首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The commercial cellulase product Celluclast 1.5, derived from Trichoderma reesei (Novozymes A/S, Bagsvaerd, Denmark), is widely employed for hydrolysis of lignocellulosic biomass feedstocks. This enzyme preparation contains a broad spectrum of cellulolytic enzyme activities, most notably cellobiohydrolases (CBHs) and endo-1,4-beta-glucanases (EGs). Since the original T. reesei strain was isolated from decaying canvas, the T. reesei CBH and EG activities might be present in suboptimal ratios for hydrolysis of pretreated lignocellulosic substrates. We employed statistically designed combinations of the four main activities of Celluclast 1.5, CBHI, CBHII, EGI, and EGII, to identify the optimal glucose-releasing combination of these four enzymes to degrade barley straw substrates subjected to three different pretreatments. The data signified that EGII activity is not required for efficient lignocellulose hydrolysis when addition of this activity occurs at the expense of the remaining three activities. The optimal ratios of the remaining three enzymes were similar for the two pretreated barley samples that had been subjeced to different hot water pretreatments, but the relative levels of EGI and CBHII activities required in the enzyme mixture for optimal hydrolysis of the acid-impregnated, steam-exploded barley straw substrate were somewhat different from those required for the other two substrates. The optimal ratios of the cellulolytic activities in all cases differed from that of the cellulases secreted by T. reesei. Hence, the data indicate the feasibility of designing minimal enzyme mixtures for pretreated lignocellulosic biomass by careful combination of monocomponent enzymes. This strategy can promote both a more efficient enzymatic hydrolysis of (ligno)cellulose and a more rational utilization of enzymes.  相似文献   

2.
Understanding the depolymerization mechanisms of cellulosic substrates by cellulase cocktails is a critical step towards optimizing the production of monosaccharides from biomass. The Spezyme CP cellulase cocktail combined with the Novo 188 β‐glucosidase blend was used to depolymerize bacterial microcrystalline cellulose (BMCC), which was immobilized on a glass surface. The enzyme mixture was supplemented with a small fraction of fluorescently labeled Trichoderma reseii Cel7A, which served as a reporter to track cellulase binding onto the physical structure of the cellulosic substrate. Both micro‐scale imaging and bulk experiments were conducted. All reported experiments were conducted at 50°C, the optimal temperature for maximum hydrolytic activity of the enzyme cocktail. BMCC structure was observed throughout degradation by labeling it with a fluorescent dye. This method allowed us to measure the binding of cellulases in situ and follow the temporal morphological changes of cellulose during its depolymerization by a commercial cellulase mixture. Three kinetic models were developed and fitted to fluorescence intensity data obtained through confocal microscopy: irreversible and reversible binding models, and an instantaneous binding model. The models were successfully used to predict the soluble sugar concentrations that were liberated from BMCC in bulk experiments. Comparing binding and kinetic parameters from models with different assumptions to previously reported constants in the literature led us to conclude that exposing new binding sites is an important rate‐limiting step in the hydrolysis of crystalline cellulose. Biotechnol. Bioeng. 2013; 110: 108–117. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
The activities of six purified Thermomonospora fusca cellulases and Trichoderma reesei CBHI and CBHII were determined on filter paper, swollen cellulose, and CMC. A simple method to measure the soluble and insoluble reducing sugar products from the hydrolysis of filter paper was found to effectively distinguish between exocellulases and endocellulases. Endocellulases produced 34% to 50% insoluble reducing sugar and exocellulases produced less than 8% insoluble reducing sugar. The ability of a wide variety of mixtures of these cellulases to digest 5.2% of a filter paper disc in 16 h was measured quantitatively. The specific activities of the mixtures varied from 0.41 to 16.31 mumol cellobiose per minute per micromole enzyme. The degree of synergism ranged from 0.4 to 7.8. T. reesei CBHII and T. fusca E3 were found to be functionally equivalent in mixtures. The catalytic domains (cd) of T. fusca endocellulases E2 and E5 were purified and found to retain 93% and 100% of their CMC activity, respectively, but neither cd protein could digest filter paper to 5.2%. When E2cd and E5cd were substituted in synergistic mixtures for the native proteins, the mixtures containing E2cd retained 60%, and those containing E5cd retained 94% of the original activity. Addition of a beta-glucosidase was found to double the activity of the best synergistic mixture. Addition of CBHI to T. fusca crude cellulase increased its activity on filter paper 1.7-fold. (c) 1993 John Wiley & Sons, Inc.  相似文献   

