首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Memory impairment is the most common symptom in patients with Alzheimer’s disease. The purpose of this study is to evaluate the memory enhancing effects of P7C3, a recently identified compound with robust proneurogenic and neuroprotective effects, on the cognitive impairment induced by scopolamine, a muscarinic acetylcholine receptor antagonist. Different behavior tests including the Y-maze, Morris water maze, and passive avoidance tests were performed to measure cognitive functions. Scopolamine significantly decreased the spontaneous alternation and step-through latency of C57BL/6J mice in Y-maze test and passive avoidance test, whereas increased the time of mice spent to find the hidden platform in Morris water maze test. Importantly, intraperitoneal administration of P7C3 effectively reversed those Scopolamine-induced cognitive impairments in C57BL/6J mice. Furthermore, P7C3 treatment significantly enhanced the level of brain-derived neurotrophic factor (BDNF) signaling pathway in the cortex and hippocampus, and the usage of selective BDNF signaling inhibitor fully blocked the anti-amnesic effects of P7C3. Therefore, these findings suggest that P7C3 could improve the scopolamine-induced learning and memory impairment possibly through activation of BDNF signaling pathway, thereby exhibiting a cognition-enhancing potential.  相似文献   

2.
Memory impairment is a common symptom in patients with neurodegenerative disorders, and its suppression could be beneficial to improve the quality of life of those patients. Z-guggulsterone, a compound extracted from the resin of plant Commiphora whighitii, exhibits numerous pharmacological effects in clinical practice, such as treatment of inflammation, arthritis, obesity and lipid metabolism disorders. However, the role and possible mechanism of Z-guggulsterone on brain-associated memory impairments are largely unknown. This issue was addressed in the present study in a memory impairment model induced by scopolamine, a muscarinic acetylcholine receptor antagonist, using the passive avoidance, Y-maze and Morris water maze tests. Results showed that scopolamine significantly decreased the step-through latency and spontaneous alternation of C57BL/6J mice in passive avoidance and Y-maze test, whereas increased the mean escape latency and decreased the swimming time in target quadrant in Morris water maze test. Pretreatment of mice with Z-guggulsterone at doses of 30 and 60 mg/kg effectively reversed the scopolamine-induced memory impairments. Mechanistic studies revealed that Z-guggulsterone pretreatment reversed the scopolamine-induced increase in acetylcholinesterase (AchE) activity, as well as decreases in brain-derived neurotrophic factor (BDNF) protein expression and cAMP response element-binding protein (CREB), extracellular regulated kinase 1/2 (ERK1/2) and protein kinase B (Akt) phosphorylation levels in the hippocampus and cortex. Inhibition of the BDNF signal, however, blocked the memory-enhancing effect of Z-guggulsterone. Therefore, these findings demonstrate that Z-guggulsterone attenuates the scopolamine-induced memory impairments mainly through activation of the CREB-BDNF signaling pathway, thereby exhibiting memory-improving effects.  相似文献   

3.
Eclalbasaponin II derived from Eclipta prostrata L. (Asteraceae) has been reported to have anti-fibrotic, anti-bacterial and autophagic activities, but its effect on cognitive function has not been investigated. We studied the effect of eclalbasaponin II on cholinergic blockade-induced memory impairment in mice using the passive avoidance, Y-maze, and Morris water maze tasks. Eclalbasaponin II (10 or 20 mg/kg, p.o.) significantly ameliorated the cognitive dysfunction induced by scopolamine in the passive avoidance, Y-maze, and the Morris water maze tasks. To identify the mechanism of the memory-ameliorating effect of eclalbasaponin II, acetylcholinesterase (AChE) activity assay, Western blot analysis and electrophysiology were conducted. Eclalbasaponin II inhibited the AChE activity in ex vivo study, and the administration of eclalbasaponin II and its metabolite, echinocystic acid, increased the phosphorylation levels of memory-related signaling molecules, including protein kinase B (Akt) and glycogen synthase kinase-3β (GSK-3β), in the hippocampus. Although eclalbasaponin II did not affect hippocampal long term potentiation (LTP), echinocystic acid significantly enhanced hippocampal LTP formation (30 μM). These results suggest that eclalbasaponin II ameliorates cholinergic blockade-induced cognitive impairment via AChE inhibition, LTP formation and the activation of Akt-GSK-3β signaling, and that eclalbasaponin II may be a useful to treat cognitive impairment derived from cholinergic dysfunction.  相似文献   

