首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Pathogens are growing threats to wildlife. The rapid growth of marine salmon farms over the past two decades has increased host abundance for pathogenic sea lice in coastal waters, and wild juvenile salmon swimming past farms are frequently infected with lice. Here we report the first investigation of the potential role of salmon farms in transmitting sea lice to juvenile sockeye salmon (Oncorhynchus nerka).

Methodology/Principal Findings

We used genetic analyses to determine the origin of sockeye from Canada''s two most important salmon rivers, the Fraser and Skeena; Fraser sockeye migrate through a region with salmon farms, and Skeena sockeye do not. We compared lice levels between Fraser and Skeena juvenile sockeye, and within the salmon farm region we compared lice levels on wild fish either before or after migration past farms. We matched the latter data on wild juveniles with sea lice data concurrently gathered on farms. Fraser River sockeye migrating through a region with salmon farms hosted an order of magnitude more sea lice than Skeena River populations, where there are no farms. Lice abundances on juvenile sockeye in the salmon farm region were substantially higher downstream of farms than upstream of farms for the two common species of lice: Caligus clemensi and Lepeophtheirus salmonis, and changes in their proportions between two years matched changes on the fish farms. Mixed-effects models show that position relative to salmon farms best explained C. clemensi abundance on sockeye, while migration year combined with position relative to salmon farms and temperature was one of two top models to explain L. salmonis abundance.

Conclusions/Significance

This is the first study to demonstrate a potential role of salmon farms in sea lice transmission to juvenile sockeye salmon during their critical early marine migration. Moreover, it demonstrates a major migration corridor past farms for sockeye that originated in the Fraser River, a complex of populations that are the subject of conservation concern.  相似文献   

2.
Polymerase chain reaction (PCR) and microscopic examination of stained kidney sections were used to diagnose infections with the myxozoan parasite Parvicapsula minibicornis in maturing Fraser River salmon. In 2 series of collections, the parasite was detected in 109 of 406 migrating sockeye salmon Oncorhynchus nerka belonging to Early Stuart, Early Summer and Summer run-timing groups, mainly upper Fraser River stocks. However, the parasite was detected neither in fish at sea nor once they had migrated several 100 km upstream. Prevalence then increased to 95% or greater at the spawning grounds. Histological examination of kidney was less sensitive than PCR in detecting the parasite in salmon collected from the earliest sites in both collections found positive by PCR. Severity of infection was greatest at the spawning grounds. Development of infection in sockeye, measured by prevalence, severity or by the rate of false-negative histological diagnoses, appeared to be a useful estimate of in-river residence time. Prevalence and severity of infections in sequential samples of Harrison River and Weaver Creek sockeye stocks collected from the Harrison River indicated that more time had elapsed since parasite transmission than would be predicted based on migration distance alone. Pink salmon Oncorhynchus gorbuscha, coho salmon O. kisutch and chinook salmon O. tshawytscha were found to be infected with the parasite. Development of P. minibicornis in pink salmon was most similar to that in sockeye. Pink and coho salmon may be at risk to the pathological consequences of P. minibicornis infection.  相似文献   

3.
Mean summer water temperatures in the Fraser River (British Columbia, Canada) have increased by ~1.5 °C since the 1950s. In recent years, record high river temperatures during spawning migrations of Fraser River sockeye salmon (Oncorhynchus nerka) have been associated with high mortality events, raising concerns about long‐term viability of the numerous natal stocks faced with climate warming. In this study, the effect of freshwater thermal experience on spawning migration survival was estimated by fitting capture–recapture models to telemetry data collected for 1474 adults (captured in either the ocean or river between 2002 and 2007) from four Fraser River sockeye salmon stock‐aggregates (Chilko, Quesnel, Stellako‐Late Stuart and Adams). Survival of Adams sockeye salmon was the most impacted by warm temperatures encountered in the lower river, followed by that of Stellako‐Late Stuart and Quesnel. In contrast, survival of Chilko fish was insensitive to the encountered river temperature. In all stocks, in‐river survival of ocean‐captured sockeye salmon was higher than that of river‐captured fish and, generally, the difference was more pronounced under warm temperatures. The survival–temperature relationships for ocean‐captured fish were used to predict historic (1961–1990) and future (2010–2099) survival under simulated lower river thermal experiences for the Quesnel, Stellako‐Late Stuart and Adams stocks. A decrease of 9–16% in survival of all these stocks was predicted by the end of the century if the Fraser River continues to warm as expected. However, the decrease in future survival of Adams sockeye salmon would occur only if fish continue to enter the river abnormally early, towards warmer periods of the summer, as they have done since 1995. The survival estimates and predictions presented here are likely optimistic and emphasize the need to consider stock‐specific responses to temperature and climate warming into fisheries management and conservation strategies.  相似文献   

