首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In STS-95 space experiments we have demonstrated that microgravity conditions resulted in automorphosis in etiolated pea (Pisum sativum L. cv. Alaska) seedlings (Ueda et al. 1999). Automorphosis-like growth and development in etiolated pea seedlings were also induced under simulated microgravity conditions on a 3-dimensional (3-D) clinostat, epicotyls being the most oriented toward the direction far from the cotyledons. Detail analysis of epicotyl bending revealed that within 36 h after watering, no significant difference in growth direction of epicotyls was observed in between seedlings grown on the 3-D clinostat and under 1 g conditions, differential growth near the cotyledonary node resulting in epicotyl bending of ca. 45 degrees toward the direction far from the cotyledons. Thereafter epicotyls continued to grow almost straightly keeping this orientation on the 3-D clinostat. On the other hand, the growth direction in etiolated seedlings changed to antigravity direction by negative gravitropic response under 1 g conditions. Automorphological epicotyl bending was also phenocopied by the application of auxin polar transport inhibitors such as 9-hydroxyfluorene-9-carboxylic acid, N-(1-naphtyl)phthalamic acid and 2,3,5-triiodobenzoic acid. These results together with the fact that auxin polar transport activity in etiolated pea epicotyls was substantially reduced in space suggested that reduced auxin polar transport is closely related to automorphosis. Strenuous efforts to learn how gravity contributes to the auxin polar transport in etiolated pea epicotyls in molecular bases resulted in successful identification of PsPIN2 and PsAUX1 encoding putative auxin-efflux and influx carrier proteins, respectively. Based on the results of these gene expression under simulated microgravity conditions, a possible role of PsPIN2 and PsAUX1 genes for auxin polar transport in etiolated pea seedlings will be discussed.  相似文献   

2.
Etiolated pea (Pisum sativum L. cv. Alaska) seedlings grown under simulated microgravity conditions on a 3-dimensional clinostat showed automorphosis-like growth and development similar to that observed in true microgravity conditions in space. Application of inhibitors of auxin polar transport phenocopied automorphosis-like growth on 1 g conditions, suggesting that automorophosis is closely related to auxin polar transport. Strenuous efforts to know the relationships between automorphosis and auxin polar transport in pea seedlings at molecular bases resulted in successful identification of PsPIN2 and PsAUX1 encoding putative auxin efflux and influx carrier protein, respectively. Significantly high levels in homology were found on nucleotide and deduced amino acid sequences among PsPIN2, PsPIN1 and AtPINs, and between PsAUX1 and AtAUX1. Expression of PsPIN1 and PsAUX1 genes in etiolated pea seedlings grown on the clinostat were substantially affected, but that of PsPIN2 was not. Roles of these genes in auxin polar transport and automorphosis of etiolated pea seedlings are also described.  相似文献   

3.
We review the graviresponse under true and simulated microgravity conditions on a clinostat in higher plants, and its regulation in molecular bases, especially on the aspect of auxin polar transport in etiolated pea (Pisum sativum L. cv. Alaska) seedlings which were the plant materials subjected to STS-95 space experiments. True and simulated microgravity conditions substantially affected growth and development in etiolated pea seedlings, especially the direction of growth of stems and roots, resulting in automorphosis. In etiolated pea seedlings grown in space, epicotyls were the most oriented toward the direction far from the cotyledons, and roots grew toward the aerial space of Plant Growth Chamber. Automorphosis observed in space were well simulated by a clinorotation on a 3-dimensional clinostat and also phenocopied by the application of auxin polar transport inhibitors of 2,3,5-triiodobenzoic acid, N-(1-naphtyl)phthalamic acid and 9-hydroxyfluorene-9-carboxylic acid. Judging from the results described above together with the fact that activities of auxin polar transport in epicotyls of etiolated pea seedlings grown in space substantially were reduced, auxin polar transport seems to be closely related to automorphosis. Strenuous efforts to learn in molecular levels how gravity contributes to the auxin polar transport in etiolated pea epicotyls resulted in successful identification of PsPIN2 and PsAUX1 genes located in plasma membrane which products are considered to be putative efflux and influx carriers of auxin, respectively. Based on the results of expression of PsPIN2 and PsAUX1 genes under various gravistimulations, a possible role of PsPIN2 and PsAUX1 genes for auxin polar transport in etiolated pea seedlings will be discussed.  相似文献   

