首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
In order to explore the electron-transferring properties of methionine-80-sulfoxide cytochrome c, the pure, chromatographically homogeneous methionine-80-sulfoxide cytochrome c was previously published procedure (Ivanetich, K.M., Bradshaw, J.J. and Kaminsky, L.S. (1976) Biochemistry 15, 1144-1153) was found to produce a mixture of products. In the pure derivative, visible spectroscopy indicates that the 695 nm band indicative of the Met-80-Fe coordination is missing, amino acid analysis indicates that only one methionine is modified to the sulfoxide, and the E0' is found to be 240 mV vs. N.H.E. For succinate cytochrome c reductase activity, the Km for modified cytochrome was about one-ninth that of the native protein, while the maximum turnover number of the reductase with the modified protein was only about 54% of that with native protein. In contrast, the activity with cytochrome oxidase measured polarographically using ascorbate and TMPD under two different buffer/pH conditions, gave Km values that were very similar for both the native and modified cytochromes c, but the maximum turnover numbers of the oxidase with the modified protein were less than 40% of native in either buffer. It is concluded that the Met-80-sulfoxide cytochrome c in the reduced form is able to maintain substantially its heme crevice structure and thus maintain Km values similar to those of native protein. However, the low maximum turnover numbers for oxidase activity with the modified protein in the reduced state indicate that electron transfer itself has been significantly decreased, probably because the parity of acid/base and electrostatic interactions of Met-80 sulfur with the Fe in the two redox states has been disrupted.  相似文献   

2.
Analogues of the 39-residue CNBr fragment of horse cytochrome c (66-104) have been prepared by total chemical synthesis. Conformationally assisted ligation of these peptides with the native cytochrome c fragment 1-65 (homoserine lactone form) occurred in high yield. Semisynthetic protein molecules of the expected molecular weight were obtained that had folded structures similar to the native molecule as shown by spectral properties and by cross-reactivity with a panel of monoclonal antibodies sensitive to the three-dimensional integrity of cytochrome c. Point mutations were introduced into the horse sequence at three strongly conserved sites: Tyr67, Thr78, and Ala83. The contributions of these 3 residues to the stability of the heme crevice were estimated by titration of the 695 nm absorption due to coordination of ferric iron by the sixth ligand methionine sulfur. The roles of these residues in catalysis of electron transfer and in establishing the value of the redox potential of cytochrome c were also investigated. The hydroxyl group of Tyr67 modulates the spectral properties of the heme and has a profound influence on its redox properties, but hydrogen bonding involving this phenolic hydroxyl does not stabilize the heme crevice. In contrast, we find that Thr78 is strongly stabilizing and that asparagine is not an adequate substitute for this residue because of the greater entropic cost of burying its side chain. The low biological activity of analogues modified at this position, despite normal redox potentials, imply a role for Thr78 in the electron transfer mechanism. The replacement of Ala83 by proline induces a similar phenomenon. An involvement of this residue in the catalysis of electron transfer provides an explanation of the low reactivity of plant mitochondrial cytochromes c in mammalian redox systems.  相似文献   

3.
Zhang H  Osyczka A  Moser CC  Dutton PL 《Biochemistry》2006,45(48):14247-14255
Typically, c hemes are bound to the protein through two thioether bonds to cysteines and two axial ligands to the heme iron. In high-potential class I c-type cytochromes, these axial ligands are commonly His-Met. A change in this methionine axial ligand is often correlated with a dramatic drop in the heme redox potential and loss of function. Here we describe a bacterial cytochrome c with an unusual tolerance to the alternations in the heme ligation pattern. Substitution of the heme ligating methionine (M185) in cytochrome c1 of the Rhodobacter sphaeroides cytochrome bc1 complex with Lys and Leu lowers the redox midpoint potential but not enough to prevent physiologically competent electron transfer in these fully functional variants. Only when Met-185 is replaced with His is the drop in the redox potential sufficiently large to cause cytochrome bc1 electron transfer chain failure. Functional mutants preserve the structural integrity of the heme crevice: only the nonfunctional His variant allows carbon monoxide to bind to reduced heme, indicating a significant opening of the heme environment. This range of cytochrome c1 ligand mutants exposes both the relative resilience to sixth axial ligand change and the ultimate thermodynamic limits of operation of the cofactor chains in cytochrome bc1.  相似文献   