4.
5.
6.
Physiological telemetry and proximate tissue analyses were used to assess energy expended by chum salmon Oncorhynchus keta on various behaviours during spawning in Kanaka Creek, British Columbia, Canada, and results were compared with published data on Fraser River sockeye salmon Oncorhynchus nerka , the only other species for which both types of measurements have been taken. Chum salmon arrived at the spawning grounds with body energy densities of 4·84 MJ kg−1 in males and 4·62 MJ kg−1 in females, lower than most sockeye salmon populations, and died with energy densities of c . 4 MJ kg−1, similar to that observed in sockeye salmon and other salmonids. Moisture levels generally increased in body tissues over the spawning life, particularly in female gonads, and lipid levels decreased. Declines in protein observed over the spawning life of other Pacific salmon Oncorhynchus sp. were less evident in Kanaka Creek chum salmon. Holding behaviour constituted the dominant component of the activity schedule and energy budget of both sexes. After holding, the most expensive behaviours were nest digging in females and aggressive displays in males. Dominant males expended the most energy on behaviours each day, as indexed by oxygen consumption (3600 mgO2 kg−1), while satellite males expended nearly as much (3504 mgO2 kg−1) but females expended considerably less (2327 mgO2 kg−1). Kanaka chum salmon engaged more frequently in energetically expensive reproductive behaviours than Stuart River sockeye salmon.  相似文献   

7.
Concern over global climate change is widespread, but quantifying relationships between temperature change and animal fitness has been a challenge for scientists. Our approach to this challenge was to study migratory Pacific salmon (Oncorhynchus spp.), fish whose lifetime fitness hinges on a once-in-a-lifetime river migration to natal spawning grounds. Here, we suggest that their thermal optimum for aerobic scope is adaptive for river migration at the population level. We base this suggestion on several lines of evidence. The theoretical line of evidence comes from a direct association between the temperature optimum for aerobic metabolic scope and the temperatures historically experienced by three Fraser River salmon populations during their river migration. This close association was then used to predict that the occurrence of a period of anomalously high river temperatures in 2004 led to a complete collapse of aerobic scope during river migration for a portion of one of the sockeye salmon (Oncorhynchus nerka) populations. This prediction was corroborated with empirical data from our biotelemetry studies, which tracked the migration of individual sockeye salmon in the Fraser River and revealed that the success of river migration for the same sockeye population was temperature dependent. Therefore, we suggest that collapse of aerobic scope was an important mechanism to explain the high salmon mortality observed during their migration. Consequently, models based on thermal optima for aerobic scope for ectothermic animals should improve predictions of population fitness under future climate scenarios.  相似文献   

8.
9.
Understanding the impact of barriers and habitat fragmentation on the ecology and genetics of species is of broad interest to many biologists. In aquatic systems, hydroelectric dams often present an impenetrable barrier to migratory fish and can have negative effects on their persistence. Hydroelectric dams constructed in the Coquitlam and Alouette Rivers in the Fraser River drainage (British Columbia, Canada) in the early 1900s were thought to have led to complete loss of anadromous sockeye salmon from both rivers. For both reservoirs, recent water release programs resulted in the unexpected downstream migration of juvenile sockeye salmon and the subsequent upstream migration of adults towards the reservoir 2 years later. Here we investigate the evolutionary impact of dams on the sockeye salmon migration behavior by investigating the genetic distinction between migratory and non-migratory individuals within the Alouette and Coquitlam reservoirs. We also compare historical and contemporary genetic connectivity among 11 Lower Fraser River sockeye sites to infer recent population connectivity changes that might have been influenced by anthropogenic activities. Our molecular genetic analyses show a genetic distinction between the sea-run and resident individuals from the Coquitlam reservoir and population splitting time estimates suggest a very recent divergence between them. These results indicate a genetic component to migration behavior. For our broader survey from 11 sites, our comparisons suggest a general decline in gene flow, with a few interesting exceptions. In summary, our results suggest (i) early stage divergence between life history forms of sockeye salmon within one reservoir, and (ii) recent changes in genetic connectivity among Lower Fraser River populations; both of these results have potential recovery implications for historically migratory populations that were affected by anthropogenic barriers such as hydroelectric dams.  相似文献   