4.
White rot fungus Dichomitus squalens is an efficient lignocellulose degrading basidiomycete and a promising source for new plant cell wall polysaccharides depolymerizing enzymes. In this work, we focused on cellobiohydrolases (CBHs) of D. squalens. The native CBHI fraction of the fungus, consisting three isoenzymes, was purified and it maintained the activity for 60 min at 50°C, and was stable in acidic pH. Due to the lack of enzyme activity assay for detecting only CBHII activity, CBHII of D. squalens was produced recombinantly in an industrially important ascomycete host, Trichoderma reesei. CBH enzymes of D. squalens showed potential in hydrolysis of complex lignocellulose substrates sugar beet pulp and wheat bran, and microcrystalline cellulose, Avicel. Recombinant CBHII (rCel6A) of D. squalens hydrolysed all the studied plant biomasses. Compared to individual activities, synergistic effect between rCel6A and native CBHI fraction of D. squalens was significant in the hydrolysis of Avicel. Furthermore, the addition of laccase to the mixture of CBHI fraction and rCel6A significantly enhanced the amount of released reducing sugars from sugar beet pulp. Especially, synergy between individual enzymes is a crucial factor in the tailor-made enzyme mixtures needed for hydrolysis of different plant biomass feedstocks. Our data supports the importance of oxidoreductases in improved enzyme cocktails for lignocellulose saccharification.  相似文献   

5.
In the search for suitable cellulase combinations for industrial biofinishing of cotton, five different types of Trichoderma reesei strains were constructed for elevated cellobiohydrolase production: CBHI overproducers with and without endoglucanase I (EGI), CBHII overproducers with and without endoglucanase II (EGII) and strains overproducing both CBHI and CBHII without the major endoglucanases I and II. One additional copy of cbh1 gene increased production of CBHI protein 1.3-fold, and two copies 1.5-fold according to ELISA (enzyme-linked immunosorbent assay). The level of total secreted proteins was increased in CBHI transformants as compared to the host strain. One copy of the cbh2 expression cassette in which the cbh2 was expressed from the cbh1 promoter increased production of CBHII protein three- to four-fold when compared to the host strain. T. reesei strains producing elevated amounts of both CBHI and CBHII without EGI and EGII were constructed by replacing the egl1 locus with the coding region of the cbh1 gene and the egl2 locus with the coding region of cbh2. The cbh1 was expressed from its own promoter and the cbh2 gene using either the cbh1 or cbh2 promoter. Production of CBHI by the CBH-transformants was increased up to 1.6-fold and production of CBHII up to 3.4-fold as compared with the host strain. Approximately similar amounts of CBHII protein were produced by using cbh1 or cbh2 promoters. When the enzyme preparation with elevated CBHII content was used in biofinishing of cotton, better depilling and visual appearance were achieved than with the wild type preparation; however, the improvement was not as pronounced as with preparations with elevated levels of endoglucanases (EG).  相似文献   

6.
Five cellulases were fractionated from a commercial cellulase preparation (CelluclastTM) Two isoenzymes of cellobiohydrolase I (CBHI)(pI = 4.1) could be proved to be real exo-glucanases due to their activity towards MU (=methylumbelliferyl)-lactoside being inhibited by cellobiose (5 mM) and due to production of cellobiose from carboxymethylcellulose (CMC) as the sole final product.Two isoenzymes of CBHII (pI=6.15, 6.0) were shown to act as endo-glucanases because they produced glucose, cellobiose and cellotetraose from CMC and because they were not inhibited by cellobiose when decomposing MU-lactoside. Results confirm recent reports in the literature classifying CBHI and CBHII as exo-type and endo-type cellulases, respectively. Both the CBHI and the CBHII isoenzymes were shown to be active towards CMC and amorphous cellulose.CBHI and CBHII reactions could be differentiated from one another by the velocities of decomposition of CMC: CBHI acts slowly and linearly whereas CBHII acts strongly and exponentially.The fifth of the purified enzymes must be classed as a conventional endoglucanase which exhibits activity towards CMC but fails to be active towards MU-lactoside and amorphous cellulose.  相似文献   

