首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cadmium is a potent inducer of programmed cell death (PCD) in plants but the morphological changes in cells exposed to cadmium are poorly characterized. Using light and transmission electron microscopy (TEM) we have investigated the changes in ultrastructure of tobacco BY‐2 cells treated with 50 µM CdSO4. The cadmium‐induced alterations in cell morphology occurred gradually over a period of 3–4 days and the first stages of the response resembled vacuolar type of cell death. The initial formation of numerous small cytoplasmic vacuoles and dilation of endoplasmic reticulum was followed first by fusion of smaller vacuoles with each other and with big vacuoles, and then by the appearance of autophagic vacuoles containing autophagic bodies. The final stages of cell death were accompanied by necrotic features including loss of plasmalemma integrity, shrinkage of the protoplast and unprocessed cellular components. In addition, we observed a gradual degradation of nuclear material. Our results demonstrate that cadmium‐induced plant cell death is a slow process featuring elements of vacuolar cell death and terminating with necrosis.  相似文献   

2.
The reorganization of actin filaments (AFs) and vacuoles in guard cells is involved in the regulation of stomatal movement. However, it remains unclear whether there is any interaction between the reorganization of AFs and vacuolar changes during stomatal movement. Here, we report the relationship between the reorganization of AFs and vacuolar fusion revealed in pharmacological experiments, and characterizing stomatal opening in actin‐related protein 2 (arp2) and arp3 mutants. Our results show that cytochalasin‐D‐induced depolymerization or phalloidin‐induced stabilization of AFs leads to an increase in small unfused vacuoles during stomatal opening in wild‐type (WT) Arabidopsis plants. Light‐induced stomatal opening is retarded and vacuolar fusion in guard cells is impaired in the mutants, in which the reorganization and the dynamic parameters of AFs are aberrant compared with those of the WT. In WT, AFs tightly surround the small separated vacuoles, forming a ring that encircles the boundary membranes of vacuoles partly fused during stomatal opening. In contrast, in the mutants, most AFs and actin patches accumulate abnormally around the nuclei of the guard cells, which probably further impair vacuolar fusion and retard stomatal opening. Our results suggest that the reorganization of AFs regulates vacuolar fusion in guard cells during stomatal opening.  相似文献   

3.
Phosphatidylinositol‐3,5‐bisphosphate (PI(3,5)P2) is a low‐abundance signaling lipid associated with endo‐lysosomal and vacuolar membranes in eukaryotic cells. Recent studies on Arabidopsis indicated a critical role of PI(3,5)P2 in vacuolar acidification and morphology during ABA‐induced stomatal closure, but the molecular targets in plant cells remained unknown. By using patch‐clamp recordings on Arabidopsis vacuoles, we show here that PI(3,5)P2 does not affect the activity of vacuolar H+‐pyrophosphatase or vacuolar H+‐ATPase. Instead, PI(3,5)P2 at low nanomolar concentrations inhibited an inwardly rectifying conductance, which appeared upon vacuolar acidification elicited by prolonged H+ pumping activity. We provide evidence that this novel conductance is mediated by chloride channel a (CLC‐a), a member of the anion/H+ exchanger family formerly implicated in stomatal movements in Arabidopsis. H+‐dependent currents were absent in clc‐a knock‐out vacuoles, and canonical CLC‐a‐dependent nitrate/H+ antiport was inhibited by low concentrations of PI(3,5)P2. Finally, using the pH indicator probe BCECF, we show that CLC‐a inhibition contributes to vacuolar acidification. These data provide a mechanistic explanation for the essential role of PI(3,5)P2 and advance our knowledge about the regulation of vacuolar ion transport.  相似文献   