4.
The cycB2 gene encoding the soluble cytochrome c555s from Aquifex aeolicus, an hyperthermophilic organism, has been cloned and expressed using Escherichia coli as the host organism. The cytochrome was successfully produced in the periplasm of an E. coli strain coexpressing the ccmABCDEFGH genes involved in the cytochrome c maturation process. Comparison of native and recombinant cytochrome c555s shows that both proteins are indistinguishable in terms of spectroscopic and physicochemical properties. Since two different methionine residues are present in the sequence stretch usually providing the sixth ligand to the heme iron, site-directed mutagenesis has been performed in order to identify the methionine serving as the axial ligand. Two single mutations were introduced, leading to the replacement of each methionine by a histidine residue. Characterization of both mutants, M78H and M84H cytochromes c555s, using biochemical and biophysical techniques has been carried out. The M84H mutant exhibits spectral features identical to those of native cytochrome. Its redox midpoint potential is decreased by 40 mV. By contrast, substitution of methionine 78 by a histidine residue strongly alters the structural and physicochemical properties of the molecule which exhibits characteristics of His/His iron coordination type rather than His/Met. These results allow us to identify methionine 78 as the sixth ligand of cytochrome c555s heme iron. Preliminary results on the thermostability of the native and mutant cytochromes c555 are also reported.  相似文献   

5.
The nature of the axial ligation to heme iron has been suggested to be the major determinant of the oxidation-reduction potential of a particular cytochrome, but natural cytochromes that vary significantly in E'm invariably differ from one another in many ways. We proposed to clarify this issue by engineering many different ligation patterns within the same basic molecule, mitochondrial cytochrome c. Since many of the potentially informative substitutions require non-coded amino acids, semisynthesis was the approach we chose, and solid-phase peptide synthesis was used to make a set of nin 39-residue peptides that have been incorporated by autocatalytic fragment religation into the structure of horse cytochrome c. An additional two analogues modified at this position were made by chemical modification of the whole protein. As well as looking at the effect on reduction potential, we examined the effect of varying the ligand sphere on the efficiency of the autocatalytic fragment religation reaction, on the conformation of cytochrome c, on its spectroscopic properties, and in promoting electron transfer between heme c and other redox centers. Substitute residues were chosen to put sulfur, selenium, oxygen, and nitrogen, or even no ligating atom at all in the place of methionine sulfur. We found both subtle and dramatic alterations in spectral properties, which were informative about changes in internal structure and stability brought about by the modifications and which may be useful in identifying novel natural ligation patterns. An unexpected finding was that alanine 80 cytochrome c acquires a hemoglobin-like spectrum, and binds O2 most effectively. Reduction potential changes of greater than 300 mV with nitrogen, greater than 400 mV with oxygen, and greater than 300 mV with thiol sulfur ligation were observed, confirming that variation of the ligand sphere is indeed the most effective way in which the protein coat may modulate the potential of the redox center it encloses. Finally, we obtained more evidence that this axial ligand plays an active role in electron transfer and discovered that histidine could be even more effective in this role.  相似文献   

