首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study showed that a coastal population (Harrison) of Fraser River sockeye salmon Oncorhynchus nerka had a lower aerobic and cardiac scope compared with interior populations with more challenging upriver spawning migrations, providing additional support to the idea that Fraser River O. nerka populations have adapted physiologically to their local migratory environment.  相似文献   

2.
Our previous studies suggested that salmon gonadotropin‐releasing hormone (sGnRH) neurons regulate both final maturation and migratory behavior in homing salmonids. Activation of sGnRH neurons can occur during upstream migration. We therefore examined expression of genes encoding the precursors of sGnRH, sGnRH‐I, and sGnRH‐II, in discrete forebrain loci of prespawning chum salmon, Oncorhynchus keta. Fish were captured from 1997 through 1999 along their homing pathway: coastal areas, a midway of the river, 4 km downstream of the natal hatchery, and the hatchery. Amounts of sGnRH mRNAs in fresh frozen sections including the olfactory bulb (OB), terminal nerve (TN), ventral telencephalon (VT), nucleus preopticus parvocellularis anterioris (PPa), and nucleus preopticus magnocellularis (PM) were determined by quantitative real‐time polymerase chain reactions. The amounts of sGnRH‐II mRNA were higher than those of sGnRH‐I mRNA, while they showed similar changes during upstream migration. In the OB and TN, the amounts of sGnRH mRNAs elevated from the coast to the natal hatchery. In the VT and PPa, they elevated along with the progress of final maturation. Such elevation was also observed in the rostroventral, middle, and dorsocaudal parts of the PM. The amounts of gonadotropin IIβ and somatolactin mRNAs in the pituitary also increased consistently with the elevation of gene expression for sGnRH. These results, in combination with lines of previous evidence, indicate that sGnRH neurons are activated in almost all the forebrain loci during the last phases of spawning migration, resulting in coordination of final gonadal maturation and migratory behavior to the spawning ground. © 2005 Wiley Periodicals, Inc. J Neurobiol, 2005  相似文献   

3.
The expression of synaptic vesicle exocytosis-regulator SNARE complex component genes (snap25, stx1 and vamp2) was examined in the olfactory nervous system during seaward and homeward migration by pink salmon (Oncorhynchus gorbuscha). The expression levels of snares in the olfactory organ were higher in seaward fry than in feeding and homeward adults, reflecting the development of the olfactory nervous system. The expression of snap25a, b and stx1a was upregulated or stable in the adult olfactory bulb and telencephalon. This upregulated expression suggested alterations in olfactory neuronal plasticity that may be related to the discrimination of natal rivers. The expression of stx1b was downregulated in the adult olfactory bulb, but remained stable in the adult telencephalon. The expression of vamp2 was initially strong in seaward fry, but was downregulated in adults in both the olfactory bulb and telencephalon. Pink salmon has the lowest diversity of maturation age, the largest population, and the most evolutional position in Pacific salmon (genus Oncorhynchus). The expression of snares in the olfactory center of pink salmon reflected the timing of sexual maturation and homeward migration. The present results and our previous studies indicate that snares show distinct expression patterns between two salmon species that depend on physiological and ecological features of migration.  相似文献   

4.
Migrations are characterized by periods of movement that typically rely on orientation towards directional cues. Anadromous fish undergo several different forms of oriented movement during their spawning migration and provide some of the most well‐studied examples of migratory behaviour. During the freshwater phase of the migration, fish locate their spawning grounds via olfactory cues. In this review, we synthesize research that explores the role of olfaction during the spawning migration of anadromous fish, most of which focuses on two families: Salmonidae (salmonids) and Petromyzontidae (lampreys). We draw attention to limitations in this research, and highlight potential areas of investigation that will help fill in current knowledge gaps. We also use the information assembled from our review to formulate a new hypothesis for natal homing in salmonids. Our hypothesis posits that migrating adults rely on three types of cues in a hierarchical fashion: imprinted cues (primary), conspecific cues (secondary), and non‐olfactory environmental cues (tertiary). We provide evidence from previous studies that support this hypothesis. We also discuss future directions of research that can test the hypothesis and further our understanding of the spawning migration.  相似文献   

