首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ethanol yields were 2.1 (P = 0.06) to 2.3 (P = 0.01) times higher in simultaneous saccharification and fermentation (SSF) reactions of microcrystalline cellulose when cellulase was physisorbed on silica nanoparticles compared to enzyme in solution. In SSF reactions, cellulose is hydrolyzed to glucose by cellulase while yeast simultaneously ferments glucose to ethanol. The 35°C temperature and the presence of ethanol in SSF reactions are not optimal conditions for cellulase. Immobilization onto solid supports can stabilize the enzyme and promote activity at non-optimum reaction conditions. Mock SSF reactions that did not contain yeast were used to measure saccharification products and identify the mechanism for the improved ethanol yield using immobilized cellulase. Cellulase adsorbed to 40 nm silica nanoparticles produced 1.6 times (P = 0.01) more glucose than cellulase in solution in 96 h at pH 4.8 and 35°C. There was no significant accumulation (<250 μg) of soluble cellooligomers in either the solution or immobilized enzyme reactions. This suggests that the mechanism for the immobilized enzyme's improved glucose yield compared to solution enzyme is the increased conversion of insoluble cellulose hydrolysis products to soluble cellooligomers at 35°C and in the presence of ethanol. The results show that silica-immobilized cellulase can be used to produce increased ethanol yields in the conversion of lignocellulosic materials by SSF.  相似文献   

2.
Cellulase reaction mechanism was investigated with the use of following pure cellulosic substrates: Microcrystalline cellulose (Avicel), α‐cellulose (Sigma), filter paper, cotton, and non‐crystalline cellulose (NCC). NCC is amorphous cellulose prepared in our laboratory by treatment with concentrated sulfuric acid. When hydrolyzed with cellulase, NCC produces significant amount of cello‐oligosaccharides (COS) as reaction intermediates along with glucose and cellobiose. The COS produced by cellulase were categorized into two different moieties based upon their degree of polymerization (DP): low DP (less than 7) COS (LD‐COS) and high DP COS (HD‐COS). Endo‐glucanase (Endo‐G) reacts rapidly on the NCC reducing its DP to 30–60, after which the Endo‐G reaction with NCC ceases. HD‐COS is produced from NCC by the action of Endo‐G, whereas LD‐COS is produced by exo‐glucanase (Exo‐G). β‐Glucosidase (β‐G) hydrolyzes LD‐COS to produce cellobiose, but it does not hydrolyze HD‐COS. DP of NCC affects the action of Exo‐G in such a way that the overall yield is high for high DP NCC. This is in line with previous findings that substrate‐recognition by Exo‐G requires binding on β‐glucan chain with DP of 10 for the hydrolysis to take place. The individual cellulose chain residues within solid having DP less than 10 therefore remain unreacted. The percentage of the unreacted portion would be lower for high DP NCC, which results high overall conversion. The surface area and the number of reactive sites on the substrate facilitate adsorption of enzyme therefore the initial rate of the hydrolysis. The overall extent of conversion of cellulose, however, is controlled primarily by its inherent characteristics such as DP and crystallinity. Biotechnol. Bioeng. 2009;102: 1570–1581. © 2008 Wiley Periodicals, Inc.  相似文献   

3.
A mechanistic model for rational design of optimal cellulase mixtures   总被引:1,自引:0,他引:1  
A model‐based framework is described that permits the optimal composition of cellulase enzyme mixtures to be found for lignocellulose hydrolysis. The rates of hydrolysis are shown to be dependent on the nature of the substrate. For bacterial microcrystalline cellulose (BMCC) hydrolyzed by a ternary cellulase mixture of EG2, CBHI, and CBHII, the optimal predicted mixture was 1:0:1 EG2:CBHI:CBHII at 24 h and 1:1:0 at 72 h, at loadings of 10 mg enzyme per g substrate. The model was validated with measurements of soluble cello‐oligosaccharide production from BMCC during both single enzyme and mixed enzyme hydrolysis. Three‐dimensional diagrams illustrating cellulose conversion were developed for mixtures of EG2, CBHI, CBHII acting on BMCC and predicted for other substrates with a range of substrate properties. Model predictions agreed well with experimental values of conversion after 24 h for a variety of enzyme mixtures. The predicted mixture performances for substrates with varying properties demonstrated the effects of initial degree of polymerization (DP) and surface area on the performance of cellulase mixtures. For substrates with a higher initial DP, endoglucanase enzymes accounted for a larger fraction of the optimal mixture. Substrates with low surface areas showed significantly reduced hydrolysis rates regardless of mixture composition. These insights, along with the quantitative predictions, demonstrate the utility of this model‐based framework for optimizing cellulase mixtures. Biotechnol. Bioeng. 2011;108: 2561–2570. © 2011 Wiley Periodicals, Inc.  相似文献   