6.
Investigations into the nature of the axial heme ligands, the strength of the heme crevice, the reactivity with cyanide, and the ascorbate reducibility of cytochrome c1 were performed to explore structure-function relationships of cytochrome c1. The existence of an absorbance band at 690 nm, which was quenched by raising the pH with a pK of 9.2 corresponding to a low spin-low transition, suggested that a methionine residue probably functioned as one of the axial heme iron ligands in this cytochrome. Spectral titrations of cytochrome c1 in the low pH range showed a markedly elevated pK for the low spin-high spin transition relative to cytochrome c. Denaturation studies with urea, the absence of any reaction with cyanide, and the evidence from other lines would appear to indicate that the heme group of cytochrome c1 was reduced by ascorbate at approximately 5% of the rate of reduction of cytochrome c but this rate dramatically increased with increasing pH concomitant with the disappearance of the 690 nm absorbance band. Circular dichroic spectra substantiated that elevated pH produced conformational changes localized to the heme crevice and probably also the regions containing aromatic residues. The enhanced rate of ascorbate reduction was perhaps a consequence of the increased accessibility of the heme iron to ascorbate. Major unfolding of the protein in 8 M urea, however, completely abolished the ascorbate reducibility of cytochrome c1. The buried nature of the heme group of cytochrome c1 would probably preclude transfer of an electron from cytochrome c1 to cytochrome c through a direct Fe-Fe or a heme-heme interaction. This poses an important question concerning the mechanism of this electron transfer between these two cytochromes not only in mitochondria but also in solution.  相似文献   

7.
Iodination of horse cytochrome c with the lactoperoxidase-hydrogen peroxide-iodide system results initially in the formation of the monoiodotyrosyl 74 derivative. This singly modified protein was obtained in pure form by ion exchange chromatography and preparative column electrophoresis. It shows an intact 695 nm absorption band, the midpoint potential of the native protein, a nuclear magnetic resonance spectrum which indicates an undisturbed heme crevice structure, a normal reaction with antibodies directed against native horse cytochrome c, and circular dichroic spectra in which the only changes from those of the native protein can be ascribed to the spectral properties of iodotyrosine itself. This conformationally intact derivative reacts with the succinate-cytochrome c reductase and the cytochrome c oxidase systems of beef mitochondrial particle preparations indistinguishably from the unmodified protein, showing that the region including tyrosine 74 is not involved in these enzymic electron transfer functions of the protein. The circular dichroic spectra of this derivative indicate that the minima observed at 288 and 282 nm in the spectrum of native ferricytochrome c originate from tyrosyl residue 74.  相似文献   

8.
The irradiation of deaerated solutions of horse heart cytochrome c causes the reduction of Fe(III) to Fe(II). The dependence of the photoreaction quantum yield on pH shows that the photoreactive species is a form of cytochrome c which contains methionine-80 and histidine-18 as heme ligands. The primary photochemical event consists of an electron transfer from the sulphur of methionine- 80 to iron. The re-oxidation of the photochemically obtained Fe(II) protein gives a Fe(III) cytochrome which exhibits a typical low-spin absorption spectrum, lacking the 695-nm band and indicating that a strong field ligand, other than methionine-80, coordinates to the sixth binding site of the heme iron. Spectrophotometric titration of the photochemically modified Fe(III) cytochrome shows that histidine- 18 remains bound in the fifth position.The substitution of methionine-80 with the more oxidizable azide ligand increases the efficiency of the intramolecular electron transfer. Azide radicals, detected by spin-trapping ESR technique, are formed in the primary act. Visible-UV spectral data indicate that histidine-18 and methionine-80 occupy the fifth and sixth position, respectively, in the photoreaction product. All the results obtained correlate well with those previously obtained in investigations concerning the photoredox behavior of iron porphyrin complexes.  相似文献   

9.
The cytochrome bound to the photosynthetic reaction center of Rhodovulum sulfidophilum presents two unusual characteristics with respect to the well characterized tetraheme cytochromes. This cytochrome contains only three hemes because it lacks the peptide motif CXXCH, which binds the most distal fourth heme. In addition, we show that the sixth axial ligand of the third heme is a cysteine (Cys-148) instead of the usual methionine ligand. This ligand exchange results in a very low midpoint potential (-160 +/- 10 mV). The influence of the unusual cysteine ligand on the midpoint potential of this distal heme was further investigated by site-directed mutagenesis. The midpoint potential of this heme is upshifted to +310 mV when cysteine 148 is replaced by methionine, in agreement with the typical redox properties of a His/Met coordinated heme. Because of the large increase in the midpoint potential of the distal heme in the mutant, both the native and modified high potential hemes are photooxidized at a redox poise where only the former is photooxidizable in the wild type. The relative orientation of the three hemes, determined by EPR measurements, is shown different from tetraheme cytochromes. The evolutionary basis of the concomitant loss of the fourth heme and the down-conversion of the third heme is discussed in light of phylogenetic relationships of the Rhodovulum species triheme cytochromes to other reaction center-associated tetraheme cytochromes.  相似文献   

