首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To elucidate possible mechanisms behind the endocrine control of parr–smolt transformation, the daily plasma profiles in thyroid hormones (TH; free thyroxine (FT4), total thyroxine (TT4), and total 3,5,3′-triiodothyronine (TT3)), growth hormone (GH) and cortisol were studied in Atlantic salmon parr and smolts under simulated-natural winter (8 L:16D) and spring (16.5 L:7.5D) photoperiods, respectively. Overall, TT4, TT3 and GH levels were higher in smolts than in parr, whereas FT4 levels fluctuated within the same range in parr and smolts. Significant diurnal changes in plasma TH were present in parr. Both FT4 and TT4 levels increased during the photophase and decreased during the scotophase, while TT3 levels followed an inverse pattern. Growth hormone showed no significant changes in parr. Changes in FT4, TT4, GH, and cortisol, but not TT3, levels, were observed in smolts with peak levels during both the photophase and scotophase for FT4, TT4 and GH. Plasma cortisol was not assayed in parr but in smolts the peaks were associated with dusk and dawn. In addition to the general increases in TH, GH and cortisol, the distinct endocrine differences in nighttime levels between parr in the winter and smolts in the spring suggest different interactions between TH, GH, cortisol and melatonin at these different time points. These spring scotophase endocrine profiles may represent synergistic hormone interactions that promote smolt development, similar to the synergistic endocrine interactions shown to accelerate anuran metamorphosis. The variations in these diurnal rhythms between parr and smolts may represent part of the endocrine mechanism for the translation of seasonal information during salmon smoltification.  相似文献   

2.
Alterations in circulatory levels of total T4 (TT4), total T3 (TT3), free T4 (FT4), free T3 (FT3), thyrotropin (TSH) and T3 uptake (T3U) were studied in male and female sea-level residents (SLR) at sea level, in Armed forces personnel staying at high altitude (3750 m) for prolonged duration (acclimatized lowlanders, ALL) and in high-altitude natives (HAN). Identical studies were also performed on male ALL who trekked to an extreme altitude of 5080 m and stayed at an altitude of more than 6300 m for about 6 months. The total as well as free thyroid hormones were found to be significantly higher in ALL and HAN as compared to SLR values. Both male as well as female HAN had higher levels of thyroid hormones. The rise in hormone levels in different ALL ethnic groups drawn from amongst the southern and northern parts of the country was more or less identical. In both HAN and ALL a decline in FT3 and FT4 occurred when these subjects trekked at subzero temperatures to extreme altitude of 5080 m but the levels were found to be higher in ALL who stayed at 6300 m for a prolonged duration. Plasma TSH did not show any appreciable change at lower altitudes but was found to be decreased at extreme altitude. The increase in thyroid hormones at high altitude was not due to an increase in hormone binding proteins, since T3U was found to be higher at high altitudes. A decline in TSH and hormone binding proteins and an increase in the free moiety of the hormones is indicative of a subtle degree of tissue hyperthyroidism which may be playing an important role in combating the extreme cold and hypoxic environment of high altitudes.  相似文献   

3.
The influence of neonatal hypo- and hyperthyroidism on different aspects of tyrosine metabolism in the hypothalamus, striatum, brainstem, adrenal glands, heart and brown adipose tissue (BAT) were studied in 14-day old rats. The synthesis rate of catecholamines (CA) was also determined in vivo after the injection of labelled tyrosine. Hypothyroidism increases tyrosinaemia and endogenous tyrosine concentration in the hypothalamus and BAT. Hyperthyroidism decreases tyrosinaemia and endogenous tyrosine levels in the striatum, adrenals and heart. The accumulation rate of tyrosine determined 30 min after an intravenous injection of the labelled amino acid has been determined in the organs, together with the influx of the amino acid, determined within 20s. Hypothyroidism increases tyrosine accumulation rate in all the organs studied, and tyrosine clearance is decreased in the striatum and brainstem; together with an increased tyrosinaemia, this leads to a normal influx. The influx of tyrosine is increased in the hypothalamus. Hyperthyroidism decreases tyrosine accumulation rate in all the organs except the adrenals. These results indicate that the thyroid status of the young rat can influence tyrosine uptake mechanisms, without modifying an organ's tyrosine content. The fact that hypothyroidism increases tyrosine influx in the hypothalamus without modifying it in the brainstem and striatum reflects an heterogeneous reactivity to the lack of thyroid hormones in different brain structures. Neonatal hypothyroidism decreases the CA synthesis rate in the striatum, the heart and the interscapular brown adipose tissue, while synthesis was enhanced in the brainstem and the adrenals. It is likely that these variations in CA synthesis are due to thyroid hormone modulation of tyrosine hydroxylase activity, the enzyme which catalyses the rate limiting step in CA biosynthesis.  相似文献   