5.
The anadromous salmon life cycle includes two migratory events, downstream smolt migration and adult homing migration, during which they must navigate with high precision. During homing migration, olfactory cues are used for navigation in coastal and freshwater areas, and studies have suggested that the parr – smolt transformation has a sensitive period for imprinting. Accordingly, we hypothesized that there would be significant changes in gene expression in the olfactory epithelium specifically related to smoltification and sampled olfactory rosettes from hatchery‐reared upper growth modal juvenile Atlantic salmon at 3‐week intervals from January to June, using lower growth modal nonsmolting siblings as controls. A suite of olfactory receptors and receptor‐specific proteins involved in functional aspects of olfaction and peripheral odor memorization was analyzed by qPCR. Gene expression in juveniles was compared with mature adult salmon of the same genetic strain caught in the river Gudenaa. All mRNAs displayed significant variation over time in both modal groups. Furthermore, five receptor genes (olfc13.1, olfc15.1, sorb, ora2, and asor1) and four olfactory‐specific genes (soig, ependymin, gst, and omp2) were differentially regulated between modal groups, suggesting altered olfactory function during smoltification. Several genes were differentially regulated in mature salmon compared with juveniles, suggesting that homing and odor recollection involve a different set of genes than during imprinting. Thyroid hormone receptors thrα and thrβ mRNAs were elevated during smolting, suggesting increased sensitivity to thyroid hormones. Treatment of presmolts with triiodothyronine in vivo and ex vivo had, however, only subtle effects on the investigated olfactory targets, questioning the hypothesis that thyroid hormones directly regulate gene expression in the olfactory epithelium.  相似文献   

6.
Sockeye salmon, Oncorhynchus nerka, are anadromous, semelparous fish that breed in freshwater—typically in streams, and juveniles in most populations feed in lakes for 1 or 2 years, then migrate to sea to feed for 2 or 3 additional years, before returning to their natal sites to spawn and die. This species undergoes important changes in behavior, habitat, and morphology through these multiple life history stages. However, the sensory systems that mediate these migratory patterns are not fully understood, and few studies have explored changes in sensory function and specialization throughout ontogeny. This study investigates changes in the olfactory rosette of sockeye salmon across four different life stages (fry, parr, smolt, and adult). Development of the olfactory rosette was assessed by comparing total rosette size (RS), lamellae number, and lamellae complexity from scanning electron microscopy images across life stages, as a proxy for olfactory capacity. Olfactory RS increased linearly with lamellae number and body size (p < .001). The complexity of the rosette, including the distribution of sensory and nonsensory epithelia and the appearance of secondary lamellar folding, varied between fry and adult life stages. These differences in epithelial structure may indicate variation in odor-processing capacity between juveniles imprinting on their natal stream and adults using those odor memories in the final stages of homing to natal breeding sites. These findings improve our understanding of the development of the olfactory system throughout life in this species, highlighting that ontogenetic shifts in behavior and habitat may coincide with shifts in nervous system development.  相似文献   

7.
1. Anadromous salmon transport marine‐derived nutrients and carbon to freshwater and riparian ecosystems upon their return to natal spawning systems. The ecological implications of these subsidies on the trophic ecology of resident fish remain poorly understood despite broad recognition of their potential importance. 2. We studied the within‐year changes in the ration size, composition and stable isotope signature of the diets of two resident salmonids (rainbow trout, Oncorhynchus mykiss; Arctic grayling, Thymallus arcticus) before and after the arrival of sockeye salmon (Oncorhynchus nerka) to their spawning grounds in the Bristol Bay region of southwest Alaska. 3. Ration size and energy intake increased by 480–620% for both species after salmon arrived. However, the cause of the increases differed between species such that rainbow trout switched to consuming salmon eggs, salmon flesh and blowflies that colonized salmon carcasses, whereas grayling primarily ate more benthic invertebrates that were presumably made available because of physical disturbances by spawning salmon. 4. We also observed an increase in the δ15N of rainbow trout diets post‐salmon, but not for grayling. This presumably led to the observed increase in the δ15N of rainbow trout with increasing body mass, but not for grayling. 5. Using a bioenergetics model, we predicted that salmon‐derived resources contributed a large majority of the energy necessary for growth in this resident fish community. Furthermore, the bioenergetics model also showed how seasonal changes in diet affected the stable isotope ratios of both species. These results expand upon a growing body of literature that highlights the different pathways whereby anadromous salmon influence coastal ecosystems, particularly resident fish.  相似文献   