10.
The four-year oscillations of the number of spawning sockeye salmon (Oncorhynchus nerka) that return to their native stream within the Fraser River basin in Canada are a striking example of population oscillations. The period of the oscillation corresponds to the dominant generation time of these fish. Various—not fully convincing—explanations for these oscillations have been proposed, including stochastic influences, depensatory fishing, or genetic effects. Here, we show that the oscillations can be explained as an attractor of the population dynamics, resulting from a strong resonance near a Neimark Sacker bifurcation. This explains not only the long-term persistence of these oscillations, but also reproduces correctly the empirical sequence of salmon abundance within one period of the oscillations. Furthermore, it explains the observation that these oscillations occur only in sockeye stocks originating from large oligotrophic lakes, and that they are usually not observed in salmon species that have a longer generation time.  相似文献   

11.
The haematocrit centrifugation technique, modified by keeping the haematocrit tubes cold (between 1 and 10 C), was sensitive for detecting light infections of Cryptobia salmositica (as few as 75 flagellates per ml of blood). In wet mount preparations, infections lighter than 7.5 X 10(3) flagellates per ml of blood could not be detected consistently. Different Pacific salmon stocks from British Columbia demonstrated differences in susceptibility to C. salmositica in experimental studies using laboratory reared juvenile fish. Oncorhynchus keta and Oncorhynchus tshawytscha from the Big Qualicum River stocks (Vancouver Island), and Oncorhynchus nerka from the Fulton River stock (Skeena River system), were all equally susceptible and suffered high mortalities at low exposures (100 flagellates in 0.1 ml physiological saline inoculated intraperitoneally per fish). Oncorhynchus nerka from the Weaver Creek stock (Fraser River system) was the most resistant with no mortalities even at exposures of 10(6) flagellates (in 0.1 ml physiological saline) per fish. Oncorhynchus kisutch seemed to be slightly less resistant than the Weaver Creek O. nerka, but fewer than 16% of the inoculated fish died. Oncorhynchus kisutch from the Big Qualicum River seemed to be slightly more resistant than O. kisutch from the Capilano River stock (a coastal river near Vancouver), with fewer mortalities and lighter infections when the experiments were terminated. Differences in susceptibility are believed to be associated with innate, genetically transmitted resistance.  相似文献   

12.
The myxosporean parasite Parvicapsula minibicornis is described from adult sockeye and coho salmon during spawning migrations in tributaries of the Columbia River in Canada and the United States. These observations extend the known distribution of this parasite from the Fraser River drainage basin. The parasite was identified in Columbia River salmonids using polymerase chain reaction (PCR) and by in situ hybridization, but unlike in Fraser River salmon, it was not observed in conventional histological preparations of the kidney. Prevalence of the parasite determined by PCR was higher in spawning sockeye from the Fraser River than in those from the Okanagan River. Our ability to explain the relatively low prevalence and absence of clinical P. minibicornis infections in Columbia River salmon is hampered by our poor understanding of the life cycle of this parasite.  相似文献   

13.
Migratory salmon transit estuary habitats on their way out to the ocean but this phase of their life cycle is more poorly understood than other phases. The estuaries of large river systems in particular may support many populations and several species of salmon that originate from throughout the upstream river. The Skeena River of British Columbia, Canada, is a large river system with high salmon population- and species-level diversity. The estuary of the Skeena River is under pressure from industrial development, with two gas liquefaction terminals and a potash loading facility in various stages of environmental review processes, providing motivation for understanding the usage of the estuary by juvenile salmon. We conducted a juvenile salmonid sampling program throughout the Skeena River estuary in 2007 and 2013 to investigate the spatial and temporal distribution of different species and populations of salmon. We captured six species of juvenile anadromous salmonids throughout the estuary in both years, and found that areas proposed for development support some of the highest abundances of some species of salmon. Specifically, the highest abundances of sockeye (both years), Chinook in 2007, and coho salmon in 2013 were captured in areas proposed for development. For example, juvenile sockeye salmon were 2–8 times more abundant in the proposed development areas. Genetic stock assignment demonstrated that the Chinook salmon and most of the sockeye salmon that were captured originated from throughout the Skeena watershed, while some sockeye salmon came from the Nass, Stikine, Southeast Alaska, and coastal systems on the northern and central coasts of British Columbia. These fish support extensive commercial, recreational, and First Nations fisheries throughout the Skeena River and beyond. Our results demonstrate that estuary habitats integrate species and population diversity of salmon, and that if proposed development negatively affects the salmon populations that use the estuary, then numerous fisheries would also be negatively affected.  相似文献   