4.
Is zinc deficiency a cause of subclinical hypothyroidism in Down syndrome?   总被引:1,自引:0,他引:1  
In Down syndrome there is a high incidence of overt or subclinical hypothyroidism as well as some immunological defects, early thymic involution associated to low serum zinc levels. Zinc supplementation to the diet has been reported to transiently improve thymic function; moreover thymic function has been shown to be in relation with the pituitary-thyroid axis. The aim of this study was to evaluate if, in Down patients, zinc therapy could improve also thyroid function, by determining serum levels of total and free thyroid hormones and basal TSH levels. In 52 patients studied, we found a high incidence of subclinical hypothyroidism (30%); in 17 patients treated with zinc sulphate we showed a reduction of FT3. More significantly, we detected 9 patients with low zinc levels in which zinc supplementation improved thyroid function, thus reducing the incidence of subclinical hypothyroidism.  相似文献   

5.
《Endocrine practice》2010,16(3):376-381
ObjectiveTo assess the value of color-flow Doppler sonography (CFDS) in evaluating intrathyroidal blood flow and velocity in patients with subclinical thyroid dysfunction.MethodsIn this prospective study, patients with subclinical hypothyroidism, patients with subclinical hyperthyroidism, and euthyroid patients without known thyroid autoimmune disease who served as controls were included. Subclinical thyroid dysfunction was defined as normal serum free thyroxine (FT4) and free triiodothyronine (FT3) in the presence of high (subclinical hypothyroidism), or lowsuppressed (subclinical hyperthyroidism) serum thyrotropin (TSH) levels. Serum FT4, FT3, TSH, and antibodies to thyroid peroxidase and thyroglobulin were measured in all participants. In addition, TSH receptor antibody levels were determined in patients with subclinical hyperthyroidism. All participants underwent conventional sonography and CFDS. Mean peak systolic velocity (PSV) and resistive index were obtained from multiple extranodular thyroid parenchyma samplings and inferior thyroid artery measurements.ResultsThe study population included 27 patients with subclinical hypothyroidism, 15 patients with subclinical hyperthyroidism, and 20 euthyroid patients. Patients with subclinical hypothyroidism had significantly higher mean intrathyroidal PSV values than control patients (19.9 ± 5.6 cm/s vs 15.7 ± 4.4 cm/s; P = .008), whereas patients with subclinical hyperthyroidism had significantly higher mean PSV values than control patients at the inferior thyroid artery level (29.7 ± 10.7 cm/s vs 21.9 ± 6.8 cm/s; P = .014). Compared with control patients, a greater proportion of patients with subclinical hypothyroidism and patients with subclinical hyperthyroidism had marked CFDS patterns (78% vs 15% [P <.001] and 53% vs 15%; [P <.001], respectively). A significant association was found between positivity for thyroid autoantibodies and intense CFDS patterns. No correlation was found between TSH or thyroid hormone levels and CFDS pattern or blood flow velocity.ConclusionWe have demonstrated that significantly increased thyroid blood flow velocity and vascularity are already present in patients with mild thyroid dysfunction.(Endocr Pract. 2010;16:376-381)  相似文献   