8.
Our previous studies suggested that salmon gonadotropin-releasing hormone (sGnRH) neurons regulate both final maturation and migratory behavior in homing salmonids. Activation of sGnRH neurons can occur during upstream migration. We therefore examined expression of genes encoding the precursors of sGnRH, sGnRH-I, and sGnRH-II, in discrete forebrain loci of prespawning chum salmon, Oncorhynchus keta. Fish were captured from 1997 through 1999 along their homing pathway: coastal areas, a midway of the river, 4 km downstream of the natal hatchery, and the hatchery. Amounts of sGnRH mRNAs in fresh frozen sections including the olfactory bulb (OB), terminal nerve (TN), ventral telencephalon (VT), nucleus preopticus parvocellularis anterioris (PPa), and nucleus preopticus magnocellularis (PM) were determined by quantitative real-time polymerase chain reactions. The amounts of sGnRH-II mRNA were higher than those of sGnRH-I mRNA, while they showed similar changes during upstream migration. In the OB and TN, the amounts of sGnRH mRNAs elevated from the coast to the natal hatchery. In the VT and PPa, they elevated along with the progress of final maturation. Such elevation was also observed in the rostroventral, middle, and dorsocaudal parts of the PM. The amounts of gonadotropin IIbeta and somatolactin mRNAs in the pituitary also increased consistently with the elevation of gene expression for sGnRH. These results, in combination with lines of previous evidence, indicate that sGnRH neurons are activated in almost all the forebrain loci during the last phases of spawning migration, resulting in coordination of final gonadal maturation and migratory behavior to the spawning ground.  相似文献   

9.
The Pacific salmon Oncorhynchus nerka typically occurs as a sea-run form (sockeye salmon) or may reside permanently in lakes (kokanee) thoughout its native North Pacific. We tested whether such geographically extensive ecotypic variation resulted from parallel evolutionary divergence thoughout the North Pacific or whether the two forms are monophyletic groups by examining allelic variation between sockeye salmon and kokanee at two minisatellite DNA repeat loci and in mitochondrial DNA (mtDNA) Bgl II restriction sites. Our examination of over 750 fish from 24 populations, ranging from Kamchatka to the Columbia River, identified two major genetic groups of North Pacific O. nerka: a “northwestern” group consisting of fish from Kamchatka, western Alaska, and northwestern British Columbia, and a “southern” group consisting of sockeye salmon and kokanee populations from the Fraser and Columbia River systems. Maximum-likelihood analysis accompanied by bootstrapping provided strong support for these two genetic groups of O. nerka; the populations did not cluster by migratory form, but genetic affinities were organized more strongly by geographic proximity. The two major genetic groups resolved in our study probably stem from historical isolation and dispersal of O. nerka from two major Wisconsinan glacial refugia in the North Pacific. There were significant minisatellite DNA allele frequency differences between sockeye salmon and kokanee populations from different parts of the same watershed, between populations spawning in different tributaries of the same lake, and also between sympatric populations spawning in the same stream at the same time. MtDNA Bgl II restriction site variation was significant between sockeye salmon and kokanee spawning in different parts of the same major watershed but not between forms spawning in closer degrees of reproductive sympatry. Patterns of genetic affinity and allele sharing suggested that kokanee have arisen from sea-run sockeye salmon several times independently in the North Pacific. We conclude that sockeye salmon and kokanee are para- and polyphyletic, respectively, and that the present geographic distribution of the ecotypes results from parallel evolutionary origins of kokanee from sockeye (divergences between them) thoughout the North Pacific.  相似文献   

10.
11.
Reproductive homing migration of salmonids requires accurate interaction between the reception of external olfactory cues for navigation to the spawning grounds and the regulation of sexual maturation processes. This study aimed at providing insights into the hypothesized functional link between olfactory sensing of the spawning ground and final sexual maturation. We have therefore assessed the presence and expression levels of olfactory genes by RNA sequencing (RNAseq) of the olfactory rosettes in homing chum salmon Oncorhynchus keta Walbaum from the coastal sea to 75 km upstream the rivers at the pre-spawning ground. The progression of sexual maturation along the brain-pituitary-gonadal axis was assessed through determination of plasma steroid levels by time-resolved fluoroimmunoassays (TR-FIA), pituitary gonadotropin subunit expression and salmon gonadotropin-releasing hormone (sgnrh) expression in the brain by quantitative real-time PCR. RNAseq revealed the expression of 75 known and 27 unknown salmonid olfactory genes of which 13 genes were differentially expressed between fish from the pre-spawning area and from the coastal area, suggesting an important role of these genes in homing. A clear progression towards final maturation was characterised by higher plasma 17α,20β-dihydroxy-4-pregnen-3-one (DHP) levels, increased pituitary luteinizing hormone β subunit (lhβ) expression and sgnrh expression in the post brain, and lower plasma testosterone (T) and 17β-estradiol (E2) levels. Olfactomedins and ependymin are candidates among the differentially expressed genes that may connect olfactory reception to the expression of sgnrh to regulate final maturation.  相似文献   