14.
Adult sockeye salmon Oncorhynchus nerka destined for the Fraser River, British Columbia are some of the most economically important populations but changes in the timing of their homeward migration have led to management challenges and conservation concerns. After a directed migration from the open ocean to the coast, this group historically would mill just off shore for 3-6 weeks prior to migrating up the Fraser River. This milling behaviour changed abruptly in 1995 and thereafter, decreasing to only a few days in some years (termed early migration), with dramatic consequences that have necessitated risk-averse management strategies. Early migrating fish consistently suffer extremely high mortality (exceeding 90% in some years) during freshwater migration and on spawning grounds prior to spawning. This synthesis examines multidisciplinary, collaborative research aimed at understanding what triggers early migration, why it results in high mortality, and how fisheries managers can utilize these scientific results. Tissue analyses from thousands of O. nerka captured along their migration trajectory from ocean to spawning grounds, including hundreds that were tracked with biotelemetry, have revealed that early migrants are more reproductively advanced and ill-prepared for osmoregulatory transition upon their entry into fresh water. Gene array profiles indicate that many early migrants are also immunocompromised and stressed, carrying a genomic profile consistent with a viral infection. The causes of these physiological changes are still under investigation. Early migration brings O. nerka into the river when it is 3-6° C warmer than historical norms, which for some late-run populations approaches or exceeds their critical maxima leading to the collapse of metabolic and cardiac scope, and mortality. As peak spawning dates have not changed, the surviving early migrants tend to mill in warm lakes near to spawning areas. These results in the accumulation of many more thermal units and longer exposures to freshwater diseases and parasites compared to fish that delay freshwater entry by milling in the cool ocean environment. Experiments have confirmed that thermally driven processes are a primary cause of mortality for early-entry migrants. The Fraser River late-run O. nerka early migration phenomenon illustrates the complex links that exist between salmonid physiology, behaviour and environment and the pivotal role that water temperature can have on population-specific migration survival.  相似文献   

15.
This study showed that a coastal population (Harrison) of Fraser River sockeye salmon Oncorhynchus nerka had a lower aerobic and cardiac scope compared with interior populations with more challenging upriver spawning migrations, providing additional support to the idea that Fraser River O. nerka populations have adapted physiologically to their local migratory environment.  相似文献   

16.
Variability of six microsatellite loci and 45 single nucleotide polymorphism (SNP) loci was analyzed in 17 samples of sockeye salmon from 10 major spawning watersheds on the Asian coast of the Pacific Ocean. On the basis of the analysis of SNP loci variability of sockeye salmon in the examined part of the range, five population groups were identified, including local stocks from the Palana, Okhota, and Kamchatka rivers, as well as the population groups of Southwestern Kamchatka, and Northeastern Kamchatka and Chukotka. Rather different pattern of samples differentiation was obtained by estimating variability of six microsatellite DNA loci. Regional complexes of the eastern and western coasts of Kamchatka were identified. Moreover, sockeye salmon from the Palana River fell into the cluster of Western Kamchatka populations, while the population from the Okhota River and Meynypilgin lake–river system (Chukotka), confined to the subperiphery of the range, where the most differentiated from the others. The possible reasons for the discrepancies and high divergence of the Palana River and the Okhota River sockeye salmon populations, inferred from the SNP markers analysis, are discussed.  相似文献   

17.
Brykov VA  Poliakova NE  Podlesnykh AV 《Genetika》2003,39(12):1687-1692
Variability of three PCR-amplified mtDNA regions was examined in five populations of sockeye salmon from Azabach'e Lake. Eighteen haplotypes were detected in 144 fish. Significant differences were found between seasonal races of sockeye salmon spawning in the lake. The short time of independent divergence between the seasonal races indicates that these races formed independently in each spawning region. No difference in mtDNA between lake samples of early sockeye salmon (subisolates) was revealed, which confirms the existence of gene flow between them. A high level of differences between the sockeye salmon spawning in the lake and spawning in the tributaries of the lake, the Bushuev and Lotnaya rivers, suggests that there were no migration between them during many generations and that the nature of spawning grounds (lake or river) is essential for within species differentiation in this species.  相似文献   

