetin activated autophagy by modulation of Akt-mTOR signaling and hypoxia-induced factor 1α (HIF-1α) signaling. Finally, a xenograft model provided additional evidence for occurrence of quercetin-induced apoptosis and autophagy in vivo. Together, our studies provided new insights regarding the biological and anti-proliferative activities of quercetin against gastric cancer, and may contribute to rational utility and pharmacological study of quercetin in future anti-cancer research.  相似文献   

19.
Anticancer properties and mechanisms of mimulone (MML), C-geranylflavonoid isolated from the Paulownia tomentosa fruits, were firstly elucidated in this study. MML prevented cell proliferation in a dose- and time-dependent way and triggered apoptosis through the extrinsic pathway in A549 human lung adenocarcinoma cells. Furthermore, MML-treated cells displayed autophagic features, such as the formation of autophagic vacuoles, a primary morphological feature of autophagy, and the accumulation of microtubule-associated protein 1 light chain 3 (LC3) puncta, another typical maker of autophagy, as determined by FITC-conjugated immunostaining and monodansylcadaverine (MDC) staining, respectively. The expression levels of LC3-I and LC3-II, specific markers of autophagy, were also augmented by MML treatment. Autophagy inhibition by 3-methyladenine (3-MA), pharmacological autophagy inhibitor, and shRNA knockdown of Beclin-1 reduced apoptotic cell death induced by MML. Autophagic flux was not significantly affected by MML treatment and lysosomal inhibitor, chloroquine (CQ) suppressed MML-induced autophagy and apoptosis. MML-induced autophagy was promoted by decreases in p53 and p-mTOR levels and increase of p-AMPK. Moreover, inhibition of p53 transactivation by pifithrin-α (PFT-α) and knockdown of p53 enhanced induction of autophagy and finally promoted apoptotic cell death. Overall, the results demonstrate that autophagy contributes to the cytotoxicity of MML in cancer cells harboring wild-type p53. This study strongly suggests that MML is a potential candidate for an anticancer agent targeting both autophagy and apoptotic cell death in human lung cancer. Moreover, co-treatment of MML and p53 inhibitor would be more effective in human lung cancer therapy.  相似文献   

20.
Neuronal death induced by serum deprivation (SD) in HT22-cells was accompanied by a moderate activation of caspase-3, a prominent upregulation of AIF and its translocation into the nucleus. In addition protein levels of autophagy markers such as LC3 and beclin-1 were affected by SD. The ratio of LC3-II/LC3-I was significantly increased in serum deprived cultures. Furthermore, the addition of the pan-caspase inhibitor z-VAD(OMe)-FMK (zVAD) does not protect HT22-cells from SD-induced neurodegeneration. However, addition of the autophagy inhibitors such as 3-methyladenine (3-MA) or bafilomycin A1 (BafA1) provided a potentiation of cell death induced by SD. z-VAD and 3-MA in combination were not only ineffective in rescuing cells from the damaging effects of SD, but seem likely to act in synergy to potentiate slightly SD-induced cell death. The results of the current study suggest that SD induced predominantly caspase-independent apoptosis in hippocampal HT22 cells and that inhibition of autophagy is rather deleterious than protective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号