首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Growth and development, and auxin polar transport in Arabidopsis thaliana transformed with iaaH gene were studied under simulated microgravity conditions on a three-dimensional (3-D) clinostat. Simulated microgravity conditions on a 3-D clinostat did not affect the number of rosette leaves but promoted the growth and development (fresh weight of plant and the elongation of flower stalk) of transformants. Final growth of transformants under simulated microgravity conditions on a 3-D clinostat was almost equivalent to that grown on 1 g conditions in the presence of 1 micromoles IAM (indole-3-acetamide). The activities of auxin polar transport in the segments of flower stalk (inflorescence axis) of transformants grown on 1 g conditions were significantly promoted by the addition of IAM. Interestingly, simulated microgravity conditions on a 3-D clinostat also promoted the activities of auxin polar transport of transformants grown on the medium with or without IAM. Based on the results in this study, transgenic plants may not have an efficient homeostatic mechanism for the control of growth and development, and auxin polar transport activity in microgravity conditions in space.  相似文献   

2.
In young cucumber seedlings, the peg is a polar out-growth of tissue that functions by snagging the seed coat, thereby freeing the cotyledons. Previous studies have indicated that peg formation is gravity dependent. In this study we analyzed peg formation in cucumber seedlings (Cucumis sativus L. cv Burpee Hybrid II) grown under conditions of normal gravity, microgravity, and simulated microgravity (clinostat rotation). Seeds were germinated on the ground, in clinostats and on board the space shuttle (STS 95) for 1-2 days, frozen and subsequently examined for their stage of development, degree of hook formation, number of pegs formed, and peg morphology. The frequency of peg formation in space grown seedlings was found to be nearly identical to that of clinostat grown seedlings and to differ from that of seedlings germinated under normal gravity only in a minority of cases; approximately 6% of the seedlings formed two pegs and nearly 2% of the seedlings lacked pegs, whereas such abnormalities did not occur in ground controls. The degree of hook formation was found to be less pronounced for space grown seedlings, compared to clinostat grown seedlings, indicating a greater degree of decoupling between peg formation and hook formation in space. Nonetheless, in all seedlings having single pegs and a hook, the peg was found to be positioned correctly on the inside of the hook, showing that there is coordinate development even in microgravity environments. Peg morphologies were altered in space grown samples, with the pegs having a blunt appearance and many pegs showing alterations in expansion, with the peg extending out over the edges of the seed coat and downwards. These phenotypes were not observed in clinostat or ground grown seedlings.  相似文献   

3.
In young cucumber seedlings, the peg is a polar outgrowth of tissue that functions by snagging the seed coat, thereby freeing the cotyledons. The development of the peg is thought to be gravity-dependent and has become a model system for plant-gravity response. Peg development requires rapid cell expansion, a process thought to be catalyzed by α -expansins, and thus was a good system to identify expansins that were regulated by gravity. This study identified 7 new α -expansin cDNAs from cucumber seedlings ( Cucumis sativus L. cv Burpee Hybrid II) and examined their expression patterns. Two α -expansins ( CsExp3 and CsExp4 ) were more highly expressed in the peg and the root. Earlier reports stated that pegs tend not to form in the absence of gravity, so the expression levels were compared in the pegs of seedlings grown in space (STS-95), on a clinostat, and on earth (1 g ). Pegs were observed to form at high frequency on clinostat and space-grown seedlings, yet on clinostats there was more than a 4-fold reduction in the expression of CsExp3 in the pegs of seedlings grown on clinostats vs. those grown at 1 g , while the CsExp4 gene appeared to be turned off (below detection limits). There were no detectable differences in expansin gene expression levels for the pegs of seedlings grown in space or in the orbiter environmental simulator (OES) (1 g ) at NASA. The microgravity environment did not affect the expression of CsExp3 or CsExp4 , and the clinostat did not simulate the microgravity environment well.  相似文献   

4.
This report is on the morphological and molecular biological identification, using 18S- and ITS1-rDNA sequences, of the "space fungi" isolated on board the Russian Mir-Space Station as the major constituents of the fungal flora. The six fungal strains were isolated from air by using an air sampler or from condensation. Strains were identified as Penicillium chrysogenum, Aspergillus versicolor, or Penicillium sp. by both methods. The species of space fungi were common saprophytic fungi in our living environment, potential pathogens, and allergens. This study concluded that the environment on board the space station Mir allows the growth of potentially pathogenic fungi as true in residential areas on the earth. Therefore, to prevent infection or other health disorders caused by these fungi, easy and reliable methods should be established to survey the fungal flora in a space station.  相似文献   