4.
To evaluate Ni dynamics at the subcellular level, the distribution and speciation of Ni were determined in wild‐type (WT) and Ni‐tolerant (NIT) tobacco BY‐2 cell lines. When exposed to low but toxic levels of Ni, NIT cells were found to contain 2.5‐fold more Ni (14% of whole‐cell Ni values) in their cell walls than WT cells (6% of whole‐cell Ni values). In addition to higher levels of Ni in the apoplast, a higher proportion (94%) of symplastic Ni was localized in the vacuoles of NIT cells than in the vacuoles of WT cells (81%). The concentration of cytosolic Ni in the NIT cells was significantly lower (18 nmol g?1 FW) than that in the WT cells (85 nmol g?1 FW). In silico simulation showed that 95% of vacuolar Ni was in the form of Ni‐citrate complexes, and that free Ni2+ was virtually absent in the NIT cells. On the other hand, the amount of free metal ions was markedly increased in WT cells because free citrate was depleted by chelation of Ni. A protoplast viability assay using BCECF‐AM further demonstrated that the main mechanism that confers strong Ni tolerance was present in the symplast as opposed to the cell wall.  相似文献   

5.
6.
Fibroblast growth factor‐2 (FGF‐2) regulates a variety of functions of the periodontal ligament (PDL) cell, which is a key player during tissue regeneration following periodontal tissue breakdown by periodontal disease. In this study, we investigated the effects of FGF‐2 on the cell migration and related signaling pathways of MPDL22, a mouse PDL cell clone. FGF‐2 activated the migration of MPDL22 cells and phosphorylation of phosphatidylinositol 3‐kinase (PI3K) and akt. The P13K inhibitors, Wortmannin and LY294002, suppressed both cell migration and akt activation in MPDL22, suggesting that the PI3K/akt pathway is involved in FGF‐2‐stimulated migration of MPDL22 cells. Moreover, in response to FGF‐2, MPDL22 showed increased CD44 expression, avidity to hyaluronan (HA) partly via CD44, HA production and mRNA expression of HA synthase (Has)‐1, 2, and 3. However, the distribution of HA molecular mass produced by MPDL22 was not altered by FGF‐2 stimulation. Treatment of transwell membrane with HA facilitated the migration of MPDL22 cells and an anti‐CD44 neutralizing antibody inhibited it. Interestingly, the expression of CD44 was colocalized with HA on the migrating cells when stimulated with FGF‐2. Furthermore, an anti‐CD44 antibody and small interfering RNA for CD44 significantly decreased the FGF‐2‐induced migration of MPDL22 cells. Taken together, PI3K/akt and CD44/HA signaling pathways are responsible for FGF‐2‐mediated cell motility of PDL cells, suggesting that FGF‐2 accelerates periodontal regeneration by regulating the cellular functions including migration, proliferation and modulation of extracellular matrix production. J. Cell. Physiol. 226: 809–821, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
We conducted a study to decipher the mechanism of the formation of the large communal Leishmania amazonensis‐containing parasitophorous vacuole (PV) and found that the macrophage microtubule (MT) network dynamically orchestrates the intracellular lifestyle of this intracellular parasite. Physical disassembly of the MT network of macrophage‐like RAW 264.7 cells or silencing of the dynein gene, encoding the MT‐associated molecular motor that powers MT‐dependent vacuolar movement, by siRNA resulted in most of the infected cells hosting only tight parasite‐containing phagosome‐like vacuoles randomly distributed throughout the cytoplasm, each insulating a single parasite. Only a minority of the infected cells hosted both isolated parasite‐containing phagosome‐like vacuoles and a small communal PV, insulating a maximum of two to three parasites. The tight parasite‐containing phagosome‐like vacuoles never matured, whereas the small PVs only matured to a small degree, shown by the absence or faint acquisition of host‐cell endolysosomal characteristics. As a consequence, the parasites were unable to successfully complete promastigote‐to‐amastigote differentiation and died, regardless of the type of insulation.  相似文献   