18.
Variability of three PCR-amplified mtDNA regions was examined in five populations of sockeye salmon from Azabach'e Lake. Eighteen haplotypes were detected in 144 fish. Significant differences were found between seasonal races of sockeye salmon spawning in the lake. The short time of independent divergence between the seasonal races indicates that these races formed independently in each spawning region. No difference in mtDNA between lake samples of early sockeye salmon (subisolates) was revealed, which confirms the existence of gene flow between them. A high level of differences between the sockeye salmon spawning in the lake and spawning in the tributaries of the lake, the Bushuev and Lotnaya rivers, suggests that there were no migration between them during many generations and that the nature of spawning grounds (lake or river) is essential for within-species differentiation in this species.  相似文献   

19.
The Pacific salmon Oncorhynchus nerka typically occurs as a sea-run form (sockeye salmon) or may reside permanently in lakes (kokanee) thoughout its native North Pacific. We tested whether such geographically extensive ecotypic variation resulted from parallel evolutionary divergence thoughout the North Pacific or whether the two forms are monophyletic groups by examining allelic variation between sockeye salmon and kokanee at two minisatellite DNA repeat loci and in mitochondrial DNA (mtDNA) Bgl II restriction sites. Our examination of over 750 fish from 24 populations, ranging from Kamchatka to the Columbia River, identified two major genetic groups of North Pacific O. nerka: a “northwestern” group consisting of fish from Kamchatka, western Alaska, and northwestern British Columbia, and a “southern” group consisting of sockeye salmon and kokanee populations from the Fraser and Columbia River systems. Maximum-likelihood analysis accompanied by bootstrapping provided strong support for these two genetic groups of O. nerka; the populations did not cluster by migratory form, but genetic affinities were organized more strongly by geographic proximity. The two major genetic groups resolved in our study probably stem from historical isolation and dispersal of O. nerka from two major Wisconsinan glacial refugia in the North Pacific. There were significant minisatellite DNA allele frequency differences between sockeye salmon and kokanee populations from different parts of the same watershed, between populations spawning in different tributaries of the same lake, and also between sympatric populations spawning in the same stream at the same time. MtDNA Bgl II restriction site variation was significant between sockeye salmon and kokanee spawning in different parts of the same major watershed but not between forms spawning in closer degrees of reproductive sympatry. Patterns of genetic affinity and allele sharing suggested that kokanee have arisen from sea-run sockeye salmon several times independently in the North Pacific. We conclude that sockeye salmon and kokanee are para- and polyphyletic, respectively, and that the present geographic distribution of the ecotypes results from parallel evolutionary origins of kokanee from sockeye (divergences between them) thoughout the North Pacific.  相似文献   

20.
The enhancement of salmon populations has long been used to increase the abundance of salmon returning to spawn and/or to be captured in fisheries. However, in some instances enhancement can have adverse impacts on adjacent non-enhanced populations. In Canada''s Skeena watershed, smolt-to-adult survival of Babine Lake sockeye from 1962–2002 was inversely related to the abundance of sockeye smolts leaving Babine Lake. This relationship has led to the concern that Babine Lake smolt production, which is primarily enhanced by spawning channels, may depress wild Skeena (Babine and non-Babine) sockeye populations as a result of increased competition between wild and enhanced sockeye smolts as they leave their natal lakes and co-migrate to sea. To test this hypothesis we used data on Skeena sockeye populations and oceanographic conditions to statistically examine the relationship between Skeena sockeye productivity (adult salmon produced per spawner) and an index of Babine Lake enhanced smolt abundance while accounting for the potential influence of early marine conditions. While we had relatively high power to detect large effects, we did not find support for the hypothesis that the productivity of wild Skeena sockeye is inversely related to the abundance of enhanced sockeye smolts leaving Babine Lake in a given year. Importantly, life-time productivity of Skeena sockeye is only partially explained by marine survival, and likely is an unreliable measure of the influence of smolt abundance. Limitations to our analyses, which include: (1) the reliance upon adult salmon produced per spawner (rather than per smolt) as an index of marine survival, and (2) incomplete age structure for most of the populations considered, highlight uncertainties that should be addressed if understanding relationships between wild and enhanced sockeye is a priority in the Skeena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号