4.
The rates of enzymatic hydrolysis of pretreated rice straw and bagasse have been studied and compared with the hydrolysis rates of microcrystalline cellulose powder (MCCP) and Solka Floc. The effects of particle size reduction and enzyme loading on the rates of hydrolysis of rice straw and bagasse were also studied. It was found that the rates of hydrolysis of pretreated rice straw and bagasse are much higher than that of MCCP and Solka Floc. For both rice straw and bagasse, particle size reduction had very little effect in enhancing the rate of hydrolysis. Lignin present at <10% did not seem to hinder the accessibility of the enzyme to the cellulose surface. An enzyme loading > 40 Ug?1 had no effect on the hydrolysis rate of rice straw or bagasse.  相似文献   

5.
Product inhibition is a barrier for enzymatic conversion of cellulose into reducing sugar in single aqueous phase. In addition, the difficulty in the recovery of cellulase also leads to high cost for the enzymatic hydrolysis of cellulose. In this study, enzymatic degradation of cellulose was carried out in pH–pH recyclable aqueous two-phase systems (ATPS) composed by copolymers poly (AA-co-DMAEMA-co-BMA) (abbreviated PADB3.8) and poly (MAA-co-DMAEMA-co-BMA) (abbreviated PMDB). In the systems, cellulase was immobilized on pH-response copolymer PMDB by using 1-Ethyl-3-(3-dimethyllaminopropyl)-carbodiimide hydrochloride (EDC) as cross-linker. Optimized partition coefficient of product in the systems was 2.45, in the presence of 40 mM (NH4)2SO4. Insoluble substrate and immobilized enzyme were biased to bottom phase, while the product was partitioned to top phase. Microcrystalline cellulose was hydrolyzed into reducing sugar, and the product entered into top phase. The yield of saccharification in ATPS could reach 70.57% at the initial substrate concentration of 0.5% (w/v), and the value was 9.3% higher than that in the single aqueous phase. Saccharification yield could reach 66.15% after immobilized cellulase was recycled five times in ATPS.  相似文献   

6.
The production of cellulase was investigated in repeated batch experiments using immobilized cells of two Trichoderma reesei mutants in a rotating disc fermenter under very low shear stress. The enzyme production with one of the mutants was maintained for three successive batch cycles (ca. 30 days), while with the other mutant the cellulase formation lasted only one batch cycle (14 days) because of a genetic instability. The enzymatic hydrolysis of microcrystalline cellulose by the cellulase complex formed in the rotating disc fermenter is distinctly higher than that of cellulase produced in a stirred tank reactor, in which the higher shear stress partially damages the enzyme molecules, mainly those of cellobiohydrolase. The higher specific activity of the cellulase produced in the disc fermenter correlates with its higher capacity of adsorption onto microcrystalline cellulose.  相似文献   

7.
Kinetics of cellulose hydrolysis with halostable cellulase from a marine Aspergillus niger was analyzed at different salinities. Cellulase activity in 8% NaCl solution was 1.43 folds higher than that in NaCl free solution. Half saturation constant, Km (15.6260 g/L) and the rate constant of deactivation, Kde (0.3369 g/L h) in 8% NaCl solution was lower than that (18.6364 g/L), 0.3754 (g/L h) in NaCl free solution. The maximum initial hydrolysis velocity, Vmax (25.5295 g/L h), in 8% NaCl solution was higher than that in NaCl free solution (25.0153 g/L h). High salinity increased affinity to the cellulase to the substrate and thermostability. Halostable cellulase from a marine Aspergillus niger was valuable for cellulose hydrolysis under high salinity conditions.  相似文献   