6.
The aim of the present study was to illustrate the combined effect of excess iodine and low-protein diet on the thyroid, and the potential molecular mechanism of this effect. One hundred ninety-two Wistar rats were randomly divided into the following groups: normal; 10- (10HI), 50- (50HI), or 100-fold excess iodine (100HI); low-protein; and low-protein combined with 10- (L10HI), 50- (L50HI), or 100-fold excess iodine (L100HI). At the end of 2, 4, or 6 months, the rats were sacrificed for iodine concentration and thyroid hormone analyses. The histological appearance of the thyroid gland was observed at the end of 6 months. At the end of 6 months, the serum total thyroxine (TT4), free thyroxine (FT4), total triiodothyronine (TT3), and free triiodothyronine (FT3) levels in the 100HI, L10HI, L50HI, and L100HI groups were significantly lower than the control group (P?<?0.05 or P?<?0.01). Serum TT4, FT4, TT3, and FT3 levels in the low-protein excess iodine groups were significantly lower than the groups with an equal amount of excess iodine alone (P?<?0.05 or P?<?0.01). Light and electron microscopy showed that excess iodine caused damage to the ultrastructure of thyroid and apoptosis of follicular epithelial cells. In the 100HI, L50HI, and L100HI groups, thyroid follicular epithelial cells became flattened, and follicles became distended with colloid. The damage was more serious in low-protein groups. The present findings demonstrated that the low-protein diet aggravated the damage to the thyroid caused by excess iodine alone.  相似文献   

7.
The purpose of this study was to investigate the oxidative status in experimental hypothyroidism and the antioxidant effect of taurine supplementation. Forty male Sprague Dawley rats were randomly divided into four groups (group 1, control; group 2, control + taurine; group 3, propylthiouracil (PTU); group 4, PTU + taurine). Hypothyroidism was induced by giving 0.05% PTU in drinking water for 8 weeks. Taurine was supplemented in drinking water at a concentration of 1% for 5 weeks. Plasma (p < 0.05), red blood cell (p < 0.01), liver (p < 0.001) and kidney tissue (p > 0.05) malondialdehyde levels were increased in the PTU group compared with those of the control rats and were decreased in the PTU + taurine group compared with the PTU alone group. No significant changes were observed in glutathione levels of kidney and liver in the PTU group, but taurine supplementation significantly increased the glutathione levels of these tissues. Paraoxonase and arylesterase activities were decreased in the PTU group while taurine supplementation caused no significant changes in paraoxonase and arylesterase activities. These findings suggest that taurine supplementation may play a protective role against the increased oxidative stress resulting from hypothyroidism.  相似文献   

8.
Eu-, hypo- and hyper-thyroid rats were studied 12 days postpartum. Hypothyroidism was induced by administering propylthiouracil (PTU) via the mother's drinking water beteen late gestation and throughout lactation. This procedure effectively blocked the normal early postnatal surge of T3 and T4. In contrast, hyperthyroidism was induced in the young pups by daily injections of T4 from day 3 postpartum. The effects of these experimental manipulations of thyroid status on the rates of protein turnover and growth of the liver, kidney, and diaphragm were studied and compared with measurements made on appropriate euthyroid control tissues. Tissue rates of protein synthesis were decreased in response to hypothyroidism with consequent growth retardation of all three tissues and the whole animal. In contrast, the three body tissues responded very differently to the induction of hyperthyroidism. Hepatic rates of protein synthesis and growth were completely unaffected by thyroid excess. The response of the diaphragm was essentially the reverse of that seen with hypothyroidism, i.e., the enhanced rates of protein synthesis and protein degradation leading to muscle hypertrophy. The rates of protein turnover in the kidney were also increased, but unlike the diaphragm the net result was renal atrophy. Clearly, thyroid hormones influence the normal rapid growth of the neonate and its individual tissues. However, beyond a certain concentration the threshold of responsiveness to these hormones seems to vary between individual tissues. © 1994 Wiley-Liss, Inc.  相似文献   