10.
The cytochrome c(1) subunit of the ubihydroquinone:cytochrome c oxidoreductase (bc(1) complex) contains a single heme group covalently attached to the polypeptide via thioether bonds of two conserved cysteine residues. In the photosynthetic bacterium Rhodobacter (Rba.) capsulatus, cytochrome c(1) contains two additional cysteines, C144 and C167. Site-directed mutagenesis reveals a disulfide bond (rare in monoheme c-type cytochromes) anchoring C144 to C167, which is in the middle of an 18 amino acid loop that is present in some bacterial cytochromes c(1) but absent in higher organisms. Both single and double Cys to Ala substitutions drastically lower the +320 mV redox potential of the native form to below 0 mV, yielding nonfunctional cytochrome bc(1). In sharp contrast to the native protein, mutant cytochrome c(1) binds carbon monoxide (CO) in the reduced form, indicating an opening of the heme environment that is correlated with the drop in potential. In revertants, loss of the disulfide bond is remediated uniquely by insertion of a beta-branched amino acid two residues away from the heme-ligating methionine 183, identifying the pattern betaXM, naturally common in many other high-potential cytochromes c. Despite the unrepaired disulfide bond, the betaXM revertants are no longer vulnerable to CO binding and restore function by raising the redox potential to +227 mV, which is remarkably close to the value of the betaXM containing but loop-free mitochondrial cytochrome c(1). The disulfide anchored loop and betaXM motifs appear to be two independent but nonadditive strategies to control the integrity of the heme-binding pocket and raise cytochrome c midpoint potentials.  相似文献   

11.
Two variants of the cytochrome c1 component of the Rhodobacter capsulatus cytochrome bc1 complex, in which Met183 (an axial heme ligand) was replaced by lysine (M183K) or histidine (M183H), have been analyzed. Electron paramagnetic resonance (EPR) and magnetic circular dichroism (MCD) spectra of the intact complex indicate that the histidine/methionine heme ligation of the wild-type cytochrome is replaced by histidine/lysine ligation in M183K and histidine/histidine ligation in M183H. Variable amounts of histidine/histidine axial heme ligation were also detected in purified wild-type cytochrome c1 and its M183K variant, suggesting that a histidine outside the CSACH heme-binding domain can be recruited as an alternative ligand. Oxidation-reduction titrations of the heme in purified cytochrome c1 revealed multiple redox forms. Titrations of the purified cytochrome carried out in the oxidative or reductive direction differ. In contrast, titrations of cytochrome c1 in the intact bc1 complex and in a subcomplex missing the Rieske iron-sulfur protein were fully reversible. An Em7 value of -330 mV was measured for the single disulfide bond in cytochrome c1. The origins of heme redox heterogeneity, and of the differences between reductive and oxidative heme titrations, are discussed in terms of conformational changes and the role of the disulfide in maintaining the native structure of cytochrome c1.  相似文献   

12.
Tetraheme cytochrome c 3 (cyt c 3) exhibits extremely low reduction potentials and unique properties. Since axial ligands should be the most important factors for this protein, every axial histidine of Desulfovibrio vulgaris Miyazaki F cyt c 3 was replaced with methionine, one by one. On mutation at the fifth ligand, the relevant heme could not be linked to the polypeptide, revealing the essential role of the fifth histidine in heme linking. The fifth histidine is the key residue in the structure formation and redox regulation of a c-type cytochrome. A crystal structure has been obtained for only H25M cyt c 3. The overall structure was not affected by the mutation except for the sixth methionine coordination at heme 3. NMR spectra revealed that each mutated methionine is coordinated to the sixth site of the relevant heme in the reduced state, while ligand conversion takes place at hemes 1 and 4 during oxidation at pH 7. The replacement of the sixth ligand with methionine caused an increase in the reduction potential of the mutated heme of 222-244 mV. The midpoint potential of a triheme H52M cyt c 3 is higher than that of the wild type by approximately 50 mV, suggesting a contribution of the tetraheme architecture to the lowering of the reduction potentials. The hydrogen bonding of Thr24 with an axial ligand induces a decrease in reduction potential of approximately 50 mV. In conclusion, the bis-histidine coordination is strategically essential for the structure formation and the extremely low reduction potential of cyt c 3.  相似文献   