8.
Abstract

To prepare a smart biocatalyst, cellulase was immobilized on the reversibly soluble matrix Eudragit L-100 by non-covalent and covalent methods. Covalent immobilization using carbodiimide coupling exhibited superior enzyme loading and reusability compared with non-covalent immobilization, and the covalent loading was increased by almost 20% through the addition of N-hydroxysuccinimide. The temperature optimum of the cellulase was not improved apparently by immobilization but the pH optimum increased from 4.75 to 5.25. Immobilized cellulase was more active than free cellulase above pH 5.0. Immobilized cellulase was more stable than free cellulase during storage at 4°C, room temperature and 50°C. Km values of immobilized and free cellulase were 85.55 and 73.84 g L?1, respectively. About 50% productivity was retained after five cycles for hydrolysis of steam-exploded straw.  相似文献   

9.
Cellulase from Trichoderma reesei (Celluclast 1.5 L, Novozyme) was immobilized by sol–gel encapsulation, using binary or ternary mixtures of tetramethoxysilane (TMOS) with alkyl- or aryl-substituted trimethoxysilanes as precursors. Optimization of immobilization conditions resulted in 92 % recovery of total enzymatic activity in the best immobilized preparate. The immobilized cellulase exhibiting the highest activity, obtained from tetramethoxysilane and methyltrimethoxysilane precursors at 3:1 molar ratio, was investigated in the hydrolysis reaction of microcrystalline cellulose (Avicel PH101). Although the optimal values did not change significantly, both temperature and pH stabilities of the sol–gel entrapped cellulase improved compared to the native enzyme. Immobilization also conferred superior resistance against the inactivation effect of glucose. Reuse of the sol–gel entrapped cellulase showed 40 % retention of the initial activity after five batch hydrolysis cycles, demonstrating the potential of this biocatalyst for large-scale application.  相似文献   

10.
The properties of the cellulosome (a cellulose-binding, multiple cellulase-containing protein complex isolated from Clostridium thermocellum) have been compared with the previously reported characteristics for crude cellulase [see 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] preparations. Similar to the crude enzyme system, true cellulolytic activity was demonstrated for the purified cellulosome on the basis of extensive solubilization of microcrystalline cellulose. The cellulolytic activity of the purified cellulosome was enhanced both by calcium ions and by thiols, and was inhibited by cellobiose (the major end product of the cellulosome-mediated cellulose degradation). In addition, at low ionic strength, cellulose-adsorbed cellulosome was detached intact from the cellulose matrix. Using controlled conditions, maximum enzymatic activity was shown to correspond to suboptimal conditions of cellulosome adsorption to cellulose. The results suggest that previous data accumulated for the crude cellulase system in C. thermocellum essentially reflect the contribution of the cellulosome.  相似文献   

11.
The major types of components of cellulase [see 1,4-(1, 3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] have been adsorbed onto concanavalin A immobilized on Sepharose 4B, suggesting that they are glycoproteins. These components were covalently coupled to cyanogen bromide-activated Sepharose after aminoalkylation of their periodate-oxidized carbohydrate side chains to provide additional points of attachment of the enzyme to the support. Although there was only a 9% recovery of starting avicelase activity, the immobilized enzyme catalysed the hydrolysis of insoluble cellulose to glucose with greater efficiency than did free cellulase.  相似文献   

12.
Cellobiose is an intermediate in the enzymatic hydrolysis of cellulose to glucose and acts as an inhibitor for the cellulase enzymes. The conversion of cellobiose to glucose was studied with β-glucosidase adsorbed on Amberlite DP-1, a cation-exchange resin. The best overall pH for adsorption and reactor operation was near 5.0. The Km values increased with increasing enzyme loading due to competitive inhibition. The maximum practical enzyme loading was about 28 units/g resin. The immobilized enzyme was operated continously in both packed bed and fluidized bed reactors, giving half-lives between 200 and 375 h.  相似文献   