5.
Biocontamination within the international space station is ever increasing mainly due to human activity. Control of microorganisms such as fungi and bacteria are important to maintain the well-being of the astronauts during long-term stay in space since the immune functions of astronauts are compromised under microgravity. For the first time control of the growth of an opportunistic pathogen, Aspergillus niger, under microgravity is studied in the presence of α-aminophosphonate chitosan. A low-shear modelled microgravity was used to mimic the conditions similar to space. The results indicated that the α-aminophosphonate chitosan inhibited the fungal growth significantly under microgravity. In addition, the inhibition mechanism of the modified chitosan was studied by UV-Visible spectroscopy and cyclic voltammetry. This work highlighted the role of a bio-based chitosan derivative to act as a disinfectant in space stations to remove fungal contaminants.  相似文献   

6.
Space flight experiments have suggested that microgravity can affect cellular processes in microorganisms. To simulate the microgravity environment on earth, several models have been developed and applied to examine the effect of microgravity on secondary metabolism. In this paper, studies of effects of space flight on secondary metabolism are exemplified and reviewed along with the advantages and disadvantages of the current models used for simulating microgravity. This discussion is both signi?cant and timely to researchers considering the use of simulated microgravity or space flight to explore effects of weightlessness on secondary metabolism.  相似文献   

7.
Using the weeping branch of Japanese flowering cherry tree and its woody stem of the seedling grown under simulated microgravity condition by three dimensional clinostat, it was elucidated that the morphogenesis of its secondary xylem supporting the plant itself to grow upward is seriously controlled by gravity on earth with a sedimentable amyloplast as its sensor. Space experiment of woody plant is expected to elucidate such problem.  相似文献   

8.
The content of lipid peroxidation (LPO) products (diene conjugates (DC), malondialdehyde (MDA), Schiff bases (SB), and tocopherol (TP, a main lipid antioxidant) were measured in blood serum of 17 astronauts taking part in long-term (125–217 days) missions on board the International Space Station (ISS) during the preflight period, on the day of the landing, and on the 7th and 14th days after landing (the rehabilitation period, RP). A decrease in the DC and MDA levels against a background of an increase in TP has been found in a group of eight astronauts after landing on board the Space Shuttle spacecraft and a group of eight astronauts after a space flight on board the Soyuz TM in the course of RP. The changes in measured indices were more pronounced in the group of astronauts after the space flight on board the Space Shuttle spacecraft. Inhibition of LPO during RP was regarded as an adequate response to readaptation stress to the conditions on earth. The possible mechanisms of differences in the efficiency of LPO inhibition between groups are discussed: the changes in the biomembrane phase state under the conditions of deceleration load during disorbiting and the stressful reaction to landing on board different spacecrafts.  相似文献   

9.
Gravity heavily influences living organisms on earth including their circadian rhythm, which is fundamentally important for coordinately physiology in organisms as diverse as cyanobacteria, fungus and humans. Numerous researches have revealed that microgravity in outer space can affect circadian rhythm of astronauts and rodent animals, but the mechanism remains unknown. Using rotary cell culture system to simulate microgravity environment, we investigated the role of simulated microgravity in regulating the circadian rhythm of NIH3T3 cells. Our experiments found that simulated microgravity can not only influence the mRNA level of some core circadian genes, but also modify the circadian rhythm of Per1 and Per2 synchronized after phorbol myristate acetate treatment. Remarkably, MEK/ERK pathway was transiently activated after a 2-h simulated microgravity treatment, with a significant upregulation of Kras, Raf1 and p-ERK1/ERK2. Moreover, U0126, a selective inhibitor of MEK/ERK pathway, could disrupt the circadian rhythm of Per1 and Per2 synchronized after simulated microgravity treatment. Together, our results unveil that simulated microgravity could act like a zeitgeber to influence the circadian rhythm of NIH3T3 by acting on MEK/ERK pathway, indicating that MEK/ERK pathway may act as a bridge which connects cells mechanotransduction pathway and circadian rhythm regulation.  相似文献   