12.
It has been hypothesized that salmonids use olfactory cues to return to their natal rivers and streams. However, the key components of the molecular pathway involved in imprinting and homing are still unknown. If odorants are involved in salmon homing migration, then olfactory receptors should play a critical role in the dissipation of information from the environment to the fish. Therefore, we examined the expression profiles of a suite of genes encoding olfactory receptors and other olfactory-related genes in the olfactory rosettes of different life stages in two anadromous and one non-anadromous wild Atlantic salmon populations from Newfoundland, Canada. We identified seven differentially expressed OlfC genes in juvenile anadromous salmon compared to returning adults in both populations of anadromous Atlantic salmon. The salmon from the Campbellton River had an additional 10 genes that were differentially expressed in juveniles compared to returning adults. There was no statistically significant difference in gene expression of any of the genes in the non-anadromous population (P < 0.01). The function of the OlfC gene products is not clear, but they are predicted to be amino acid receptors. Other studies have suggested that salmon use amino acids for imprinting and homing. This study, the first to examine the expression of olfactory-related genes in wild North American Atlantic salmon, has identified seven OlfC genes that may be involved in the imprinting and homeward migration of anadromous Atlantic salmon.  相似文献   

13.
14.
Elucidating the genetic basis of adaptation to the local environment can improve our understanding of how the diversity of life has evolved. In this study, we used a dense SNP array to identify candidate loci potentially underlying fine‐scale local adaptation within a large Atlantic salmon (Salmo salar) population. By combining outlier, gene–environment association and haplotype homozygosity analyses, we identified multiple regions of the genome with strong evidence for diversifying selection. Several of these candidate regions had previously been identified in other studies, demonstrating that the same loci could be adaptively important in Atlantic salmon at subdrainage, regional and continental scales. Notably, we identified signals consistent with local selection around genes associated with variation in sexual maturation, energy homeostasis and immune defence. These included the large‐effect age‐at‐maturity gene vgll3, the known obesity gene mc4r, and major histocompatibility complex II. Most strikingly, we confirmed a genomic region on Ssa09 that was extremely differentiated among subpopulations and that is also a candidate for local selection over the global range of Atlantic salmon. This region colocalized with a haplotype strongly associated with spawning ecotype in sockeye salmon (Oncorhynchus nerka), with circumstantial evidence that the same gene (six6) may be the selective target in both cases. The phenotypic effect of this region in Atlantic salmon remains cryptic, although allelic variation is related to upstream catchment area and covaries with timing of the return spawning migration. Our results further inform management of Atlantic salmon and open multiple avenues for future research.  相似文献   

15.
Maturing adult sockeye salmon Oncorhynchus nerka were intercepted while migrating in the ocean and upstream in freshwater over a combined distance of more than 1,300 km to determine physiological and endocrine changes associated with ionoregulation. Sockeye migrating through seawater and freshwater showed consistent declines in gill Na+/K+-ATPase (NKA) activity, plasma osmolality and plasma chloride concentration. In contrast, plasma sodium concentration became elevated in seawater as fish approached the river mouth and was then restored after sockeye entered the river. Accompanying the movement from seawater to freshwater was a significant increase in mRNA for the NKA α1a subunit in the gill, with little change in the α1b subunit. Potential endocrine signals stimulating the physiological changes during migration were assessed by measuring plasma cortisol and prolactin (Prl) concentrations and quantifying mRNA extracted from the gill for glucocorticoid receptors 1 and 2 (GR1 and GR2), mineralocorticoid receptor (MR), growth hormone 1 receptor (GH1R), and prolactin receptor (PrlR). Plasma cortisol and prolactin concentrations were high in seawater suggesting a preparatory endocrine signal before freshwater entry. Generally, the mRNA expression for GR1, GR2 and MR declined during migration, most notably after fish entered freshwater. In contrast, PrlR mRNA increased throughout migration, particularly as sockeye approached the spawning grounds. A highly significant association existed between gill PrlR mRNA and gill NKA α1a mRNA. GH1R mRNA also increased significantly, but only after sockeye had migrated beyond tidal influence in the river and then again just before the fish reached the spawning grounds. These findings suggest that cortisol and prolactin stimulate ionoregulation in the gill as sockeye salmon adapt to freshwater.  相似文献   