8.
Gao XQ  Li CG  Wei PC  Zhang XY  Chen J  Wang XC 《Plant physiology》2005,139(3):1207-1216
Stomatal movement is important for plants to exchange gas with environment. The regulation of stomatal movement allows optimizing photosynthesis and transpiration. Changes in vacuolar volume in guard cells are known to participate in this regulation. However, little has been known about the mechanism underlying the regulation of rapid changes in guard cell vacuolar volume. Here, we report that dynamic changes in the complex vacuolar membrane system play a role in the rapid changes of vacuolar volume in Vicia faba guard cells. The guard cells contained a great number of small vacuoles and various vacuolar membrane structures when stomata closed. The small vacuoles and complex membrane systems fused with each other or with the bigger vacuoles to generate large vacuoles during stomatal opening. Conversely, the large vacuoles split into smaller vacuoles and generated many complex membrane structures in the closing stomata. Vacuole fusion inhibitor, (2s,3s)-trans-epoxy-succinyl-l-leucylamido-3-methylbutane ethyl ester, inhibited stomatal opening significantly. Furthermore, an Arabidopsis (Arabidopsis thaliana) mutation of the SGR3 gene, which has a defect in vacuolar fusion, also led to retardation of stomatal opening. All these results suggest that the dynamic changes of the tonoplast are essential for enhancing stomatal movement.  相似文献   

9.
Functional Specialization of Vacuoles in Sugarcane Leaf and Stem   总被引:1,自引:0,他引:1  
Plant vacuoles are frequently targeted as a storage site for novel products. We have used environment-sensitive fluorescent dyes and the expression of vacuolar marker proteins to characterize the vacuoles in different organs and cell types of sugarcane. The results demonstrated that the lumen of the vacuole in the parenchyma cells of the stem is acidic (<pH 5) and contains active proteases, characteristic of lytic vacuoles. Western blots and tissue labelling with antibodies to vacuolar H+-ATPase suggest that this proton pump is involved in acidification of the vacuolar lumen. Quantitative real-time PCR was used to show that the expression of vacuolar proteases and a vacuolar sorting receptor is also coordinately regulated. In contrast to the stem parenchyma cells, the cells of sugarcane leaves contain diverse types of vacuoles. The pH of these vacuoles and their capacity to hydrolyze protease substrates varies according to cell type and developmental stage. Sugarcane suspension-cultures contain cells with vacuoles that resemble those of stem parenchyma cells and are thus a useful model system for investigating the properties of the vacuole. Understanding the growth and development of storage capacity will be useful in designing strategies to maximize the production of sucrose or alternative bioproducts.  相似文献   

10.
Chronic inflammation is now accepted to have a critical role in the onset of several diseases as well as in vascular pathology, where macrophage transformation into foam cells contributes in atherosclerotic plaque formation. Endothelial cells (EC) have a critical function in recruitment of immune cells, and proinflammatory cytokines drive the specific expression of several adhesion proteins. During inflammatory responses several cells produce hyaluronan matrices that promote monocyte/macrophage adhesion through interactions with the hyaluronan receptor CD44 present on inflammatory cell surfaces. In this study, we used human umbilical chord vein endothelial cells (HUVECs) as a model to study the mechanism that regulates hyaluronan synthesis after treatment with proinflammatory cytokines. We found that interleukin 1β and tumor necrosis factors α and β, but not transforming growth factors α and β, strongly induced HA synthesis by NF-κB pathway. This signaling pathway mediated hyaluronan synthase 2 (HAS2) mRNA expression without altering other glycosaminoglycan metabolism. Moreover, we verified that U937 monocyte adhesion on stimulated HUVECs depends strongly on hyaluronan, and transfection with short interference RNA of HAS2 abrogates hyaluronan synthesis revealing the critical role of HAS2 in this process.  相似文献   

11.
Sugarcane is an ideal candidate for biofarming applications because of its large biomass, rapid growth rate, efficient carbon fixation pathway and a well‐developed storage tissue system. Vacuoles occupy a large proportion of the storage parenchyma cells in the sugarcane stem, and the stored products can be harvested as juice by crushing the cane. Hence, for the production of any high‐value protein, it could be targeted to the lytic vacuoles so as to extract and purify the protein of interest from the juice. There is no consensus vacuolar‐targeting sequence so far to target any heterologous proteins to sugarcane vacuole. Hence, in this study, we identified an N‐terminal 78‐bp‐long putative vacuolar‐targeting sequence from the N‐terminal domain of unknown function (DUF) in Triticum aestivum 6‐SFT (sucrose: fructan 6‐fructosyl transferase). In this study, we have generated sugarcane transgenics with gene coding for the green fluorescent protein (GFP) fused with the vacuolar‐targeting determinants at the N‐terminal driven by a strong constitutive promoter (Port ubi882) and demonstrated the targeting of GFP to the vacuoles. In addition, we have also generated transgenics with His‐tagged β‐glucuronidase (GUS) and aprotinin targeted to the lytic vacuole, and these two proteins were isolated and purified from the transgenic sugarcane and compared with commercially available protein samples. Our studies have demonstrated that the novel vacuolar‐targeting determinant could localize recombinant proteins (r‐proteins) to the vacuole in high concentrations and such targeted r‐proteins can be purified from the juice with a few simple steps.  相似文献   

