首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Cost-effective release of fermentable sugars from non-food biomass through biomass pretreatment/enzymatic hydrolysis is still the largest obstacle to second-generation biorefineries. Therefore, the hydrolysis performance of 21 bacterial cellulase mixtures containing the glycoside hydrolase family 5 Bacillus subtilis endoglucanase (BsCel5), family 9 Clostridium phytofermentans processive endoglucanase (CpCel9), and family 48 C. phytofermentans cellobiohydrolase (CpCel48) was studied on partially ordered low-accessibility microcrystalline cellulose (Avicel) and disordered high-accessibility regenerated amorphous cellulose (RAC). Faster hydrolysis rates and higher digestibilities were obtained on RAC than on Avicel. The optimal ratios for maximum cellulose digestibility were dynamic for Avicel but nearly fixed for RAC. Processive endoglucanase CpCel9 was the most important for high cellulose digestibility regardless of substrate type. This study provides important information for the construction of a minimal set of bacterial cellulases for the consolidated bioprocessing bacteria, such as Bacillus subtilis, for converting lignocellulose to biocommodities in a single step.  相似文献   

2.
Lactic acid is an important platform chemical for producing polylactic acid (PLA) and other value-added products. It is naturally produced by a wide spectrum of microbes including bacteria, yeast and filamentous fungi. In general, bacteria ferment C5 and C6 sugars to lactic acid by either homo- or hetero-fermentative mode. Xylose isomerase, phosphoketolase, transaldolase, l- and d-lactate dehydrogenases are the key enzymes that affect the ways of lactic acid production. Metabolic engineering of microbial strains are usually needed to produce lactic acid from unconventional carbon sources. Production of d-LA has attracted much attention due to the demand for producing thermostable PLA, but large scale production of d-LA has not yet been commercialized. Thermophilic Bacillus coagulans strains are able to produce l-lactic acid from lignocellulose sugars homo-fermentatively under non-sterilized conditions, but the lack of genetic tools for metabolically engineering them severely affects their development for industrial applications. Pre-treatment of agriculture biomass to obtain fermentable sugars is a pre-requisite for utilization of the huge amounts of agricultural biomass to produce lactic acid. The major challenge is to obtain quality sugars of high concentrations in a cost effective-way. To avoid or minimize the use of neutralizing agents during fermentation, genetically engineering the strains to make them resist acidic environment and produce lactic acid at low pH would be very helpful for reducing the production cost of lactic acid.  相似文献   

3.
Plant genetic engineering to improve biomass characteristics for biofuels   总被引:1,自引:0,他引:1  
Currently, most ethanol produced in the United States is derived from maize kernel, at levels in excess of four billion gallons per year. Plant lignocellulosic biomass is renewable, cheap and globally available at 10-50 billion tons per year. At present, plant biomass is converted to fermentable sugars for the production of biofuels using pretreatment processes that disrupt the lignocellulose and remove the lignin, thus allowing the access of microbial enzymes for cellulose deconstruction. Both the pretreatments and the production of enzymes in microbial tanks are expensive. Recent advances in plant genetic engineering could reduce biomass conversion costs by developing crop varieties with less lignin, crops that self-produce cellulase enzymes for cellulose degradation and ligninase enzymes for lignin degradation, or plants that have increased cellulose or an overall biomass yield.  相似文献   

4.
利用植物木质纤维资源发酵产乙醇越来越受到人们的重视,但是要达到工业生产仍然存在很多难题。最近在利用植物基因工程技术改善植物自身性状,以利于能源植物的研究方面取得了一定的进展,这些研究包括减少植物自身细胞壁中的木质素含量、细胞中积累表达纤维素酶和木聚耱酶等的方法,使产生的生物质更利于降解利用。  相似文献   

5.
利用植物木质纤维资源发酵生产乙醇越来越受到人们的重视,但是要实现工业化生产仍然存在很多难题。最近,利用植物基因工程技术,改善植物自身性状,包括减少植物自身细胞壁中木质素含量、细胞中积累表达纤维素酶和木聚糖酶等方法,使自生产生的生物质更利于降解利用。目前,对这种新的能源转基因植物的研究取得了一定进展。  相似文献   

6.
The conversion of lignocellulosic biomass to fuel ethanol typically involves a disruptive pretreatment process followed by enzyme-catalyzed hydrolysis of the cellulose and hemicellulose components to fermentable sugars. Attempts to improve process economics include protein engineering of cellulases, xylanases and related hydrolases to improve their specific activity or stability. However, it is recognized that enzyme performance is reduced during lignocellulose hydrolysis by interaction with lignin or lignin-carbohydrate complex (LCC), so the selection or engineering of enzymes with reduced lignin interaction offers an alternative means of enzyme improvement. This study examines the inhibition of seven cellulase preparations, three xylanase preparations and a beta-glucosidase preparation by two purified, particulate lignin preparations derived from softwood using an organosolv pretreatment process followed by enzymatic hydrolysis. The two lignin preparations had similar particle sizes and surface areas but differed significantly in other physical properties and in their chemical compositions determined by a 2D correlation HSQC NMR technique and quantitative 13C NMR spectroscopy. The various cellulases differed by up to 3.5-fold in their inhibition by lignin, while the xylanases showed less variability (< or = 1.7-fold). Of all the enzymes tested, beta-glucosidase was least affected by lignin.  相似文献   