13.
The alternative low-spin states of Fe(3+) and Fe(2+) cytochrome c induced by SDS or AOT/hexane reverse micelles exhibited the heme group in a less rhombic symmetry and were characterized by electron paramagnetic resonance, UV-visible, CD, magnetic CD, fluorescence, and Raman resonance. Consistent with the replacement of Met(80) by another strong field ligand at the sixth heme iron coordination position, Fe(3+) ALSScytc exhibited 1-nm Soret band blue shift and epsilon enhancement accompanied by disappearance of the 695-nm charge transfer band. The Raman resonance, CD, and magnetic CD spectra of Fe(3+) and Fe(2+) ALSScytc exhibited significant changes suggestive of alterations in the heme iron microenvironment and conformation and should not be assigned to unfold because the Trp(59) fluorescence remained quenched by the neighboring heme group. ALSScytc was obtained with His(33) and His(26) carboxyethoxylated horse cytochrome c and with tuna cytochrome c (His(33) replaced by Asn) pointing out Lys(79) as the probable heme iron ligand. Fe(3+) ALSScytc retained the capacity to cleave tert-butylhydroperoxide and to be reduced by dithiothreitol and diphenylacetaldehyde but not by ascorbate. Compatible with a more open heme crevice, ALSScytc exhibited a redox potential approximately 200 mV lower than the wild-type protein (+220 mV) and was more susceptible to the attack of free radicals.  相似文献   

14.
The interactions of cytochrome c1 and cytochrome c from bovine cardiac mitochondria were investigated. Cytochrome c1 and cytochrome c formed a 1:1 molecular complex in aqueous solutions of low ionic strength. The complex was stable to Sephadex G-75 chromatography. The formation and stability of the complex were independent of the oxidation state of the cytochrome components as far as those reactions studied were concerned. The complex was dissociated in solutions of ionic strength higher than 0.07 or pH exceeding 10 and only partially dissociated in 8 M urea. No complexation occurred when cytochrome c was acetylated on 64% of its lysine residues or photooxidized on its 2 methionine residues. Complexes with molecular ratios of less than 1:1 (i.e. more cytochrome c) were obtained when polymerized cytochrome c, or cytochrome c with all lysine residues guanidinated, or a "1-65 heme peptide" from cyanogen bromide cleavage of cytochrome c was used. These results were interpreted to imply that the complex was predominantly maintained by ionic interactions probably involving some of the lysine residues of cytochrome c but with major stabilization dependent on the native conformations of both cytochromes. The reduced complex was autooxidizable with biphasic kinetics with first order rate constants of 6 X 10(-5) and 5 X U0(-5) s-1 but did not react with carbon monoxide. The complex reacted with cyanide and was reduced by ascorbate at about 32% and 40% respectively, of the rates of reaction with cytochrome c alone. The complex was less photoreducible than cytochrome c1 alone. The complex exhibited remarkably different circular dichroic behavior from that of the summation of cytochrome c1 plus cytochrome c. We concluded that when cytochromes c1 and c interacted they underwent dramatic conformational changes resulting in weakening of their heme crevices. All results available would indicate that in the complex cytochrome c1 was bound at the entrance to the heme crevice of cytochrome c on the methionine-80 side of the heme crevice.  相似文献   