7.
Degradation of cotton cellulose by Trichoderma reesei endoglucanase I (EGI) and cellobiohydrolase II (CBHII) was investigated by analyzing the insoluble cellulose fragments remaining after enzymatic hydrolysis. Changes in the molecular-size distribution of cellulose after attack by EGI, alone and in combination with CBHII, were determined by size exclusion chromatography of the tricarbanilate derivatives. Cotton cellulose incubated with EGI exhibited a single major peak, which with time shifted to progressively lower degrees of polymerization (DP; number of glucosyl residues per cellulose chain). In the later stages of degradation (8 days), this peak was eventually centered over a DP of 200 to 300 and was accompanied by a second peak (DP, (apprx=)15); a final weight loss of 34% was observed. Although CBHII solubilized approximately 40% of bacterial microcrystalline cellulose, the cellobiohydrolase did not depolymerize or significantly hydrolyze native cotton cellulose. Furthermore, molecular-size distributions of cellulose incubated with EGI together with CBHII did not differ from those attacked solely by EGI. However, a synergistic effect was observed in the reducing-sugar production by the cellulase mixture. From these results we conclude that EGI of T. reesei degrades cotton cellulose by selectively cleaving through the microfibrils at the amorphous sites, whereas CBHII releases soluble sugars from the EGI-degraded cotton cellulose and from the more crystalline bacterial microcrystalline cellulose.  相似文献   

8.
A physico-chemical, functional and structural characterization, including partial sequence data, of three major 1,4-beta-D-glucan glucanohydrolases (EC. 3.2.1.4) isolated from the culture filtrate of the white-rot fungus Phanerochaete chrysosporium, shows that all three enzymes belong to a single family of cellulases. EG44, pI 4.3, (named after its apparent molecular mass in kDa), shows a clear homology with Schizopyllum commune Endoglucanase I (EGI); whereas EG38, pI 4.9, (named in the same manner) is related more closely to Trichoderma reesei (Trichoderma longibrachiatum) Endoglucanase III (EGIII). EG36, pI 5.6-5.7, is probably an EG38 protein lacking its cellulose binding domain. Strong synergistic action is induced by the enzymes acting in concert with cellobiohydrolases (CBHI and CBHII) from the same organism, indicating a highly effective enzymatic system for cellulose degradation. Controlled proteolysis with papain has allowed a so far unique cleavage of endoglucanases EG44 and EG38 into two domains: a core protein, which virtually lacks the capacity to absorb onto microcrystal-line cellulose but retains full catalytic activity against carboxymethyl cellulose and low molecular weight soluble substrates; and a peptide fragment corresponding to the cellulose binding domain. The latter appears to be of paramount significance in the mechanisms involved in the hydrolysis of microcrystalline cellulose.  相似文献   