7.
To cost-efficiently produce biofuels, new methods are needed to convert lignocellulosic biomass into fermentable sugars. One promising approach is to degrade biomass using cellulosomes, which are surface-displayed multicellulase-containing complexes present in cellulolytic Clostridium and Ruminococcus species. In this study we created cellulolytic strains of Bacillus subtilis that display one or more cellulase enzymes. Proteins containing the appropriate cell wall sorting signal are covalently anchored to the peptidoglycan by coexpressing them with the Bacillus anthracis sortase A (SrtA) transpeptidase. This approach was used to covalently attach the Cel8A endoglucanase from Clostridium thermocellum to the cell wall. In addition, a Cel8A-dockerin fusion protein was anchored on the surface of B. subtilis via noncovalent interactions with a cell wall-attached cohesin module. We also demonstrate that it is possible to assemble multienzyme complexes on the cell surface. A three-enzyme-containing minicellulosome was displayed on the cell surface; it consisted of a cell wall-attached scaffoldin protein noncovalently bound to three cellulase-dockerin fusion proteins that were produced in Escherichia coli. B. subtilis has a robust genetic system and is currently used in a wide range of industrial processes. Thus, grafting larger, more elaborate minicellulosomes onto the surface of B. subtilis may yield cellulolytic bacteria with increased potency that can be used to degrade biomass.  相似文献   

8.
Lignocellulosic biomass is a promising feedstock to produce biofuels and other valuable biocommodities. A major obstacle to its commercialization is the high cost of degrading biomass into fermentable sugars, which is typically achieved using cellulolytic enzymes from Trichoderma reesei. Here, we explore the use of microbes to break down biomass. Bacillus subtilis was engineered to display a multicellulase-containing minicellulosome. The complex contains a miniscaffoldin protein that is covalently attached to the cell wall and three noncovalently associated cellulase enzymes derived from Clostridium cellulolyticum (Cel48F, Cel9E, and Cel5A). The minicellulosome spontaneously assembles, thus increasing the practicality of the cells. The recombinant bacteria are highly cellulolytic and grew in minimal medium containing industrially relevant forms of biomass as the primary nutrient source (corn stover, hatched straw, and switch grass). Notably, growth did not require dilute acid pretreatment of the biomass and the cells achieved densities approaching those of cells cultured with glucose. An analysis of the sugars released from acid-pretreated corn stover indicates that the cells have stable cellulolytic activity that enables them to break down 62.3% ± 2.6% of the biomass. When supplemented with beta-glucosidase, the cells liberated 21% and 33% of the total available glucose and xylose in the biomass, respectively. As the cells display only three types of enzymes, increasing the number of displayed enzymes should lead to even more potent cellulolytic microbes. This work has important implications for the efficient conversion of lignocellulose to value-added biocommodities.  相似文献   

9.
Brown macroalgae are renewable and sustainable biomass resources for the production of biofuels and chemicals, owing to their high levels of carbohydrates and low levels of lignin. To increase the biological usage of brown macroalgae, it is necessary to depolymerize the polysaccharides that generate macroalgal monomeric sugars or sugar derivatives and to convert them into fermentable sugars for the production of biofuels and chemicals. In this review, we discuss the chemical and enzymatic saccharification of the major carbohydrates found in brown macroalgae and the use of the resulting constituents in the production of biofuels and chemicals, as well as high-value health-benefiting functional oligosaccharides and sugars. We also discuss recently reported experimental results, novel enzymes, and technological breakthroughs that are related to polysaccharide depolymerization, fermentable sugar production, and the biological conversion of non-favorable sugars for fermentation using industrial microorganisms. This review provides a comprehensive perspective of the efficient utilization of brown macroalgae as renewable resources for the production of biofuels and chemicals.  相似文献   

10.
The addition of enzymes that are capable of degrading hemicellulose has a potential to reduce the need for commercial enzymes during biomass hydrolysis in the production of fermentable sugars. In this study, a high xylanase producing actinomycete strain (Kitasatospora sp. ID06-480) and the first ethyl ferulate producing actinomycete strain (Nonomuraea sp. ID06-094) were selected from 797 rare actinomycetes, respectively, which were isolated in Indonesia. The addition (30%, v/v) of a crude enzyme supernatant from the selected strains in sugarcane bagasse hydrolysis with low-level loading (1 FPU/g-biomass) of Cellic® CTec2 enhanced both the released amount of glucose and reducing sugars. When the reaction with Ctec2 was combined with crude enzymes containing either xylanase or feruloyl esterase, high conversion yield of glucose from cellulose at 60.5% could be achieved after 72 h-saccharification.  相似文献   