4.
A balanced omega-6/omega-3 polyunsaturated fatty acid (PUFA) ratio has been linked to health benefits and the prevention of many chronic diseases. Current dietary intervention studies with different sources of omega-3 fatty acids (omega-3) lack appropriate control diets and carry many other confounding factors derived from genetic and environmental variability. In our study, we used the fat-1 transgenic mouse model as a proxy for long-term omega-3 supplementation to determine, in a well-controlled manner, the molecular phenotype associated with a balanced omega-6/omega-3 ratio. The fat-1 mouse can convert omega-6 to omega-3 PUFAs, which protect against a wide variety of diseases including chronic inflammatory diseases and cancer. Both wild-type (WT) and fat-1 mice were subjected to an identical diet containing 10% corn oil, which has a high omega-6 content similar to that of the Western diet, for a six-month duration. We used a multi-platform lipidomic approach to compare the plasma lipidome between fat-1 and WT mice. In fat-1 mice, an unbiased profiling showed a significant increase in the levels of unesterified eicosapentaenoic acid (EPA), EPA-containing cholesteryl ester, and omega-3 lysophosphospholipids. The increase in omega-3 lipids is accompanied by a significant reduction in omega-6 unesterified docosapentaenoic acid (omega-6 DPA) and DPA-containing cholesteryl ester as well as omega-6 phospholipids and triacylglycerides. Targeted lipidomics profiling highlighted a remarkable increase in EPA-derived diols and epoxides formed via the cytochrome P450 (CYP450) pathway in the plasma of fat-1 mice compared with WT mice. Integration of the results of untargeted and targeted analyses has identified a lipidomic biosignature that may underlie the healthful phenotype associated with a balanced omega-6/omega-3 ratio, and can potentially be used as a circulating biomarker for monitoring the health status and the efficacy of omega-3 intervention in humans.  相似文献   

5.
Effects of oleamide on choline acetyltransferase and cognitive activities   总被引:2,自引:0,他引:2  
We screened 50 Korean traditional natural plants to measure the activation effect on choline acetyltransferase and attenuation of scopolamine-induced amnesia. The methanolic extracts from Zizyphus jujuba among the tested 50 plants, showed the highest activatory effect (34.1%) on choline acetyltransferase in vitro. By sequential fractionation of Zizyphus jujuba, the active component was finally identified as cis-9-octadecenoamide (oleamide). After isolation, oleamide showed a 65% activation effect. Administration of oleamide (0.32%) to mice significantly reversed the scopolamine-induced memory and/or cognitive impairment in the passive avoidance test and Y-maze test. Injection of scopolamine to mice impaired performance on the passive avoidance test (31% decrease in step-through latency), and on the Y-maze test (16% decrease in alternation behavior). In contrast, mice treated with oleamide before scopolamine injection were protected from these changes (12-25% decrease in step-through latency; 1-10% decrease in alternation behavior). These results suggest that oleamide should be a useful chemo-preventive agent against Alzheimer's disease.  相似文献   