15.
In order to define the interaction domain on Rhodospirillum rubrum cytochrome c2 for the photosynthetic reaction center, positively charged lysine amino groups on cytochrome c2 were modified to form negatively charged carboxydinitrophenyl lysines. The reaction mixture was separated into six different fractions by ion exchange chromatography on carboxymethylcellulose and sulfopropyl-Sepharose. Peptide mapping studies indicated that fraction A consisted of a mixture of singly labeled derivatives modified at lysines 58, 81, and 109 on the back of cytochrome c2. Fractions C1, C2, C3, and C4 were found to be mixtures of singly labeled derivatives modified at lysines 9, 13, 75, 86, and 88 on the front of cytochrome c2 surrounding the heme crevice. The photooxidation of the carboxydinitrophenyl-cytochrome c2 derivatives by reaction centers purified from R. rubrum was measured following excitation with a laser pulse. The second-order rate constant of fraction A modified at backside lysines was found to be 2.3 X 10(7) M-1 s-1, nearly the same as that of native cytochrome c2, 2.6 X 10(7) M-1 s-1. However, the rate constants of fractions C1-C4 were found to be 6 to 12-fold smaller than that of native cytochrome c2. These results indicate that lysines surrounding the heme crevice of cytochrome c2 are involved in electrostatic interactions with carboxylate groups at the binding site of the reaction center. The reaction rates of horse heart cytochrome c derivatives modified at single lysine amino groups with trifluoroacetyl or trifluoromethylphenylcarbamoyl were also measured. Modification of lysines 8, 13, 25, 27, 72, 79, or 87 surrounding the heme crevice was found to significantly lower the rate of reaction, while modification of lysines in other regions had no effect. This indicates that the reaction of horse heart cytochrome c with the reaction center also involves the heme crevice domain.  相似文献   

16.
The kinetic rates and equilibrium association constants for cyanide binding have been measured for a series of cytochrome c derivatives as a probe of heme accessibility. The series included horse and yeast cytochromes iodinated at Tyr 67 and 74, horse cytochrome formylated at Trp 59 in both a low and high redox potential form, the Met 80 sulfoxide derivative of horse cytochrome and the N-acylisourea heme propionate derivative of tuna cytochrome. Native cytochromes c are well known to bind cyanide slowly in a reaction simply first order both in cytochrome and cyanide up to at least 100 mM in cyanide. The derivative demonstrate markedly different kinetics which indicate the following conclusions. (1) In spite of chemical modification at different loci, all the derivatives have highly similar reactivity, suggesting common ligation structures and mechanisms for reaction. (2) Compared to native cytochromes, reaction rates are 10-20 fold greater. This is in accord with a more accessible heme crevice, but not a completely opened crevice. For the completely opened case, rate increases are expected to be between three and five orders of magnitude. (3) Reaction rates are either independent of cyanide concentration (zero order) or show only slight variation. A mechanism which accounts for the data over four orders of magnitude in concentration postulates a protein conformation step, opening of the heme crevice, as the rate determining step. This conformation change has a limiting rate of 6 . 10(-2) s-1.  相似文献   

17.
The low-potential cytochrome c550 has been purified from the cyanobacterium Microcystis aeruginosa and its amino acid sequence has been determined. The protein contains 135 amino acid residues with the Cys-X-X-Cys-His heme binding site at residues 37 to 41. The sequence from residue 28 to 45 shows similarity to cytochrome c553 residues 1 to 18 when the heme binding sites are aligned. Another region of similarity is in the carboxyl-terminal regions of these two proteins. The two aligning regions of cytochrome c553 correspond to helical segments in other related cytochromes. A partial sequence of cytochrome c550 from Aphanizomenon flos-aquae was obtained and showed a 48% identity to the sequence of the M. aeruginosa cytochrome. The single methionine residue in cytochrome c550 of M. aeruginosa occurs at position 119 but there is no methionine in this region in the A. flos-aquae cytochrome, indicating that methionine is not the sixth ligand to the heme iron atom. Histidine 92 is a possible sixth ligand in M. aeruginosa cytochrome c550. The far-uv circular dichroism spectrum indicates that this protein is approximately 17% alpha helix, 42% beta-pleated sheet, and 41% random coil.  相似文献   