9.
To determine the age-related changes in thyroid hormone (TH) effects on malondialdehyde (MDA)-modified proteins in cardiac tissue, rats at 4, 12, and 25 months of age were studied. Hyperthyroidism was induced with daily injection of L-triiodothyronine (15 microg/100 g) intraperitoneally for 10 days. Hypothyroidism was induced with 0. 025% methimazole in the drinking water for 4 weeks. MDA proteins were measured with immunoblots using a specific anti-MDA antiserum. MDA was measured as thiobarbituric acid reactive substance. Hypothyroidism in 4-month-old rats was associated with significant reduction in MDA proteins compared to euthyroid rats (13.4 +/- 5.9% vs. 99.8 +/- 10.4% of controls P < 0.001). Hyperthyroidism did not result in a significant change of MDA proteins. In aged rats, neither hypothyroidism nor hyperthyroidism was associated with significant changes in cardiac MDA proteins. The changes in MDA proteins did not correlate with cardiac MDA concentrations. In young rats, the MDA concentrations (nmol/mg) were significantly reduced in hypothyroidism (2.71 +/- 0.21) and were increased in hyperthyroidism (8.19 +/- 0.78) compared to euthyroid values (5.06 +/- 0.71) P < 0. 01. In aged rats, cardiac MDA content was significantly increased during both hyperthyroidism and hypothyroidism. We conclude that alterations in MDA protein content is yet another potential biochemical effect of TH in cardiac tissue. This particular effect is significantly blunted with age.  相似文献   

10.
The objective of the study was to explore the changes in melatonin and zinc levels in rats with induced hypothyroidism. Thirty adult male rats used in the study were allocated to three groups with equal numbers. Group 1: General control group which was not subjected to any procedure. Group 2: Sham-hypothyroidism group to which was administered 10 mg kg(-1) intraperitoneal (i.p.) physiologic saline (0.09% NaCl) for 4 weeks. Group 3: Hypothyroidism group which was supplemented with intraperitoneal 10 mg kg(-1) propylthiouracil (PTU) for 4 weeks. Blood samples collected from all animals at the end of the study by decapitation were analysed for serum Total T4 (TT4), Total T3 (TT3), Free T4 (FT4), Free T3 (FT3) (ELISA) as well as for melatonin (RIA) hormones and zinc levels (atomic emission). Comparison of the study groups in terms of thyroid hormones, melatonin and zinc levels showed that TT4, TT3, FT4, FT3, melatonin and zinc levels in group 3 were lower than those in groups 1 and 2 (p < 0.01). These parameters were not different in groups 1 and 2. The results of the study demonstrate that PTU supplementation for 4 weeks results in a significant inhibition in both melatonin and zinc levels. Inhibited melatonin levels may result from the decrease in zinc levels.  相似文献   

11.
Intense physical activity is associated with biological adaptations involving hormones and trace elements. Zinc supplementation may affect plasma copper concentration, thyroid-stimulating hormone (TSH), thyroid hormones, insulin, and glucose homeostasis, but data in athletes are scarce. The aim of this study was to evaluate in competitive athletes (cyclists, n = 7, 32 ± 8 years) the effect of zinc supplementation (22 mg/day as zinc gluconate) during 30 days, and discontinuation using placebo (maltodextrin) during the following 30 days, on plasma zinc and copper concentrations, serum thyroid hormones, insulin and glucose levels, and HOMA2-IR. Compared to baseline, plasma zinc and Zn:Cu plasma ratio increased, but plasma copper decreased after zinc supplementation (day 30) and discontinuation (day 60) (p < 0.05). Zn supplementation and discontinuation had no effect on TSH, T3, and T4. Fasting serum insulin and HOMA2-IR increased (27% and 47%, respectively) on day 60 compared to baseline (p = 0.03), suggesting a delayed effect of zinc supplementation. Moreover, plasma zinc was positively associated with serum insulin (r = 0.87, p = 0.009) and HOMA2-IR (r = 0.81, p = 0.03) after zinc supplementation (day 30), indicating that supplemental zinc may impair glucose utilization in cyclists.  相似文献   