6.
WY14643 is a selective agonist of peroxisome proliferator-activated receptor-α (PPAR-α) with neuroprotective and neurotrophic effects. The aim of this study was to evaluate the effects of WY14643 on cognitive impairments induced by scopolamine, a muscarinic acetylcholine receptor antagonist. We conducted different behavior tests including the Y-maze, Morris water maze, and passive avoidance test to measure the cognitive functions of C57BL/6J mice after scopolamine and WY14643 treatment. It was found that WY14643 injection significantly attenuated the scopolamine-induced cognitive impairments in these behavioral tests. Moreover, WY14643 treatment significantly enhanced the expression of brain-derived neurotrophic factor (BDNF) signaling cascade in the hippocampus. The usage of both PPAR-α inhibitor GW6471 and BDNF system inhibitor K252a fully prevented the memory-enhancing effects of WY14643. Therefore, these findings suggest that WY14643 could improve the scopolamine-induced memory impairments, and these effects are mediated by the activation of PPAR-α and BDNF system, thereby exhibiting a cognition-enhancing potential.  相似文献   

7.
The effect of α-asarone on impairment of cognitive performance caused by amnesic drug scopolamine was investigated. Treatment with α-asarone attenuated scopolamine-induced cognitive deficits as evaluated by passive avoidance and Y-maze test. Administration of α-asarone for 15 d improved memory and cognitive function as indicated by an increase in transfer latency time and spontaneous alternation in passive avoidance and the Y-maze test respectively. To understand the action of α-asarone, the levels of acetylcholinesterase (AChE), malondialdehyde (MDA), and superoxide dismutase (SOD) in the hippocampus (Hippo) and cerebral cortex (CC) of scopolamine-induced amnesic mice were evaluated. The mice treated with Scopolamine showed increased activity of AChE, MDA and SOD levels in both the Hippo and the CC area. Treatment with α-asarone attenuated the increased activity of AChE and normalized the MDA and SOD levels in the Hippo and the CC area in the scopolamine treated amnesic mice. These results suggest that α-asarone has a beneficial effect in cognitive impairment induced by dysfunction of cholinergic system in brain through inhibition of AChE activity and by influencing the antioxidant defense mechanism.  相似文献   

8.
The objective of this study was to investigate the impact of elevated tissue omega-3 (n-3) polyunsaturated fatty acids (PUFA) status on age-related glucose intolerance utilizing the fat-1 transgenic mouse model, which can endogenously synthesize n-3 PUFA from omega-6 (n-6) PUFA. Fat-1 and wild-type mice, maintained on the same dietary regime of a 10% corn oil diet, were tested at two different ages (2 months old and 8 months old) for various glucose homeostasis parameters and related gene expression. The older wild-type mice exhibited significantly increased levels of blood insulin, fasting blood glucose, liver triglycerides, and glucose intolerance, compared to the younger mice, indicating an age-related impairment of glucose homeostasis. In contrast, these age-related changes in glucose metabolism were largely prevented in the older fat-1 mice. Compared to the older wild-type mice, the older fat-1 mice also displayed a lower capacity for gluconeogenesis, as measured by pyruvate tolerance testing (PTT) and hepatic gene expression of phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6 phosphatase (G6Pase). Furthermore, the older fat-1 mice showed a significant decrease in body weight, epididymal fat mass, inflammatory activity (NFκ-B and p-IκB expression), and hepatic lipogenesis (acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) expression), as well as increased peroxisomal activity (70-kDa peroxisomal membrane protein (PMP70) and acyl-CoA oxidase1 (ACOX1) expression). Altogether, the older fat-1 mice exhibit improved glucose homeostasis in comparison to the older wild-type mice. These findings support the beneficial effects of elevated tissue n-3 fatty acid status in the prevention and treatment of age-related chronic metabolic diseases.  相似文献   