9.
Cellulase reaction mechanism was investigated with the use of following pure cellulosic substrates: Microcrystalline cellulose (Avicel), α‐cellulose (Sigma), filter paper, cotton, and non‐crystalline cellulose (NCC). NCC is amorphous cellulose prepared in our laboratory by treatment with concentrated sulfuric acid. When hydrolyzed with cellulase, NCC produces significant amount of cello‐oligosaccharides (COS) as reaction intermediates along with glucose and cellobiose. The COS produced by cellulase were categorized into two different moieties based upon their degree of polymerization (DP): low DP (less than 7) COS (LD‐COS) and high DP COS (HD‐COS). Endo‐glucanase (Endo‐G) reacts rapidly on the NCC reducing its DP to 30–60, after which the Endo‐G reaction with NCC ceases. HD‐COS is produced from NCC by the action of Endo‐G, whereas LD‐COS is produced by exo‐glucanase (Exo‐G). β‐Glucosidase (β‐G) hydrolyzes LD‐COS to produce cellobiose, but it does not hydrolyze HD‐COS. DP of NCC affects the action of Exo‐G in such a way that the overall yield is high for high DP NCC. This is in line with previous findings that substrate‐recognition by Exo‐G requires binding on β‐glucan chain with DP of 10 for the hydrolysis to take place. The individual cellulose chain residues within solid having DP less than 10 therefore remain unreacted. The percentage of the unreacted portion would be lower for high DP NCC, which results high overall conversion. The surface area and the number of reactive sites on the substrate facilitate adsorption of enzyme therefore the initial rate of the hydrolysis. The overall extent of conversion of cellulose, however, is controlled primarily by its inherent characteristics such as DP and crystallinity. Biotechnol. Bioeng. 2009;102: 1570–1581. © 2008 Wiley Periodicals, Inc.  相似文献   

10.
Summary Fast protein liquid chromatography (FPLC) was used to characterize a commercial cellulase preparation (Celluclast 1.5L, Novozymes) in relation to its protein profile and activity against hydroxyethylcellulose (HEC) and other substrates. Co-elution of CBHII (Cel 6A) with other enzyme components of the cellulase system was characterized by immunochemical assays using monoclonal antibodies, whereas the occurrence of EGII (Cel 5A) was assessed based on its ability to cleave the heterosidic bond of 4-methylumbellyferyl-β-d-cellotrioside (MUmbG3). The main cellulase constituents of Celluclast 1.5L were pooled into six fractions containing EGII (Cel 5A) and EGIII (Cel 12A) (F1), EGII and CBHII (Cel 6A) (F2), CBHII and EGI (Cel 7B) (F3), EGI (F4), and CBHI (Cel 7A) (F5). The occurrence of CBHI core protein within the CBHI fraction of the FPLC profile was determined by hydrophobic interaction chromatography. Using this method, we were able to demonstrate that the batch of Celluclast 1.5L used in this study contained 10.9–18.8% of CBHI as its corresponding free core protein.  相似文献   

11.
A physico-chemical and structural characterization of three 1,4-beta-D-glucan cellobiohydrolases (EC. 3.2.1.91), isolated from a culture filtrate of the white-rot fungus Phanerochaete chrysosporium, reveals that the cellulolytic enzyme secretion pattern and thus the general degradation strategy for P. chrysosporium is similar to that of Trichoderma reesei. Partial sequence data show that two of the isolated enzymes, i.e., CBHI, pI 3.82 and CBH62, pI 4.85, are homologous with CBHI and EGI from T. reesei; while, the third, i.e., CBH50, pI 4.87, is homologous to T. reesei CBHII. Limited proteolysis with papain cleaved each of the three enzymes into two domains: a core protein which retained full catalytic activity against low molecular weight substrates and a peptide fragment corresponding to the cellulose binding domain, in striking similarity to the structural organization of T. reesei. CBHI and CBH62 have their binding domain located at the C-terminus, whereas in CBH50 it is located at the N-terminus. It is evident that synergistically acting cellobiohydrolases is a general requirement for efficient hydrolysis of crystalline cellulose by cellulolytic fungi.  相似文献   