12.
CD44 is a major cell surface receptor for the glycosaminoglycan hyaluronan (HA). Native high molecular weight hyaluronan (nHA) and oligosaccharides of hyaluronan (oHA) provoke distinct biological effects upon binding to CD44. Despite the importance of such interactions, however, the feature of binding with CD44 at the cell surface and the molecular basis for functional distinction between different sizes of HA is still unclear. In this study we investigated the effects of high and low molecular weight hyaluronan on CD44 clustering. For the first time, we provided direct evidence for a strong relationship between HA size and CD44 clustering in vivo. In CD44-transfected COS-7 cells, we showed that exogenous nHA stimulated CD44 clustering, which was disrupted by oHA. Moreover, naturally expressed CD44 was distributed into clusters due to abundantly expressed nHA in HK-2 cells (human renal proximal tubule cells) and BT549 cells (human breast cancer cell line) without exogenous stimulation. Our results suggest that native HA binding to CD44 selectively induces CD44 clustering, which could be inhibited by oHA. Finally, we demonstrated that HA regulates cell adhesion in a manner specifically dependent on its size. oHA promoted cell adhesion while nHA showed no effects. Our results might elucidate a molecular- and/or cellular-based mechanism for the diverse biological activities of nHA and oHA.  相似文献   

13.
14.
Hyaluronan exerts a variety of biological effects on cells including changes in cell migration, proliferation, and matrix metabolism. However, the signaling pathways associated with the action of hyaluronan on cells have not been clearly defined. In some cells, signaling is induced by the loss of cell-hyaluronan interactions. The goal of this study was to use hyaluronan oligosaccharides as a molecular tool to explore the effects of changes in cell-hyaluronan interactions and determine the underlying molecular events that become activated. In this study, hyaluronan oligosaccharides induced the loss of extracellular matrix proteoglycan and collagen from cultured slices of normal adult human articular cartilage. This loss was coincident with an increased expression of matrix metalloproteinase (MMP)-13. MMP-13 expression was also induced in articular chondrocytes by hyaluronan (HA) hexasaccharides but not by HA tetrasaccharides nor high molecular weight hyaluronan. MMP-13 promoter-reporter constructs in CD44-null COS-7 cells revealed that both CD44-dependent and CD44-independent events mediate the induction of MMP-13 by hyaluronan oligosaccharides. Electromobility gel shift assays demonstrated the activation of chondrocyte NFkappaB by hyaluronan oligosaccharides. NFkappaB activation was also documented in C-28/I2 immortalized human chondrocytes by luciferase promoter assays and phosphorylation of IKK-alpha/beta. The link between activation of NFkappaB and MMP-13 induction by HA oligosaccharides was further confirmed through the use of the NFkappaB inhibitor helenalin. Inhibition of MAP kinases also demonstrated the involvement of p38 MAP kinase in the hyaluronan oligosaccharide induction of MMP-13. Our findings suggest that hyaluronan-CD44 interactions affect matrix metabolism via activation of NFkappaB and p38 MAP kinase.  相似文献   