18.
The interaction of the Rhodospirillum rubrum cytochrome bc1 complex with R. rubrum cytochrome c2 and horse cytochrome c was studied using specific lysine modification and ionic strength dependence methods. In order to define the reaction domain on cytochrome c2, several fractions consisting of mixtures of singly labeled carboxydintrophenyl-cytochrome c2 derivatives were employed. Fraction A consisted of a mixture of derivatives modified at lysines 58, 81, and 109 on the back of cytochrome c2, while fractions C1, C2, C3, and C4 were mixtures of singly labeled derivatives modified at lysines 9, 13, 75, 86, and 88 on the front of cytochrome c2 surrounding the heme crevice. The rate of the reaction of fraction A was found to be nearly the same as that of native cytochrome c2. However, the rate constants of fractions C1-C4 were found to be more than 20-fold smaller than that of native cytochrome c2. These results indicate that lysine residues surrounding the heme crevice of cytochrome c2 are involved in electrostatic interactions with carboxylate groups at the binding site on the cytochrome bc1 complex. Since the same domain is involved in the reaction with the photosynthetic reaction center, cytochrome c2 must undergo some type of rotational or translational diffusion during electron transport in R. rubrum. The reaction rates of horse heart cytochrome c derivatives modified at single lysine amino groups with trifluoroacetyl or trifluoromethylphenylcarbamoyl were also measured. Modification of lysines 8, 13, 25, 27, 72, 79, and 87 surrounding the heme crevice was found to significantly lower the rate of the reaction, while modification of lysines in other regions had no effect. This indicates that the reaction of horse cytochrome c also involves the heme crevice domain.  相似文献   

19.
The reaction of cytochrome c with trifluoromethylphenyl isocyanate was carried out under conditions which led to the modification of a small number of the 19 lysines. Extensive ion-exchange chromatography was used to separate and purify six different derivatives, each modified at a single lysine residue, lysines 8, 13, 27, 72, 79, and 100, respectively. The only modifications which affected the activity of cytochrome c with cytochrome oxidase (EC 1.9.3.1) were those of lysines immediately surrounding the heme crevice, lysines 13, 27, 72, and 79, and also lysine 8 at the top of the heme crevice. In each case, the modified cytochrome c had the same maximum velocity as that of native cytochrome c, but an increased Michaelis constant for high affinity phase of the reaction. This supports the hypothesis that the cytochrome oxidase reaction site is located in the heme crevice region, and the highly conserved lysine residues surrounding the heme crevice are important in the binding.  相似文献   

20.
Binding to cytochrome c oxidase induces a conformational change in the cytochrome c molecule. This conformational change has been characterized by comparing the binding of native cytochrome c and chemically modified cytochrome c derivatives to bovine cytochrome c oxidase by using absorption, circular dichroism (CD), and magnetic circular dichroism (MCD) spectroscopy. The following derivatives were analyzed: (i) cytochrome c modified at all 19 lysine residues to yield the (N epsilon-acetimidyl)19 cytochrome c, (N epsilon-isopropyl)19 cytochrome c, and (N epsilon,N epsilon-dimethyl)19 cytochrome c; (ii) cytochrome c in which Met65 and Met80 are converted to the methionine sulfoxide; (iii) cytochrome c with a single break in the polypeptide chain at Arg38 or Gly37. The derivatives bind to cytochrome c oxidase at a ratio of one heme c per heme aa3. The association constants are similar to that of native cytochrome c except for (N epsilon-isopropyl)19 and (N epsilon,N epsilon-dimethyl)19 cytochromes c, which bind respectively four times and six times less strongly. The derivatives are good substrates for the cytochrome c oxidase reaction. The spectral changes accompanying the binding of the modified cytochromes c to cytochrome c oxidase are quite different from the spectral changes observed with native cytochrome c. The different optical absorption and MCD changes are explained by a polarity change around the exposed heme edge in the cytochrome c-cytochrome c oxidase complex. The CD changes indicate a conformational rearrangement restricted to the surface area surrounding the exposed heme edge. The rearrangement may involve a movement of the evolutionarily conserved Phe82 out of the vicinity of the heme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号