11.
Lignocellulosic materials represent a very important and promising source of renewable biomass. In order to turn them into fermentable sugars, synergism among the different enzymes that carry out bioconversion of these materials is one of the main factors that should be considered. Experimental mixture design was performed to optimize the proportion of enzymes produced by native strains of Trichoderma harzianum IOC 3844, Penicillium funiculosum ATCC 11797, and Aspergillus niger ATCC 1004, resulting in a proportion of 15, 50, and 35%, respectively. This mixture was able to hydrolyze 25 g/L of pretreated sugarcane bagasse with 91% of yield after 48 h of enzymatic reaction. Synergism along the hydrolysis process, besides the influence of lignin, hemicellulose, and solids loading, were also studied. Response surface methodology (RSM) based on Central Composite Rotatable Design was used to optimize solids and protein loadings to increase glucose release and enzymatic hydrolysis yield. The optimum solid and protein loadings established with RSM were 196 g/L and 24 mg/g cellulose, respectively, and under these conditions (94.1 ± 8) g/L of glucose were obtained, corresponding to a hydrolysis yield of 64%. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1222–1229, 2016  相似文献   

12.
Overcoming the recalcitrance in lignocellulosic biomass for efficient hydrolysis of the polysaccharides cellulose and hemicellulose to fermentable sugars is a research priority for the transition from a fossilfuel-based economy to a renewable carbohydrate economy. Methylglucuronoxylans (MeGXn) are the major components of hemicellulose in woody biofuel crops. Here, we describe efficient production of the GH10 xylanase Xyl10B from Thermotoga maritima in transplastomic plants and demonstrate exceptional stability and catalytic activities of the in planta produced enzyme. Fully expanded leaves from homotransplastomic plants contained enzymatically active Xyl10B at a level of 11-15% of their total soluble protein. Transplastomic plants and their seed progeny were morphologically indistinguishable from non-transgenic plants. Catalytic activity of in planta produced Xyl10B was detected with poplar, sweetgum and birchwood xylan substrates following incubation between 40 and 90 °C and was also stable in dry and stored leaves. Optimal yields of Xyl10B were obtained from dry leaves if crude protein extraction was performed at 85 °C. The transplastomic plant derived Xyl10B showed exceptional catalytic activity and enabled the complete hydrolysis of MeGXn to fermentable sugars with the help of a single accessory enzyme (α-glucuronidase) as revealed by the sugar release assay. Even without this accessory enzyme, the majority of MeGXn was hydrolyzed by the transplastomic plant-derived Xyl10B to fermentable xylose and xylobiose.  相似文献   

13.
14.
Release of sugars from lignocellulosic biomass is inefficient because lignin, an aromatic polymer, blocks access of enzymes to the sugar polymers. Pretreatments remove lignin and disrupt its structure, thereby enhancing sugar release. In previous work, enzymatically generated peracetic acid was used to pretreat aspen wood. This pretreatment removed 45% of the lignin and the subsequent saccharification released 97% of the sugars remaining after pretreatment. In this paper, the amount of enzyme needed is reduced tenfold using first, an improved enzyme variant that makes twice as much peracetic acid and second, a two-phase reaction to generate the peracetic acid, which allows enzyme reuse. In addition, the eight pretreatment cycles are reduced to only one by increasing the volume of peracetic acid solution and increasing the temperature to 60 °C and the reaction time to 6 h. For the pretreatment step, the weight ratio of peracetic acid to wood determines the amount of lignin removed.  相似文献   

15.
Biomass-derived sugars, such as glucose, xylose, and other minor sugars, can be readily fermented to fuel ethanol and commodity chemicals by the appropriate microbes. Due to the differences in the optimum conditions for the activity of the fungal cellulases that are required for depolymerization of cellulose to fermentable sugars and the growth and fermentation characteristics of the current industrial microbes, simultaneous saccharification and fermentation (SSF) of cellulose is envisioned at conditions that are not optimal for the fungal cellulase activity, leading to a higher-than-required cost of cellulase in SSF. We have isolated bacterial strains that grew and fermented both glucose and xylose, major components of cellulose and hemicellulose, respectively, to l(+)-lactic acid at 50 degrees C and pH 5.0, conditions that are also optimal for fungal cellulase activity. Xylose was metabolized by these new isolates through the pentose-phosphate pathway. As expected for the metabolism of xylose by the pentose-phosphate pathway, [(13)C]lactate accounted for more than 90% of the total (13)C-labeled products from [(13)C]xylose. Based on fatty acid profile and 16S rRNA sequence, these isolates cluster with Bacillus coagulans, although the B. coagulans type strain, ATCC 7050, failed to utilize xylose as a carbon source. These new B. coagulans isolates have the potential to reduce the cost of SSF by minimizing the amount of fungal cellulases, a significant cost component in the use of biomass as a renewable resource, for the production of fuels and chemicals.  相似文献   