13.
Acetivibrio cellulolyticus cellulase obtained by the water elution of residual cellulose from the growth medium was compared with the cellulase activity present in culture supernatants. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis indicated that water elution released most of the protein bands which adhered to undigested cellulose from the culture medium. The enzyme in the culture supernatant and that eluted from residual cellulose had specific activities for Avicel hydrolysis that were 20- to 40-fold greater than that of Trichoderma reesei cellulase. However, Ca2+ and a reducing agent such as dithiothreitol were required for maximum Avicel hydrolysis rates by these A. cellulolyticus enzyme preparations. The effect of these agents on p-nitrophenyl lactopyranoside hydrolysis suggested that they were required by an exoglucanase component. Supernatant enzyme preparations contained large amounts of carbohydrate which was separated from most of the cellulase protein by phenyl-Sepharose chromatography. Removal of this carbohydrate, which interfered with protein fractionations, allowed for an activity stain analysis of the supernatant enzyme.  相似文献   

14.
Crystalline cellulose Iβ (Avicel) was chemically transformed into cellulose II and IIII producing allomorphs with similar crystallinity indices (ATR-IR and XRD derived). Saccharifications by commercial cellulases at arrayed solids loadings showed cellulose IIII was more readily hydrolysable and less susceptible to increased dry solids levels than cellulose Iβ and II. Analysis by dynamic vapor sorption revealed cellulose II has a distinctively higher absorptive capacity than cellulose I and IIII. When equally hydrated (g water/g cellulose), low-field nuclear magnetic resonance (LF-NMR) relaxometry showed that cellulose II, on average, most constrained water while cellulase IIII left the most free water. LF-NMR spin–spin relaxation time distribution profiles representing distinct water pools suggest cellulose IIII had the most restricted pool and changes in water distribution during enzymatic saccharification were most dramatic with respect to cellulose IIII compared to celluloses Iβ and II.  相似文献   

15.
A complete cellulase from Penicillium pinophilum was evaluated for the hydrolysis of α-cellulose derived from steam exploded sugarcane bagasse and other cellulosic substrates. α-Cellulose at 1% substrate concentration was completely hydrolyzed by Penicillium cellulase within 3 h wherein at 10% the hydrolysis was 100% within 24 h with an enzyme loading of 10 FPU/g. The hydrolysate yielded glucose as major end product as analyzed by HPLC. Under similar conditions, hydrolysis of Sigmacell (microcrystalline cellulose), CP-123 (pulverized cellulose powder) and ball milled Solka Floc were 42%, 56% and 52%, respectively. Further the hydrolysis performance of Penicillium sp. cellulase is compared with Trichoderma reesei cellulase (AccelleraseTM 1000) from Genencore. The kinetics of hydrolysis with respect to enzyme and substrate concentration will be presented.  相似文献   

16.
Cellulose, the major constituent of all plant materials and the most abundant organic molecule on the Earth, is a linear biopolymer of glucose molecules, connected by β-1,4-glycosidic bonds. Enzymatic hydrolysis of cellulose requires mixtures of hydrolytic enzymes including endoglucanases, exoglucanases (cellobiohydrolases), and β-glucosidases acting in a synergistic manner. In biopolymer hydrolysis studies, enzyme assay is an indispensable part. The most commonly used assays for the individual enzymes as well as total cellulase activity measurements, including their advantages and limitations, are summarized in this review article. In addition, some novel approaches recently used for enzyme assays are summarized.  相似文献   