12.
Thyroid hormone disorders have long been linked to depression, but the causal relationship between them remains controversial. To address this question, we established rat models of hypothyroidism using 131iodine (131I) and hyperthyroidism using levothyroxine (LT4). Serum free thyroxine (FT4) and triiodothyronine (FT3) significantly decreased in the hypothyroid of rats with single injections of 131I (5 mCi/kg). These rats exhibited decreased depression-like behaviors in forced swimming test and sucrose preference tests, as well as decreased anxiety-like behaviors in an elevated plus maze. Diminished levels of brain serotonin (5-HT) and increased levels of hippocampal brain-derived neurotrophic factor (BDNF) were found in the hypothyroid rats compared to the control saline–vehicle administered rats. LT4 treatment reversed the decrease in thyroid hormones and depression-like behaviors. In contrast, hyperthyroidism induced by weekly injections of LT4 (15 μg/kg) caused a greater than 10-fold increase in serum FT4 and FT3 levels. The hyperthyroid rats exhibited higher anxiety- and depression-like behaviors, higher brain 5-HT level, and lower hippocampal BDNF levels than the controls. Treatment with the antidepressant imipramine (15 mg/kg) diminished serum FT4 levels as well as anxiety- and depression-like behaviors in the hyperthyroid rats but led to a further increase in brain 5-HT levels, compared with the controls or the hypothyroid rats. Together, our results suggest that hypothyroidism and hyperthyroidism have bidirectional effects on anxiety- and depression-like behaviors in rats, possibly by modulating hippocampal BDNF levels.  相似文献   

13.
Abstract: Total hexokinase levels (units/g tissue) have been measured during postnatal development of the cerebellum in control, hypothyroid, and hyperthyroid rats. In addition, distribution of hexokinase in the developing cerebellum has been observed with an immunofluorescence method. Hypothyroidism delays the normally observed postnatal increase in total hexokinase activity, whereas hyperthyroidism accelerates the increase. In normal animals, hexokinase levels in maturing Purkinje cells pass through a transient increase, with maximal levels at approximately 8 days postnatally followed by rapid decline to relatively low levels by 12 days; hypothyroidism delays this transient increase and subsequent decline, but hyperthyroidism does not appear to affect markedly the timing of this phenomenon. Cerebellar glomeruli are relatively enriched in hexokinase content, as judged by their intense fluorescence. Hypothyroidism delays the development of intensely stained glomeruli. Hyperthyroidism did not appear to cause precocious increase in numbers of glomeruli but may have increased the rate at which the hexokinase was assimilated by newly formed glomeruli. The effects of hypo- and hyperthyroidism on total cerebellar hexokinase levels are interpreted in terms of the effect of thyroid hormone on the biochemical maturation of synaptic structures rich in hexokinase.  相似文献   

14.
Importance of iodine and selenium in thyroid metabolism is well known, but the roles of other essential trace elements including copper, zinc, manganese and iron on thyroid hormone homeostasis remain unclear. The aim of this study was to investigate the status of those trace elements in benign thyroid diseases and evaluate possible links between trace element concentrations and thyroid hormones.The study group was composed of 25 patients with multinodular goiter. Concentrations of thyroid hormones (plasma-free thyroxine, FT4; free triiodothyronine, FT3; and thyrotropin, TSH), selenium, copper, zinc, manganese and iron in plasma, and urinary iodine were determined. The results were compared with those of a healthy control group (n=20) with no thyroid disorder.A mild iodine deficiency was observed in the patients with multinodular goiter whereas urinary iodine levels were in the range of “normal” values in healthy controls. All patients were euthyroid, and their thyroid hormone concentrations were not significantly different from the control group. Plasma selenium, zinc and iron concentrations did not differ from controls, while copper and manganese levels were found to be significantly higher in the patients with multinodular goiter indicating links between these trace elements and thyroid function and possibly in development of goiter. Besides iodine, there was a significant correlation between plasma copper concentration and FT3/FT4 ratio.  相似文献   