12.
Although essential to enzymatic hydrolysis of cellulosic biomass to sugars for fermentation to ethanol or other products, enzyme adsorption and its relationship to substrate features has received limited attention, and little data and insight have been developed on cellulase adsorption for promising pretreatment options, with almost no data available to facilitate comparisons. Therefore, adsorption of cellulase on Avicel, and of cellulase and xylanase on corn stover solids resulting from ammonia fiber expansion (AFEX), ammonia recycled percolation (ARP), controlled pH, dilute acid, lime, and sulfur dioxide (SO2) pretreatments were measured at 4°C. Langmuir adsorption parameters were then estimated by non‐linear regression using Polymath software, and cellulase accessibility to cellulose was estimated based on adsorption data for pretreated solids and lignin left after carbohydrate digestion. To determine the impact of delignification and deacetylation on cellulose accessibility, purified CBHI (Cel7A) adsorption at 4°C and hydrolysis with whole cellulase were followed for untreated (UT) corn stover. In all cases, cellulase attained equilibrium in less than 2 h, and upon dilution, solids pretreated by controlled pH technology showed the greatest desorption followed by solids from dilute acid and SO2 pretreatments. Surprisingly, the lowest desorption was measured for Avicel glucan followed by solids from AFEX pretreatment. The higher cellulose accessibility for AFEX and lime pretreated solids could account for the good digestion reported in the literature for these approaches. Lime pretreated solids had the greatest xylanase capacity and AFEX solids the least, showing pretreatment pH did not seem to be controlling. The 24 h glucan hydrolysis rate data had a strong relationship to cellulase adsorption capacities, while 24 h xylan hydrolysis rate data showed no relationship to xylanase adsorption capacities. Furthermore, delignification greatly enhanced enzyme effectiveness but had a limited effect on cellulose accessibility. And because delignification enhanced release of xylose more than glucose, it appears that lignin did not directly control cellulose accessibility but restricted xylan accessibility which in turn controlled access to cellulose. Reducing the acetyl content in corn stover solids significantly improved both cellulose accessibility and enzyme effectiveness. Biotechnol. Bioeng. 2009;103: 252–267. © 2009 Wiley Periodicals, Inc.  相似文献   

13.
A new functionally based kinetic model for enzymatic hydrolysis of pure cellulose by the Trichoderma cellulase system is presented. The model represents the actions of cellobiohydrolases I, cellobiohydrolase II, and endoglucanase I; and incorporates two measurable and physically interpretable substrate parameters: the degree of polymerization (DP) and the fraction of beta-glucosidic bonds accessible to cellulase, F(a) (Zhang and Lynd, 2004). Initial enzyme-limited reaction rates simulated by the model are consistent with several important behaviors reported in the literature, including the effects of substrate characteristics on exoglucanase and endoglucanase activities; the degree of endo/exoglucanase synergy; the endoglucanase partition coefficient on hydrolysis rates; and enzyme loading on relative reaction rates for different substrates. This is the first cellulase kinetic model involving a single set of kinetic parameters that is successfully applied to a variety of cellulosic substrates, and the first that describes more than one behavior associated with enzymatic hydrolysis. The model has potential utility for data accommodation and design of industrial processes, structuring, testing, and extending understanding of cellulase enzyme systems when experimental date are available, and providing guidance for functional design of cellulase systems at a molecular scale. Opportunities to further refine cellulase kinetic models are discussed, including parameters that would benefit from further study.  相似文献   

14.
Product inhibition by cellobiose decreases the rate of enzymatic cellulose degradation. The optimal reaction conditions for two Emericella (Aspergillus) nidulans-derived cellobiohydrolases I and II produced in Pichia pastoris were identified as CBHI: 52 °C, pH 4.5–6.5, and CBHII: 46 °C, pH 4.8. The optimum in a mixture of the two was 50 °C, pH 4.9. An almost fourfold increase in enzymatic hydrolysis yield was achieved with intermittent product removal of cellobiose with membrane filtration (2 kDa cut-off): The conversion of cotton cellulose after 72 h was ~19 % by weight, whereas the conversion in the parallel batch reaction was only ~5 % by weight. Also, a synergistic effect, achieving ~27 % substrate conversion, was obtained by addition of endo-1,4-β-d-glucanase. The synergistic effect was only obtained with product removal. By using pure, monoactive enzymes, the work illustrates the profound gains achievable by intermittent product removal during cellulose hydrolysis.  相似文献   