9.
Kim DH  Kim do Y  Kim YC  Jung JW  Lee S  Yoon BH  Cheong JH  Kim YS  Kang SS  Ko KH  Ryu JH 《Life sciences》2007,80(21):1944-1950
Nodakenin is a coumarin compound initially isolated from the roots of Angelica gigas. In the present study, we investigated the effects of nodakenin on learning and memory impairments induced by scopolamine (1 mg/kg, i.p.) using the passive avoidance test, the Y-maze test, and the Morris water maze test in mice. Nodakenin (10 mg/kg, p.o.) administration significantly reversed scopolamine-induced cognitive impairments in the passive avoidance test and the Y-maze test (P<0.05), and also reduced escape latency during training in the Morris water maze test (P<0.05). Moreover, swimming times and distances within the target zone of the Morris water maze were greater in the nodakenin-treated group than in the scopolamine-treated group (P<0.05). In an in vitro study, nodakenin was found to inhibit acetylcholinesterase activity in a dose-dependent manner (IC(50)=84.7 microM). In addition, nodakenin was also found to inhibit acetylcholinesterase activity for 6 h in an ex-vivo study. These results suggest that nodakenin may be a useful for the treatment of cognitive impairment, and that its beneficial effects are mediated, in part, via the enhancement of cholinergic signaling.  相似文献   

10.
Male Wistar rats were subjected to chronic nicotine treatment (0.3 mg/kg; 7 continuous days) and their memory performance was studied by means of Y-maze and multi-trial passive avoidance tasks. Nicotine significantly decreased spontaneous alternation in Y-maze task and step-through-latency in the multi-trial passive avoidance task, suggesting effects on both short-term memory and long-term memory, respectively. In addition, nicotine induced neuronal apoptosis, DNA fragmentation, reduced antioxidant enzymes activity, and increased production of lipid peroxidation and reactive oxygen species, suggesting pro-oxidant activity. Our results provide further support that nicotine-induced memory impairment is due to an increase in brain oxidative stress in rats.  相似文献   

11.
Jiang  Hua  Yin  Hong  Wang  Lin  Feng  Chunzhen  Bai  Yang  Huang  Dongzong  Zhang  Qiao  Liu  Hongchen  Hu  Yuan 《Molecular and cellular biochemistry》2021,476(1):303-310

Although tooth loss is a known risk factor of cognitive function, whether and how the chewing-side preference (CSP) affects memory impairment still remains unclear. This study evaluates the behavior changes in mice after the loss of teeth on one side and explores the role of serotonin (5-HT) and brain-derived neurotrophic factor (BDNF) signal pathway within these changes. To this end, CSP mouse models with either the removal of left unilateral molars (CSP-L) or right unilateral molars (CSP-R) were established. Morris water maze test and passive avoidance test were performed to evaluate the mice’s learning and memory capacity in the 4th and 8th weeks. The correlation between CSP and brain function changes was validated with changes in 5-HT and BDNF levels. CSP mice’s cognitive function was found to be decreased, along with a significant decline in 5-HT1A level, especially in CSP-R mice. BDNF and TrkB levels in CSP-R mice were also significantly lowered. These findings suggest that CSP results in memory impairment, which is associated with the 5-HT-BDNF signaling pathway.

  相似文献   

12.
Transgenic mice (named “Omega mice”) were engineered to carry both optimized fat-1 and fat-2 genes from the roundworm Caenorhabditis elegans and are capable of producing essential omega-6 and omega-3 fatty acids from saturated fats or carbohydrates. When maintained on a high-saturated fat diet lacking essential fatty acids or a high-carbohydrate, no-fat diet, the Omega mice exhibit high tissue levels of both omega-6 and omega-3 fatty acids, with a ratio of ∼1∶1. This study thus presents an innovative technology for the production of both omega-6 and omega-3 essential fatty acids, as well as a new animal model for understanding the true impact of fat on human health.  相似文献   