10.
We review the graviresponse under true and simulated microgravity conditions on a clinostat in higher plants, and its regulation in molecular bases, especially on the aspect of auxin polar transport in etiolated pea (Pisum sativum L. cv. Alaska) seedlings which were the plant materials subjected to STS-95 space experiments. True and simulated microgravity conditions substantially affected growth and development in etiolated pea seedlings, especially the direction of growth of stems and roots, resulting in automorphosis. In etiolated pea seedlings grown in space, epicotyls were the most oriented toward the direction far from the cotyledons, and roots grew toward the aerial space of Plant Growth Chamber. Automorphosis observed in space were well simulated by a clinorotation on a 3-dimensional clinostat and also phenocopied by the application of auxin polar transport inhibitors of 2,3,5-triiodobenzoic acid, N-(1-naphtyl)phthalamic acid and 9-hydroxyfluorene-9-carboxylic acid. Judging from the results described above together with the fact that activities of auxin polar transport in epicotyls of etiolated pea seedlings grown in space substantially were reduced, auxin polar transport seems to be closely related to automorphosis. Strenuous efforts to learn in molecular levels how gravity contributes to the auxin polar transport in etiolated pea epicotyls resulted in successful identification of PsPIN2 and PsAUX1 genes located in plasma membrane which products are considered to be putative efflux and influx carriers of auxin, respectively. Based on the results of expression of PsPIN2 and PsAUX1 genes under various gravistimulations, a possible role of PsPIN2 and PsAUX1 genes for auxin polar transport in etiolated pea seedlings will be discussed.  相似文献   

11.
MOORE  RANDY 《Annals of botany》1990,65(2):213-216
Columella cells of seedlings of Zea mays L. cv. Bear Hybridgrown in the microgravity of orbital flight allocate significantlylarger relative-volumes to hyaloplasm and lipid bodies, andsignificantly smaller relative-volumes to dictyosomes, plastids,and starch than do columella cells of seedlings grown at I g.The ultrastructure of columella cells of seedlings grown atI g and on a rotating clinostat is not significantly different.However, the ultrastructure of cells exposed to these treatmentsdiffers significantly from that of seedlings grown in microgravity.These results indicate that the actions of a rotating clinostatdo not mimic the ultrastructural effects of microgravity incolumella cells of Z. mays. Zea mays L., gravity, microgravity, ultrastructure, clinostat, space shuttle, space biology  相似文献   

12.
The location of the nucleus in statocytes or lentil roots grown: 1), at 1 g on the ground, 2), on a 1 g centrifuge in space, 3), in simulated microgravity on a slowly rotating clinostat (0.9 rmp) 4), in microgravity in space was investigated and statistically evaluated. In cells differentiated at 1 g on the ground, the nuclear membrane was almost in contact with the plasmalemma lining the proximal cell wall, whereas in statocytes of roots crown on the clinostat there was a distance of 0.47 micrometers (horizontal clinorotation) and or 0.76 micrometers (vertical clinorotation) between these membranes. However, in microgravity the nucleus was the most displaced, 0.87 micrometers from the proximal cell wall. Centrifugation of vertically grown roots in the root-tip direction showed that the threshold of centrifugal force to detach all nuclei from the proximal cell wall was about 40 g. In statocytes developed in the presence of cytochalasin B at 1 g the nuclei were sedimented on the amyloplasts at the distal cell pole, demonstrating that the location of the nucleus depends on actin filaments. The results obtained are in agreement with the hypothesis that gravity causes a tension of actin filaments and that this part of the cytoskeleton undergoes a relaxation in microgravity.  相似文献   

13.
【背景】近年来研究发现,失重条件可对一些致病微生物的增殖和毒性产生影响,白假丝酵母菌(Candida albicans)是典型的条件性致病真菌,在太空环境和人体中普遍存在,研究失重条件下白假丝酵母菌的增殖和毒性意义重大。【目的】利用旋转细胞培养系统(Rotary cell culture system,RCCS)模拟失重环境对白假丝酵母菌进行连续传代培养,检测模拟失重环境对白假丝酵母菌增殖情况、毒性以及基因表达的变化。【方法】将白假丝酵母菌接种在旋转生物反应器(High aspect rotating vessel,HARV)中,利用旋转细胞培养系统连续传代培养14 d,然后对菌株进行增殖速率测定、不同pH条件下增殖能力测定、生物膜相对形成能力测定和细胞毒性和动物毒力测定;利用转录组测序技术找出差异表达基因,结合性状分析模拟失重可能对白假丝酵母菌增殖和毒力的影响。【结果】与对照组相比,模拟失重组白假丝酵母菌对数期提前,增殖速率加快,在适宜pH条件下的增殖能力普遍提高,但其生物膜形成能力相对减弱,对LoVo细胞和小鼠的毒性减弱;转录组测序发现,模拟失重组共有280个基因表达差异达1.5倍以上(P0.05),其中248个上调、32个下调。差异基因经基因功能注释(Gene ontology,GO)和京都基因及基因组百科全书(Kyoto encyclopedia of genes and genomes,KEGG)富集分析发现,相关胞膜形成及细胞分裂基因表达上调,生物膜形成、细胞黏附及共生粘连宿主基因表达下调。【结论】模拟失重环境可引起白假丝酵母菌增殖和毒性水平发生变化,相关改变可为研究失重环境对微生物的影响提供参考。  相似文献   