15.
The filamentous fungus Trichoderma reesei produces two cellobiohydrolases (CBHI and CBHII). These, like most other cellulose-degrading enzymes, have a modular structure consisting of a catalytic domain linked to a cellulose-binding domain (CBD). The isolated catalytic domains bind poorly to cellulose and have a much lower activity towards cellulose than the intact enzymes. For the CBDs, no function other than binding to cellulose has been found. We have previously described the reversibility and exchange rate for the binding of the CBD of CBHI to cellulose. In this work, we studied the binding of the CBD of CBHII and showed that it differs markedly from the behaviour of that of CBHI. The apparent binding affinities were similar, but the CBD of CBHII could not be dissociated from cellulose by buffer dilution and did not show a measurable exchange rate. However, desorption could be triggered by shifting the temperature. The CBD of CBHII bound reversibly to chitin. Two variants of the CBHII CBD were made, in which point mutations increased its similarity to the CBD of CBHI. Both variants were found to bind reversibly to cellulose.  相似文献   

16.
Elucidating the molecular mechanisms that govern synergism is important for the rational engineering of cellulase mixtures. Our goal was to observe how varying the loading molar ratio of cellulases in a binary mixture and the recalcitrance of the cellulose to enzymatic degradation influenced the degree of synergistic effect (DSE) and degree of synergistic binding (DSB). The effect of cellulose recalcitrance was studied using a bacterial microcrystalline cellulose (BMCC), which was exhaustively hydrolyzed by a catalytic domain of Cel5A, an endocellulase. The remaining prehydrolyzed BMCC (PHBMCC) was used to represent a recalcitrant form of cellulose. DSE was observed to be sensitive to loading molar ratio. However, on the more recalcitrant cellulose, synergism decreased. Furthermore, the results from this study reveal that when an exocellulase (Cel6B) is mixed with either an endocellulase (Cel5A) or a processive endocellulase (Cel9A) and reacted with BMCC, synergism is observed in both hydrolysis and binding. This study also revealed that when a "classical" endocellulase (Cel5A) and a processive endocellulase (Cel9A) are mixed and reacted with BMCC, only limited synergism is observed in reducing sugar production; however, binding is clearly increased by the presence of the Cel5A.  相似文献   

17.
Cellobiohydrolase genes cbhI and cbhII were isolated from Trichoderma viride AS3.3711 and T. viride CICC 13038, respectively, using RT-PCR technique. The cbhI gene from T. viride AS3.3711 contains 1,542 nucleotides and encodes a 514-amino acid protein with a molecular weight of approximately 53.96 kDa. The cbhII gene from T. viride CICC 13038 was 1,413 bp in length encoding 471 amino acid residues with a molecular weight of approximately 49.55 kDa. The CBHI protein showed high homology with enzymes belonging to glycoside hydrolase family 7 and CBHII is a member of Glycoside hydrolase family 6. CBHI and CBHII play a role in the conversion of cellulose to glucose by cutting the disaccharide cellobiose from the non-reducing end of the cellulose polymer chain. The two cellobiohydrolase (CBHI, CBHII) genes were successfully expressed in Saccharomyces cerevisiae H158. Maximal activities of transformants Sc-cbhI and Sc-cbhII were 0.03 and 0.089 units ml−1 under galactose induction, respectively. The optimal temperatures of the recombinant enzymes (CBHI, CBHII) were 60 and 70°C, respectively. The optimal pHs of recombinant enzymes CBHI and CBHII were at pH 5.8 and 5.0, respectively.  相似文献   

18.
Three thermostable neutral cellulases from Melanocarpus albomyces, a 20-kDa endoglucanase (Cel45A), a 50-kDa endoglucanase (Cel7A), and a 50-kDa cellobiohydrolase (Cel7B) heterologously produced in a recombinant Trichoderma reesei were purified and studied in hydrolysis (50 degrees C, pH 6.0) of crystalline and amorphous cellulose. To improve their efficiency, M. albomyces cellulases naturally harboring no cellulose-binding module (CBM) were genetically modified to carry the CBM of T. reesei CBHI/Cel7A, and were studied under similar experimental conditions. Hydrolysis performance and product profiles were used to evaluate hydrolytic features of the investigated enzymes. Each cellulase proved to be active against the tested substrates; the cellobiohydrolase Cel7B had greater activity than the endoglucanases Cel45A and Cel7A against crystalline cellulose, whereas in the case of amorphous substrate the order was reversed. Evidence of synergism was observed when mixtures of the novel enzymes were applied in a constant total protein dosage. Presence of the CBM improved the hydrolytic potential of each enzyme in all experimental configurations; it had a greater effect on the endoglucanases Cel45A and Cel7A than the cellobiohydrolase Cel7B, especially against crystalline substrate. The novel cellobiohydrolase performed comparably to the major cellobiohydrolase of T. reesei (CBHI/Cel7A) under the applied experimental conditions.  相似文献   