15.
In plants, the plasma membrane Na(+)/H(+) antiporter is the only key enzyme that extrudes cytosolic Na(+) and contributes to salt tolerance. But in fungi, the plasma membrane Na(+)/H(+) antiporter and Na(+)-ATPase are known to be key enzymes for salt tolerance. Saccharomyces cerevisiae Ena1p ATPase encoded by the ENA1/PMR2A gene is primarily responsible for Na(+) and Li(+) efflux across the plasma membrane during salt stress and for K(+) efflux at high pH and high K(+). To test if the yeast ATPase would improve salt tolerance in plants, we expressed a triple hemagglutinin (HA)-tagged Ena1p (Ena1p-3HA) in cultured tobacco (Nicotiana tabacum L.) cv Bright Yellow 2 (BY2) cells. The Ena1p-3HA proteins were correctly localized to the plasma membrane of transgenic BY2 cells and conferred increased NaCl and LiCl tolerance to the cells. Under moderate salt stress conditions, the Ena1p-3HA-expressing BY2 clones accumulated lower levels of Na(+) and Li(+) than nonexpressing BY2 clones. Moreover, the Ena1p-3HA expressing BY2 clones accumulated lower levels of K(+) than nonexpressing cells under no-stress conditions. These results suggest that the yeast Ena1p can also function as an alkali-cation (Na(+), Li(+), and K(+)) ATPase and alter alkali-cation homeostasis in plant cells. We conclude that, even with K(+)-ATPase activity, Na(+)-ATPase activity of the yeast Ena1p confers increased salt tolerance to plant cells during salt stress.  相似文献   

16.
Vacuole-mediated proteolysis is important to sustained growth of filamentous wood-decaying fungi such as Schizophyllum commune. Demonstrating that specific proteases are vacuole associated has been difficult in these organisms due to the lack of specific markers for vacuolar compartments. We used 5-(and 6-)-carboxy-2′, 7′-dichlorofluorescein diacetate (carboxy-DCFDA) and a proprietary vacuolar membrane marker for yeast (MDY-64; Molecular Probes) for in situ fluorescent labeling of the vacuoles of S. commune mycelia grown on microscope slides. MDY-64 labels numerous small vesicles in S. commune mycelia in addition to larger vacuolar structures. In contrast, carboxy-DCFDA apparently is taken up by a subset of the MDY-64-labeled vesicles, accumulating primarily in larger vacuoles. Staining of mycelia with carboxy-DCFDA shows a transition from mostly cytoplasmic fluorescence in apical cells with little vacuolar fluorescence to nearly complete sequestration of the stain in vacuoles of older cells. In penultimate cells, both cytoplasm and vacuolar structures fluoresce. Vacuoles stained with carboxy-DCFDA typically were spherical and ranged in size from 0.4 μm to 3.2 μm in diameter with a mean of 1.8 um. Occasionally, in penultimate cells, tubular structures which stained with carboxy-DCFDA were found. ScPrB, a principal enzyme of nitrogen-limitation induced autolysis in S. commune, copurified in sucrose density gradients with carboxy-DCFDA and acid phosphatase, demonstrating its vacuolar localization. Received: 23 December 1998 / Accepted: 11 January 1999  相似文献   

17.
18.
19.
Plant vacuoles are organelles bound by a single membrane, and involved in various functions such as intracellular digestion, metabolite storage, and secretion. To understand their evolution and fundamental mechanisms, characterization of vacuoles in primitive plants would be invaluable. Algal cells often contain polyphosphate‐rich compartments, which are thought to be the counterparts of seed plant vacuoles. Here, we developed a method for isolating these vacuoles from Cyanidioschyzon merolae, and identified their proteins by MALDI TOF‐MS. The vacuoles were of unexpectedly high density, and were highly enriched at the boundary between 62 and 80% w/v iodixanol by density‐gradient ultracentrifugation. The vacuole‐containing fraction was subjected to SDS–PAGE, and a total of 46 proteins were identified, including six lytic enzymes, 13 transporters, six proteins for membrane fusion or vesicle trafficking, five non‐lytic enzymes, 13 proteins of unknown function, and three miscellaneous proteins. Fourteen proteins were homologous to known vacuolar or lysosomal proteins from seed plants, yeasts or mammals, suggesting functional and evolutionary relationships between C. merolae vacuoles and these compartments. The vacuolar localization of four novel proteins, namely CMP249C (metallopeptidase), CMJ260C (prenylated Rab receptor), CMS401C (ABC transporter) and CMT369C (o‐methyltransferase), was confirmed by labeling with specific antibodies or transient expression of hemagglutinin‐tagged proteins. The results presented here provide insights into the proteome of C. merolae vacuoles and shed light on their functions, as well as indicating new features.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号