14.
Etiolated pea (Pisum sativum L. cv. Alaska) seedlings grown under simulated microgravity conditions on a 3-dimensional clinostat showed automorphosis-like growth and development similar to that observed in true microgravity conditions in space. Application of inhibitors of auxin polar transport phenocopied automorphosis-like growth on 1 g conditions, suggesting that automorophosis is closely related to auxin polar transport. Strenuous efforts to know the relationships between automorphosis and auxin polar transport in pea seedlings at molecular bases resulted in successful identification of PsPIN2 and PsAUX1 encoding putative auxin efflux and influx carrier protein, respectively. Significantly high levels in homology were found on nucleotide and deduced amino acid sequences among PsPIN2, PsPIN1 and AtPINs, and between PsAUX1 and AtAUX1. Expression of PsPIN1 and PsAUX1 genes in etiolated pea seedlings grown on the clinostat were substantially affected, but that of PsPIN2 was not. Roles of these genes in auxin polar transport and automorphosis of etiolated pea seedlings are also described.  相似文献   

15.
The life cycle of Arabidopsis plants was examined by growing them on a horizontal clinostat. Seeds on agar media were allowed to germinate and seedlings were grown under a simulated microgravity on a horizontal clinostat. Clinorotation (3 rpm) did not appear to interfere with germination of plant seeds and development of cotyledons and leaves. Stress relaxation parameters of the cell wall, the minimum relaxation time and the relaxation rate did not appear to be affected by clinostat rotation. On the other hand, the length of inflorescences was reduced to 61-62% by clinostat rotation. Rotation was found to inhibit the polar transport of auxin, although inflorescence growth and auxin transport were not completely inhibited. From these facts, it is possible that the life cycle in Arabidopsis plants could be accomplished in space, although growth phenomena involving auxin transport and its action may be disturbed. Plants may have a capacity to grow in space and we may be able to cultivate crops in space.  相似文献   

16.
Cucumis sativus L. cv Burpee Hybrid II) grown under conditions of normal gravity, microgravity, and simulated microgravity (clinostat rotation). Seeds were germinated on the ground, in clinostats and on board the space shuttle (STS-95) for 1–2 days, frozen and subsequently examined for their stage of development, degree of hook formation, number of pegs formed, and peg morphology. The frequency of peg formation in space-grown seedlings was found to be nearly identical to that of clinostat-grown seedlings and to differ from that of seedlings germinated under normal gravity only in a minority of cases; ˜6% of the seedlings formed two pegs and nearly 2% of the seedlings lacked pegs, whereas such abnormalities did not occur in ground controls. The degree of hook formation was found to be less pronounced for space-grown seedlings, compared to clinostat-grown seedlings, indicating a greater degree of decoupling between peg formation and hook formation in space. Nonetheless, in all seedlings having single pegs and a hook, the peg was found to be positioned correctly on the inside of the hook, showing that there is coordinate development even in microgravity environments. Peg morphologies were altered in space-grown samples, with the pegs having a blunt appearance and many pegs showing alterations in expansion, with the peg extending out over the edges of the seed coat and downwards. These phenotypes were not observed in clinostat or ground-grown seedlings. Received 12 October 1999/ Accepted in revised form 18 October 1999  相似文献   

17.
White clover (Trifolium repens) was germinated and grown in microgravity aboard the Space Shuttle (STS-60, 1994; STS-63, 1995), on Earth in stationary racks and in a slow-rotating two-axis clinostat. The objective of this study was to determine if normal root cap development and early plant gravity responses were dependent on gravitational cues. Seedlings were germinated in space and chemically fixed in orbit after 21, 40, and 72 h. Seedlings 96 h old were returned viable to earth. Germination and total seedling length were not dependent on gravity treatment. In space-flown seedlings, the number of cell stories in the root cap and the geometry of central columella cells did not differ from those of the Earth-grown seedlings. The root cap structure of clinorotated plants appeared similar to that of seedlings from microgravity, with the exception of three-day rotated plants, which displayed significant cellular damage in the columella region. Nuclear polarity did not depend on gravity; however, the positions of amyloplasts in the central columella cells were dependent on both the gravity treatment and the age of the seedlings. Seedlings from space, returned viable to earth, responded to horizontal stimulation as did 1 g controls, but seedlings rotated on the clinostat for the same duration had a reduced curvature response. This study demonstrates that initial root cap development is insensitive to either chronic clinorotation or microgravity. Soon after differentiation, however, clinorotation leads to loss of normal root cap structure and plant graviresponse while microgravity does not.  相似文献   