13.
IntroductionDespite the advocacy that diet may be a significant contributor to cancer prevention, there is a lack of direct evidence from epidemiological and experimental studies to substantiate such claims. Experimental studies suggest that n-3 polyunsaturated fatty acids (n-3 PUFA) from marine oils may reduce breast cancer risk, however, findings are equivocal. Thus, in this study, novel transgenic mouse models were employed to provide, for the first time, direct evidence for an anti-cancer role of n-3 PUFA in mammary tumorigenesis.Methodsfat-1 Mice, which are capable of endogenous n-3 PUFA synthesis, were bred with mouse mammary tumor virus (MMTV)-neu(ndl)-YD5 mice, an aggressive breast cancer model. The resultant offspring, including novel hybrid progeny, were assessed for tumor onset, size and multiplicity as well as n-3 PUFA composition in mammary gland and tumor tissue. A complementary group of MMTV-neu(ndl)-YD5 mice were fed n-3 PUFA in the diet.ResultsMice expressing MMTV-neu(ndl)-YD5 and fat-1 displayed significant (P<.05) reductions in tumor volume (~30%) and multiplicity (~33%), as well as reduced n-6 PUFA and enriched n-3 PUFA in tumor phospholipids relative to MMTV-neu(ndl)-YD5 control mice. The effect observed in hybrid progeny was similarly observed in n-3 PUFA diet fed mice.ConclusionUsing complementary genetic and conventional dietary approaches we provide, for the first time, unequivocal experimental evidence that n-3 PUFA is causally linked to tumor prevention.  相似文献   

14.
Pancreatitis is a severe debilitating disease with high morbidity and mortality. Treatment is mostly supportive, and until now there are no clinically useful strategies for anti-inflammatory therapy. Although omega-3 polyunsaturated fatty acids (n-3 PUFA) are known to have anti-inflammatory effects, the utility of these fatty acids in the alleviation of pancreatitis remained to be investigated. The aim of this study was to examine the effect of n-3 PUFA on both acute and chronic pancreatitis in a well-controlled experimental system. We used the fat-1 transgenic mouse model, characterized by endogenously increased tissue levels of n-3 PUFA, and their wild-type littermates to examine the effect of n-3 PUFA on both acute and chronic cerulein-induced pancreatitis. Disease activity and inflammatory status were assessed by both histology and molecular methods. In acute pancreatitis, fat-1 mice showed a trend towards decreased necrosis and significantly reduced levels of plasma IL-6 levels as well as reduced neutrophil infiltration in the lung. In chronic pancreatitis there was less pancreatic fibrosis and collagen content accompanied by decreased pancreatic stellate cell activation in the fat-1 animals with increased n-3 PUFA tissue levels as compared to wild-type littermates with high levels of omega-6 (n-6) PUFA in their tissues. Our data provide evidence for a reduction of systemic inflammation in acute pancreatitis and of tissue fibrosis in chronic pancreatitis by increasing the tissue content of omega-3 polyunsaturated fatty acids. These results suggest a beneficial potential for n-3 PUFA supplementation in acute and particularly chronic pancreatitis.  相似文献   

15.
A balanced intake of fatty acids (FA) of both omega-6 (n-6) and -3 (n-3) series is essential for memory. The Mediterranean diet (MD), rich in n-3 polyunsaturated FA (PUFA) and low n-6/n-3 PUFA ratio, has shown beneficial influences on health. Inversely, the Western diet contains saturated fats, including hydrogenated vegetable fat (HVF, rich in trans fat) and interesterified fat (IF), making the n-6/n-3 PUFA ratio high. Due to the health impairments caused by HVF, it has been replaced by IF in processed foods. We compared an MD (balanced n-6/n-3 PUFA ratio) with Western diets 1 (WD1, rich in trans fat) and 2 (WD2, rich in IF) on memory process per se and following scopolamine (SCO) administration, which induces amnesia in rats. While MD exerted protective effects, WD1 and WD2 showed declined memory per se, showing higher susceptibility to SCO-induced memory deficits. In addition, WD1 and WD2 showed increased proinflammatory cytokines [tumor necrosis factor-α, interleukin (IL)-1β, IL-6] and decreased anti-inflammatory cytokines (IL-10) in plasma. IL-1β was higher in the hippocampus of WD1, which was reflected on histological assessments. Significant correlations between cognitive decline and inflammatory markers reinforce our hypothesis: MD-like fats may act preventively on cognitive loss, while WD-like fats may facilitate this.  相似文献   