19.
In order to reduce the total enzyme consumption in high-solids static hydrolysis of nonwashed steam-exploded willow Salix caprea by mixed cellulase of Trichoderma reesei + Aspergillus foetidus, two different approaches were proposed. In the first case, the enzyme activity adsorbed on residual solids after extended hydrolysis was used for hydrolysis of the newly added substrate. The initial mixing of fresh and hydrolyzed substrates was sufficient for the adsorbed enzyme redistribution and conversion of the new substrate portion, and permanent mechanical stirring was not required. Feeding of two additional portions of the exploded hardwood adjusted to pH 4 with dry caustic into the reactor with simultaneous replacement of accumulated sugars with fresh buffer (pH 4.5) resulted, on average, in a 90% conversion of cellulose at the final enzyme loading 8 IFPU per g ODM substrate, an average sugar concentration of 12%, and a glucose/xylose ratio of 5:1. In the second approach, weakly adsorbed cellulase fractions were used for static high-solids hydrolysis followed by their ultrafiltration recovery from the resultant sugar syrup. In contrast to the initial cellulase mixture whose residual activity in a syrup did not exceed 5-10% at the end of hydrolysis (48 h), up to 60% of weakly adsorbed enzyme fraction could be separated from sugar syrups by ultrafiltration and then reused. Weakly adsorbed enzymes displayed a hydrolysis efficiency of not less than 80% per IFPU enzyme consumed in extended hydrolysis of pretreated willow as compared to the original enzyme mixture. An electrophoretic study of the weakly adsorbed enzyme fraction identified T. reesei cellobiohydrolase II as the predominant component, whereas clear domination of T. reesei cellobiohydrolase I was found by electrophoresis of proteins tightly bound to hydrolysis residual solids.  相似文献   

20.
In order to reduce the total enzyme consumption in high-solids static hydrolysis of nonwashed steam-exploded willowSalix caprea by mixed cellulase ofTrichoderma reesei + Aspergillus foetidus, two different approaches were proposed. In the first case, the enzyme activity adsorbed on residual solids after extended hydrolysis was used for hydrolysis of the newly added substrate. The initial mixing of fresh and hydrolyzed substrates was sufficient for the adsorbed enzyme redistribution and conversion of the new substrate portion, and constant mechanical stirring was not required. Feeding of two additional portions of the exploded hardwood adjusted to pH 4 with dry caustic into the reactor with simultaneous replacement of accumulated sugars with fresh buffer (pH 4.5) resulted, on average, in a 90% conversion of cellulose at the final enzyme loading of 8 IFPU per g ODM substrate, an average sugar concentration of 12%, and a glucose/xylose ratio of 5 : 1. In the second approach, weakly adsorbed cellulase fractions were used for static high-solids hydrolysis followed by their ultrafiltration recovery from the resultant sugar syrup. In contrast to the initial cellulase mixture whose residual activity in a syrup did not exceed 5–10% at the end of hydrolysis (48 h), up to 60% of weakly adsorbed enzyme fraction could be separated from sugar syrups by ultrafiltration and then reused. Weakly adsorbed enzymes displayed a hydrolysis efficiency of not less than 80% per IFPU enzyme consumed in extended hydrolysis of pretreated willow as compared to the original enzyme mixture. An electrophoretic study of the weakly adsorbed enzyme fraction identifiedT. reesei cellobiohydrolase II as the predominant component, whereas clear domination ofT. reesei cellobiohydrolase I was found by electrophoresis of proteins tightly bound to residual hydrolysis solids. Deceased  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号