18.
In STS-95 space experiments we have demonstrated that microgravity conditions resulted in automorphosis in etiolated pea (Pisum sativum L. cv. Alaska) seedlings (Ueda et al. 1999). Automorphosis-like growth and development in etiolated pea seedlings were also induced under simulated microgravity conditions on a 3-dimensional (3-D) clinostat, epicotyls being the most oriented toward the direction far from the cotyledons. Detail analysis of epicotyl bending revealed that within 36 h after watering, no significant difference in growth direction of epicotyls was observed in between seedlings grown on the 3-D clinostat and under 1 g conditions, differential growth near the cotyledonary node resulting in epicotyl bending of ca. 45 degrees toward the direction far from the cotyledons. Thereafter epicotyls continued to grow almost straightly keeping this orientation on the 3-D clinostat. On the other hand, the growth direction in etiolated seedlings changed to antigravity direction by negative gravitropic response under 1 g conditions. Automorphological epicotyl bending was also phenocopied by the application of auxin polar transport inhibitors such as 9-hydroxyfluorene-9-carboxylic acid, N-(1-naphtyl)phthalamic acid and 2,3,5-triiodobenzoic acid. These results together with the fact that auxin polar transport activity in etiolated pea epicotyls was substantially reduced in space suggested that reduced auxin polar transport is closely related to automorphosis. Strenuous efforts to learn how gravity contributes to the auxin polar transport in etiolated pea epicotyls in molecular bases resulted in successful identification of PsPIN2 and PsAUX1 encoding putative auxin-efflux and influx carrier proteins, respectively. Based on the results of these gene expression under simulated microgravity conditions, a possible role of PsPIN2 and PsAUX1 genes for auxin polar transport in etiolated pea seedlings will be discussed.  相似文献   

19.
Many space missions have shown that prolonged space flights may increase the risk of cardiovascular problems. Using a three-dimensional clinostat, we investigated human endothelial EA.hy926 cells up to 10 days under conditions of simulated microgravity (microg) to distinguish transient from long-term effects of microg and 1g. Maximum expression of all selected genes occurred after 10 min of clinorotation. Gene expression (osteopontin, Fas, TGF-beta(1)) declined to slightly upregulated levels or rose again (caspase-3) after the fourth day of clinorotation. Caspase-3, Bax, and Bcl-2 protein content was enhanced for 10 days of microgravity. In addition, long-term accumulation of collagen type I and III and alterations of the cytoskeletal alpha- and beta-tubulins and F-actin were detectable. A significantly reduced release of soluble factors in simulated microgravity was measured for brain-derived neurotrophic factor, tissue factor, vascular endothelial growth factor (VEGF), and interestingly for endothelin-1, which is important in keeping cardiovascular balances. The gene expression of endothelin-1 was suppressed under microg conditions at days 7 and 10. Alterations of the vascular endothelium together with a decreased release of endothelin-1 may entail post-flight health hazards for astronauts.  相似文献   

20.
MOORE  RANDY 《Annals of botany》1990,66(5):541-549
The object of this research was to determine how effectivelythe actions of a clinostat and a fluid-filled, slow-turninglateral vessel (STLV) mimic the ultrastructural effects of microgravityin plant cells. We accomplished this by qualitatively and quantitativelycomparing the ultrastructures of cells grown on clinostats andin an STLV with those of cells grown at 1 g and in microgravityaboard the Space Shuttle Columbia. Columella cells of Brassicaperviridis seedlings grown in microgravity and in an STLV havesimilar structures. Both contain significantly more lipid bodies,less starch, and fewer dictyosomes than columella cells of seedlingsgrown at 1 g. Cells of seedlings grown on clinostats have significantlydifferent ultrastructures from those grown in microgravity orin an STLV, indicating that clinostats do not mimic microgravityat the ultrastructural level. The similar structures of columellacells of seedlings grown in an STLV and in microgravity suggestthat an STLV effectively mimics microgravity at the ultrastructurallevel. Brassica perviridis cv. Tendergreen, mustard spinach, clinostat, microgravity, morphometry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号