16.
Bandoh H  Kida I  Ueda H 《PloS one》2011,6(1):e16051
Many studies have shown that juvenile salmon imprint olfactory memory of natal stream odors during downstream migration, and adults recall this stream-specific odor information to discriminate their natal stream during upstream migration for spawning. The odor information processing of the natal stream in the salmon brain, however, has not been clarified. We applied blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging to investigate the odor information processing of the natal stream in the olfactory bulb and telencephalon of lacustrine sockeye salmon (Oncorhynchus nerka). The strong responses to the natal stream water were mainly observed in the lateral area of dorsal telencephalon (Dl), which are homologous to the medial pallium (hippocampus) in terrestrial vertebrates. Although the concentration of L-serine (1 mM) in the control water was 20,000-times higher than that of total amino acid in the natal stream water (47.5 nM), the BOLD signals resulting from the natal stream water were stronger than those by L-serine in the Dl. We concluded that sockeye salmon could process the odor information of the natal stream by integrating information in the Dl area of the telencephalon.  相似文献   

17.
Pacific salmon (genus Oncorhynchus) exhibit an interesting anduncommon life-history pattern that combines semelparity, anadromy,and navigation (homing). During smoltification, young salmonimprint on the chemical composition of their natal stream water(the home-stream olfactory bouquet or "HSOB"); they then migrateto the ocean where they spend a few years feeding prior to migratingback to their natal freshwater stream to spawn. Upstream migrationis guided by the amazing ability to discriminate between thechemical compositions of different stream waters and thus identifyand travel to their home-stream. Pacific salmon demonstratemarked somatic and neural degeneration changes during home-streammigration and at the spawning grounds. The appearance of thesepathologies is correlated with a marked elevation in plasmacortisol levels. While the mechanisms of salmonid homing arenot completely understood, it is known that adult salmon continuouslyutilize two of their primary sensory systems, olfaction andvision, during homing. Olfaction is the primary sensory systeminvolved in freshwater homing and "HSOB" recognition, and willbe emphasized here. Previously, we proposed that the increasein plasma cortisol during Pacific salmon home-stream migrationis adaptive because it enhances the salmon's ability to recallthe imprinted memory of the "HSOB" (Carruth, 1998; Carruth etal., 2000b). Elevated plasma concentrations of cortisol couldprime the hippocampus or other olfactory regions of the brainto recall this memory and, therefore, aid in directing the fishto their natal stream. Thus, specific responses of salmon tostressors could enhance reproductive success.  相似文献   

18.
Juvenile salmon have an olfactory ability to imprint their natal stream odors, but neither the odor properties of natal stream water nor the imprinting timing and duration have been clarified as yet. Here we show, using electrophysiological and behavioral experiments, that one-year-old lacustrine sockeye salmon (Oncorhynchus nerka) can be imprinted around the stage of parr-smolt transformation (PST) by a single amino acid, 1 µM L-proline (Pro), or L-glutamic acid (Glu). We also show by real-time PCR that changes occur in mRNA levels of the salmon olfactory imprinting-related gene (SOIG) around PST. The electro-olfactogram (EOG) responses of test fish exposed to Pro in March (before PST) and April–June (during PST) for 2 weeks were significantly (1.7-fold) greater than those of non-exposed control fish, but not those of test fish exposed in July (after PST). When Pro and control water were added to the water inlets of a two-choice test tank during the spawning season 2 years after the test water exposure, 80% of maturing and matured test fish exposed before and during PST showed a preference for Pro, whereas those exposed after PST did not. The EOG response of test fish exposed to Pro or Glu for 1 hour, 6 hours, 1 day, 7 days, or 14 days in May revealed that only the response after 14 days of exposure was significantly (1.8-fold) greater than the control. The expression levels of SOIG mRNA increased before and during PST, and decreased after PST. We conclude that one-year-old lacustrine sockeye salmon can be imprinted by a single amino acid before and during PST, and that imprinting requires exposure for at least 14 days.  相似文献   

19.
20.
Marine exit timing of sockeye salmon Oncorhynchus nerka populations on the Haida Gwaii Archipelago, British Columbia, Canada, is described, with specific focus on Copper Creek. Marine exit in Copper Creek occurs > 130 days prior to spawning, one of the longest adult freshwater residence periods recorded for any O. nerka population. Copper Creek presents an easy upstream migration, with mild water temperatures (7 to 14° C), short distance (13·1 km) and low elevation gain (41 m) to the lake where fish hold prior to spawning. An energetic model estimates that <1% of the initial energy reserve is required for upstream migration, compared with 62% for lake holding and 38% for reproductive development. Historical records suggest that it is unlikely that water temperature in any of the O.nerka streams in Haida Gwaii has ever exceeded the presumed temperature threshold (19° C) for early marine exit. Although it is not impossible that the thermal tolerance of Copper Creek O.nerka is very low, the data presented here appear inconsistent with thermal avoidance as an explanation for the early marine exit timing in Copper Creek and in three other populations on the archipelago with early marine exit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号