16.
Fat-1 transgenic mice, which endogenously convert n-6 PUFA to n-3 PUFA, are a useful tool in health research; however with this model timing of n-3 PUFA enrichment cannot be directly controlled. To add such capability, the novel Cre-recombinase inducible fat-1 (iFat1) transgenic mouse has been developed. The aim of this study was to characterize the utility of the iFat1 transgene as a model of Cre-inducible endogenous n-3 PUFA enrichment. Functionality of the iFat1 transgene was screened both in vitro and in vivo. In the presence of Cre, the iFat1 transgene resulted in a balancing (p < 0.01) of the n-6/n-3 PUFA ratio within phospholipids in the human embryonic kidney 293T cell line. For in vivo analysis, iFat1 transgenic mice were crossed with the R26-Cre-ERT2 (Tam-Cre) mouse line, a tamoxifen inducible Cre-expression model. Tam-Cre/iFat1 double hybrids were transiently treated with tamoxifen at 6–7 weeks, then terminated 3 weeks later. Tamoxifen treated mice had increased (p < 0.05) tissue n-3 PUFA and ≥two-fold reduction (p < 0.05) in the n-6/n-3 PUFA ratio of liver, kidney and muscle phospholipids relative to vehicle treated controls. Collectively these findings suggest that the iFat1 transgenic mouse may be a promising tool to help elucidate the temporal effects through which n-3 PUFA impacts health related outcomes.  相似文献   

17.
There is great interest in the role of polyunsaturated fatty acids (PUFAs) in promoting (n-6 class) or inhibiting (n-3 class) inflammation. Mammalian cells are devoid of desaturase that converts n-6 to n-3 PUFAs. Consequently, essential n-3 fatty acids must be supplied with the diet. We have studied the effect of endogenously produced n-3 PUFAs on colitis development in fat-1 transgenic mice carrying the Caenorhabditis elegans fat-1 gene encoding n-3 desaturase. Colonic cell lipid profile was measured by capillary gas chromatography in fat-1 and wild-type (WT) littermates fed standard diet supplemented with 10% (w/w) safflower oil rich (76%) in n-6 polyunsaturated linoleic acid (LA). Experimental colitis was induced by administrating 3% dextran sodium sulphate (DSS). Colitis was scored by histopatological analysis. Cyclooxygenase-2 (Cox-2) expression was evaluated by real time polymerase chain reaction. Prostaglandin E2 (PGE2) levels and cytokine production were determined by enzyme and microsphere-based immunoassays, respectively. The n-6/n-3 PUFA ratios in colonic cells of fat-1 mice were markedly lower (9.83±2.62) compared to WT (54.5±9.24, P<.001). Results also showed an attenuation of colonic acute and chronic inflammation in fat-1 mice with significant decreases in PGE2 production (P<.01) and Cox-2 expression (P<.01). High levels of colitis-induced proinflammatory cytokines, interleukin (IL)-18, IL-1α, IL-1β, IL-6, monocytes chemotactic proteins 1, 2 and 3 (MCP 1,2,3), matrix metalloproteinase 9 and tumor necrosis factor α (TNF-α) were down-regulated in DSS acutely and chronically treated fat-1 mice. The expression of fat-1 gene in the colon was associated with endogenous n-3 PUFAs production, decreased Cox-2 expression, increased PGE2 and cytokine production.  相似文献   