16.
17.
Two plant growth‐promoting rhizobacterial (PGPR) strains, Bacillus subtilis SU47 and Arthrobacter sp. SU18, were found to tolerate 8% NaCl. Wheat co‐inoculated with these two PGPR strains, and grown under different salinity regimes (2–6 dS m?1), showed an increase in dry biomass, total soluble sugars and proline content. Wheat sodium content was reduced under co‐inoculated conditions but not after single inoculation with either strain or in the control. The activity of antioxidant enzymes in wheat leaves decreased under salinity stress after PGPR co‐inoculation, suggesting these PGPR species could be used for amelioration of stress in wheat plants. Activity of three antioxidant enzymes in wheat grown with both PGPR strains was reduced, most notably that of catalase activity at a salinity of 6 dS m?1, when compared with the control. The results indicate that co‐inoculation with B. subtilis and Arthrobacter sp. could alleviate the adverse effects of soil salinity on wheat growth.  相似文献   

18.
Room temperature ionic liquids (RTILs) are emerging as attractive and green solvents for lignocellulosic biomass pretreatment. The unique solvating properties of RTILs foster the disruption of the 3D network structure of lignin, cellulose, and hemicellulose, which allows high yields of fermentable sugars to be produced in subsequent enzymatic hydrolysis. In the current review, we summarize the physicochemical properties of RTILs that make them effective solvents for lignocellulose pretreatment including mechanisms of interaction between lignocellulosic biomass subcomponents and RTILs. We also highlight several recent strategies that exploit RTILs and generate high yields of fermentable sugars suitable for downstream biofuel production, and address new opportunities for use of lignocellulosic components, including lignin. Finally, we address some of the challenges that remain before large-scale use of RTILs may be achieved.  相似文献   

19.
Five bacterial strains were isolated and purified (CSA101 to CSA105) from the sediment core of the effluent released from the Century Pulp and Paper Mill Ltd., India. These strains were grown in minimal salt medium (MSM) containing pulp (10% as a carbon source). The production of lignin peroxidase, CMCase, Fpase, and xylanase together with protein and reducing sugar by all bacterial strains was observed. All of the bacterial isolates responded differently with respect to growth and ligninocellulolytic enzyme production. The maximum lignin peroxidase (LiP) was obtained from the cell extract of Bacillus sp. (CSA105) strain, which was used for purification, fractionation and characterization. The culture filtrate from Bacillus sp. (CSA105) was purified with ammonium sulfate precipitation. Crude protein was desalted by dialyzing with Tris buffer. The lignolytic enzyme produced in the liquid medium was fractionated by gel filtration on Sephadex G-100. In the present study, 12.4-fold purification of LiP enzyme was obtained and 35.85% yield of lignin peroxidase was achieved in the cell extract of Bacillus sp. (CSA105). Lignin peroxidase enzyme plays an important role in lignin degradation process. The ligninolytic enzymes were produced by all of the bacterial strains but maximum lignin peroxidase activity was found in cell extract of CSA105. On the basis of the results obtained, the bacterial strain (CSA105) was found most suitable for the purification of the LiP enzyme.  相似文献   

20.
Three bacterial strains identified as Paenibacillus sp., Aneurinibacillus aneurinilyticus and Bacillus sp. have been shown to decolourise kraft lignin in 6 days of incubation. The release of low molecular weight aromatic compounds by these bacterial strains during degradation of kraft lignin was analysed by GC–MS analysis. The total ion chromatograph (TIC) of ethyl acetate extract from kraft lignin sample inoculated by Paenibacillus sp. was similar to control except some minor changes in the chromatographic profile indicating incapability of this bacterium to modify kraft lignin. On the other hand the TIC of ethyl acetate extract from kraft lignin inoculated by A. aneurinilyticus and Bacillus sp. caused formation of several aromatic lignin-related compound that were not present in the extract of control. The compounds identified in extract of the sample degraded by A. aneurinilyticus were guaiacol, acetoguiacone, gallic acid and ferulic acid while t-cinnamic acid, 3,4,5 trimethoxy benzaldehyde, and ferulic acid by Bacillus sp. indicating oxidization of coniferylic (G units) and sinapylic (S units) alcohol of lignin polymer. Differences between the identified compounds from different bacterial treatment were strain-specific. Among the identified aromatic compounds, ferulic acid and 3,4,5-trimethoxy benzaldehyde could be useful to the industry of preservatives, aromas and perfumes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号