17.
Some kinetic parameters of the β-d-glucosidase (cellobiase, β-d-glucoside glucohydrolase, EC 3.2.1.21) component of Sturge Enzymes CP cellulase [see 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] from Penicillium funiculosum have been determined. The Michaelis constants (Km) for 4-nitrophenyl β-d-glucopyranoside (4NPG) and cellobiose are 0.4 and 2.1 mM, respectively, at pH 4.0 and 50°C. d-Glucose is shown to be a competitive inhibitor with inhibitor constants (Ki) of 1.7 mM when 4NPG is the substrate and 1 mM when cellobiose is the substrate. Cellobiose, at high concentrations, exhibits a substrate inhibition effect on the enzyme. d-Glucono-1,5-lactone is shown to be a potent inhibitor (Ki = 8 μM; 4NPG as substrate) while d-fructose exhibits little inhibition. Cellulose hydrolysis progress curves using Avicel or Solka Floc as substrates and a range of commercial cellulase preparations show that CP cellulase gives the best performance, which can be attributed to the activity of the β-d-glucosidase in this preparation in maintaining the cellobiose at low concentrations during cellulose hydrolysis.  相似文献   

18.
In the present study, Trichoderma reesei cellulase was covalently immobilized on chitosan-coated magnetic nanoparticles using glutaraldehyde as a coupling agent. The average diameter of magnetic nanoparticles before and after enzyme immobilization was about 8 and 10 nm, respectively. The immobilized enzyme retained about 37 % of its initial activity, and also showed better thermal and storage stability than free enzyme. Immobilized cellulase retained about 80 % of its activity after 15 cycles of carboxymethylcellulose hydrolysis and was easily separated with the application of an external magnetic field. However, in this reaction, K m was increased eight times. The immobilized enzyme was able to hydrolyze lignocellulosic material from Agave atrovirens leaves with yield close to the amount detected with free enzyme and it was re-used in vegetal material conversion up to four cycles with 50 % of activity decrease. This provides an opportunity to reduce the enzyme consumption during lignocellulosic material saccharification for bioethanol production.  相似文献   

19.
The slow down in enzymatic hydrolysis of cellulose with conversion has often been attributed to declining reactivity of the substrate as the more easily reacted material is thought to be consumed preferentially. To better understand the cause of this phenomenon, the enzymatic reaction of the nearly pure cellulose in Avicel was interrupted over the course of nearly complete hydrolysis. Then, the solids were treated with proteinase to degrade the cellulase enzymes remaining on the solid surface, followed by proteinase inhibitors to inactive the proteinase and successive washing with water, 1.0 M NaCl solution, and water. Next, fresh cellulase and buffer were added to the solids to restart hydrolysis. The rate of cellulose hydrolysis, expressed as a percent of substrate remaining at that time, was approximately constant over a wide range of conversions for restart experiments but declined continually with conversion for uninterrupted hydrolysis. Furthermore, the cellulose hydrolysis rate per adsorbed enzyme was approximately constant for the restart procedure but declined with conversion when enzymes were left to react. Thus, the drop off in reaction rate for uninterrupted cellulose digestion by enzymes could not be attributed to changes in substrate reactivity, suggesting that other effects such as enzymes getting "stuck" or otherwise slowing down may be responsible.  相似文献   

20.
A new functionally based kinetic model for enzymatic hydrolysis of pure cellulose by the Trichoderma cellulase system is presented. The model represents the actions of cellobiohydrolases I, cellobiohydrolase II, and endoglucanase I; and incorporates two measurable and physically interpretable substrate parameters: the degree of polymerization (DP) and the fraction of beta-glucosidic bonds accessible to cellulase, F(a) (Zhang and Lynd, 2004). Initial enzyme-limited reaction rates simulated by the model are consistent with several important behaviors reported in the literature, including the effects of substrate characteristics on exoglucanase and endoglucanase activities; the degree of endo/exoglucanase synergy; the endoglucanase partition coefficient on hydrolysis rates; and enzyme loading on relative reaction rates for different substrates. This is the first cellulase kinetic model involving a single set of kinetic parameters that is successfully applied to a variety of cellulosic substrates, and the first that describes more than one behavior associated with enzymatic hydrolysis. The model has potential utility for data accommodation and design of industrial processes, structuring, testing, and extending understanding of cellulase enzyme systems when experimental date are available, and providing guidance for functional design of cellulase systems at a molecular scale. Opportunities to further refine cellulase kinetic models are discussed, including parameters that would benefit from further study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号