15.
D Gripois  C Fernandez 《Enzyme》1977,22(6):378-384
The evolution of monoamine oxidase (MAO) activity towards tryptamine has been studied from birth to 20 days post-natal in the brain and heart of male rats. Hyperthyroidism was induced by thyroxine injections and hypothyroidism by PTU administration. The results are expressed per unit of fresh weight and per unit of protein weight. Cardiac MAO is higher in the hyperthyroid animals than in controls as soon as 5 days following birth; the difference between the 2 groups increases until 20 days. The deficiency in thyroid hormones, on the other hand, was followed by a slight decrease in the cardiac enzyme, this decrease reflecting the general deficit in protein synthesis. Brain MAO is not affected by hyperthyroidism, but a clear deficit follows PTU administration. This deficit is significant beginning at 10 days and the difference between the 2 groups increases up to 20 days. The effects of PTU-induced hypothyroidism can be corrected by thyroxine injections. Except for the decrease in the level of cardiac enzyme in hypothyroid animals, all the effects on MAO activity are independent of the total protein content of both organs.  相似文献   

16.
In subjects affected by trisomy 21 (Down syndrome), hypothyroidism is the most common endocrinological deficit. Plasma zinc levels, which are commonly detected below the normal range in Down patients, are related to some endocrinological and immunological functions; in fact, zinc deficiency has been shown to impair immune response and growth rate. Aims of this study were to evaluate (1) the role of zinc deficiency in subclinical hypothyroidism and (2) thyroid function changes in Down children cyclically supplemented with zinc sulfate. Inverse correlations have been observed between age and triiodotironine (T3) and between zinc and thyroid-stimulating hormone (TSH); higher TSH levels have been found in hypozincemic patients at the beginning of the study. After 6 mo of supplementation, an improvement of thyroid function (TSH levels: 3.96 ± 1.84 vs 2.64 ± 1.33 mUI/mL basally and after 6 mo, respectively) was observed in hypozincemic patients. In the second cycle of supplementation, a similar trend of TSH was observed. At the end of the study, TSH significantly decreased in treated hypozincemic subjects (4.48 ± 1.93 vs 2.96 ± 1.20 mUI/mL) and it was no longer different in comparison to normozincemic patients. We suggest zinc supplementation to the diet in hypozincemic Down children as a simple and useful therapeutic tool.  相似文献   

17.
Zinc has an antihyperglycemic effect. Zinc can also influence the production of leptin, a satiety factor that reduces appetite and blood sugar level. In this study, we investigated the effect of zinc supplementation on food intake and circulating leptin and glucose concentrations in streptozotocin-induced diabetic mice. Male diabetic mice received zinc supplementation (20 ppm) from drinking water for two weeks. The results showed that zinc treatment did not affect body weight gain, body fat content or food intake in these diabetic mice. However, zinc supplementation markedly ameliorated the hyperglycemia of diabetic mice. After zinc treatment, serum leptin concentrations tended to increase in the diabetic mice. This study suggests that zinc is a mediator of leptin production.  相似文献   