18.
Learning and memory are closely related to synaptic plasticity in neurons, associated with robust spine density and classical morphological patterns. Here, we investigated the effects of Undaria pinnatifida ethanol extract (UPE) on learning and spatial memory in mice. For behavioral studies, the passive avoidance test and radial-arm maze paradigm were used. With oral administration of UPE at an optimal concentration of 2 mg g?1 body weight, the latency time in the passive avoidance test was increased significantly (on average, 143 and 116 s on days 1 and 2, respectively; P < 0.01) versus the scopolamine induced memory impairment group (25 and 23 s on days 1 and 2, respectively). The working errors and latency time in the radial-arm maze decreased to 0.6 errors and 56 s (P < 0.05) compared with scopolamine-administered mice (1.0 error and 113 s) on day 2, respectively. Dendritic spine morphology of hippocampal neurons in the UPE-administered group (2 mg g?1 body weight) was analyzed using Golgi-impregnated tissue sections; the number of dendritic spines increased significantly (1.4-fold, versus control). Numbers of large mushroom and stubby spines also increased (1.8- and 1.7-fold, respectively, versus control). These findings indicate that U. pinnatifida has repairing effects on memory and behavioral disorders, probably through restoring spine density and morphology, and may thus have beneficial effects in the treatment of neurodegeneration.  相似文献   

19.
In the present study, we identified the effects of inhaled Pimpinella peregrina essential oil (1 and 3 %, for 21 continuous days) on scopolamine-induced memory impairment, anxiety, and depression in laboratory rats. Y-maze and radial arm-maze tests were used for assessing memory processes. Also, the anxiety and depressive responses were studied by means of the elevated plus-maze and forced swimming tests. The scopolamine alone-treated rats exhibited the following: decrease of the spontaneous alternation percentage in Y-maze test, increase of the number of working and reference memory errors in radial arm-maze test, along with decrease of the exploratory activity, the percentage of the time spent and the number of entries in the open arm within elevated plus-maze test and decrease of swimming time and increase of immobility time within forced swimming test. Inhalation of the P. peregrina essential oil significantly improved memory formation and exhibited anxiolytic- and antidepressant-like effects in scopolamine-treated rats. Our results suggest that the P. peregrina essential oil inhalation ameliorates scopolamine-induced memory impairment, anxiety, and depression. Moreover, studies on the P. peregrina essential oil may open a new therapeutic window for the prevention of neurological abnormalities closely related to Alzheimer’s disease.  相似文献   

20.
Brain-derived neurotrophic factor (BDNF) importantly regulates learning and memory and supports the survival of injured neurons. Reduced BDNF levels have been detected in the brains of Alzheimer’s disease (AD) patients but the exact role of BDNF in the pathophysiology of the disorder remains obscure. We have recently shown that reduced signaling of BDNF receptor TrkB aggravates memory impairment in APPswe/PS1dE9 (APdE9) mice, a model of AD. The present study examined the influence of Bdnf gene deficiency (heterozygous knockout) on spatial learning, spontaneous exploratory activity and motor coordination/balance in middle-aged male and female APdE9 mice. We also studied brain BDNF protein levels in APdE9 mice in different ages showing progressive amyloid pathology. Both APdE9 and Bdnf mutations impaired spatial learning in males and showed a similar trend in females. Importantly, the effect was additive, so that double mutant mice performed the worst. However, APdE9 and Bdnf mutations influenced spontaneous locomotion in contrasting ways, such that locomotor hyperactivity observed in APdE9 mice was normalized by Bdnf deficiency. Obesity associated with Bdnf deficiency did not account for the reduced hyperactivity in double mutant mice. Bdnf deficiency did not alter amyloid plaque formation in APdE9 mice. Before plaque formation (3 months), BDNF protein levels where either reduced (female) or unaltered (male) in the APdE9 mouse cortex. Unexpectedly, this was followed by an age-dependent increase in mature BDNF protein. Bdnf mRNA and phospho-TrkB levels remained unaltered in the cortical tissue samples of middle-aged APdE9 mice. Immunohistological studies revealed increased BDNF immunoreactivity around amyloid plaques indicating that the plaques may sequester BDNF protein and prevent it from activating TrkB. If similar BDNF accumulation happens in human AD brains, it would suggest that functional BDNF levels in the AD brains are even lower than reported, which could partially contribute to learning and memory problems of AD patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号