18.
Hypothyroidism is a chronic condition characterized by abnormally low thyroid hormone production. The decreased serum level (>5.1 mIU/l) of thyroid-stimulating hormone (TSH) in blood indicates hypothyroidism. The study was an attempt to access the effect of betulinic acid on chemically induced hypothyroidism in female albino rats. Betulinic acid is a naturally occurring pentacyclic triterpenoid, which has antiretroviral, antimalarial, and anti-inflammatory properties, as well as anticancer potential, by inhibiting topoisomerase. Hypothyroidism was induced in female albino rats using propylthiouracil (PTU) at a dose of 60 μg/kg body weight orally for 1 month. Induction of hypothyroidism was confirmed by increased TSH level. At the end of second month, blood was collected, centrifuged and serum was analyzed for TSH, T3, and T4 level and protocol was terminated by killing of animals. The animals exposed to PTU were treated with pure standard drug thyroxine at a dose of 10 μg/kg of body weight by oral route and the test drug betulinic acid 20 mg/kg by oral route through force feeding in their respective groups. Treatment was carried out for a period of 2 months. Group with PTU-induced hypothyroidism showed an elevation in serum TSH and reduction level, which was restored by the betulinic acid in treated female albino rats. Betulinic acid also reduced the damage caused in the thyroid tissues by PTU, thus minimizing the symptoms of hypothyroidism. Histopathological examinations of the thyroid tissue showed changes in the thyrocytes of PTU-treated group while thyroxine group showed normal thyroid follicles cell architecture and the group treated with betulinic acid also showed marked improvement in the follicles integrity which shows that betulinic acid has some protective activity. This study shows that the betulinic acid has thyroid-enhancing potential by lowering down the TSH levels and reducing the damage caused in the thyroid tissues, thus minimizing the symptoms of hypothyroidism when used anaphylactically in rats.  相似文献   

19.
Obesity is a chronic inflammatory state characterized by altered adipokine production and increased levels of inflammatory cytokines. The study explored the effect of zinc supplementation on inflammatory markers and adipocyte hormones in young obese women. Twenty five non-obese women and forty obese women (body mass index ≥25 kg/m2) aged 19–28 years were recruited for this study. Twenty obese women of the study group took 30 mg/day of supplemental zinc as zinc gluconate for 8 weeks and 20 obese women of control group took placebo. Usual dietary zinc intake was estimated from 3-day diet records. Serum zinc and urinary zinc concentration were measured by Atomic Absorption Spectrophotometry. Inflammatory markers such as high sensitivity C-reactive protein (hs-CRP), tumor necrosis factor-alpha (TNF-α), and interleukin (IL)-6 and adipocyte hormones such as lepin and adiponectin were measured by enzyme immunoassay. Inflammatory markers and leptin were significantly higher, but adiponectin was significantly lower in obese women than non-obese women. Zinc supplementation increased serum zinc by 15 % and urinary zinc by 56 % (P?<?0.05). The levels of hs-CRP (P?=?0.03) and IL-6 (P?=?0.006) significantly decreased with zinc supplementation, but not in placebo group. Serum leptin and plasma adiponectin concentration did not differ with either zinc supplementation or placebo. The levels of IL-6 and leptin were inversely associated with dietary zinc intake. These results suggest that zinc may have a favorable effect on obesity-related inflammation in young adults.  相似文献   

20.
Polychlorinated biphenyls (PCBs) are a group of persistent organochlorine compounds that have the potential to disrupt the homeostasis of thyroid hormones (THs) in fish, particularly juveniles. In this study, thyroid histology, plasma TH levels, and iodothyronine deiodinase (IDs, including ID1, ID2, and ID3) gene expression patterns were examined in juvenile Japanese flounder (Paralichthys olivaceus) following 25- and 50- day waterborne exposure to environmentally relevant concentrations of a commercial PCB mixture, Aroclor 1254 (10, 100, and 1000 ng/L) with two-thirds of the test solutions renewed daily. The results showed that exposure to Aroclor 1254 for 50 d increased follicular cell height, colloid depletion, and hyperplasia. In particular, hypothyroidism, which was induced by the administration of 1000 ng/L Aroclor 1254, significantly decreased plasma TT4, TT3, and FT3 levels. Profiles of the changes in mRNA expression levels of IDs were observed in the liver and kidney after 25 and 50 d PCB exposure, which might be associated with a reduction in plasma THs levels. The expression level of ID2 mRNA in the liver exhibited a dose-dependent increase, indicating that this ID isotype might serve as sensitive and stable indicator for thyroid-disrupting chemical (TDC) exposure. Overall, our study confirmed that environmentally relevant concentrations of Aroclor 1254 cause significant thyroid disruption, with juvenile Japanese flounder being suitable candidates for use in TDC studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号