4.
Etiolated pea (Pisum sativum L. cv. Alaska) seedlings grown under microgravity conditions in space show automorphosis: bending of epicotyls, inhibition of hook formation and changes in root growth direction. In order to determine the mechanisms of microgravity conditions that induce automorphosis, we used a three-dimensional clinostat and obtained the successful induction of automorphosis-like growth of etiolated pea seedlings. Kinetic studies revealed that epicotyls bent at their basal region towards the clockwise direction far from the cotyledons from the vertical line (0 degrees) at approximately 40 degrees in seedlings grown both at 1 g and in the clinostat within 48 h after watering. Thereafter, epicotyls retained this orientation during growth in the clinostat, whereas those at 1 g changed their growth direction against the gravity vector and exhibited a negative gravitropic response. On the other hand, the plumular hook that had already formed in the embryo axis tended to open continuously by growth at the inner basal portion of the elbow; thus, the plumular hook angle initially increased; this was followed by equal growth on the convex and concave sides at 1 g, resulting in normal hook formation; in contrast, hook formation was inhibited on the clinostat. The automorphosis-like growth and development of etiolated pea seedlings was induced by auxin polar transport inhibitors (9-hydroxyfluorene-9-carboxylic acid, N-(1-naphthyl)phthalamic acid and 2,3,5-triiodobenzoic acid), but not by anti-auxin (p-chlorophenoxyisobutyric acid) at 1 g. An ethylene biosynthesis inhibitor, 1-aminooxyacetic acid, inhibited hook formation at 1 g, and ethylene production of etiolated seedlings was suppressed on the clinostat. Clinorotation on the clinostat strongly reduced the activity of auxin polar transport of epicotyls in etiolated pea seedlings, similar to that observed in space experiments (Ueda J, Miyamoto K, Yuda T, Hoshino T, Fujii S, Mukai C, Kamigaichi S, Aizawa S, Yoshizaki I, Shimazu T, Fukui K (1999) Growth and development, and auxin polar transport in higher plants under microgravity conditions in space: BRIC-AUX on STS-95 space experiment. J Plant Res 112: 487492). These results suggest that clinorotation on a three-dimensional clinostat is a valuable tool for simulating microgravity conditions, and that automorphosis of etiolated pea seedlings is induced by the inhibition of auxin polar transport and ethylene biosynthesis.  相似文献   

5.
The morphology, growth and development of higher plants are strongly influenced by environmental stimuli on the earth, which affect the changes in the dynamics of plant hormones in plants. Qualitative and quantitative changes in plant hormones are the most important internal factor to regulate plant growth and development. Among them, auxin (IAA) is of most significant. There are numerous reports concerning the physiological roles of auxin in plant growth and development (Matthysse and Scott 1984). One of the characteristics of auxin is to have the ability of polar transport along the vector of gravity on the earth (Schneider and Wightman 1978), suggesting that the activity of auxin polar transport is also important for the growth and development of plants. It has recently been reported that the normal activity of auxin polar transport in inflorescence axis of Arabidopsis thaliana was required for flower formation (Okada et al. 1991, Ueda et al. 1992). Considering the above evidence together with the fact that gravity affects the morphology, growth and development of higher plants, gravity might affect the qualitative and quantitative changes in plant hormones including the activity of auxin polar transport. In this paper, we report the effect of microgravity condition simulated by a three-dimensional (3-D) or a horizontal clinostat on the activity of auxin polar transport in inflorescence axis of Arabidopsis thaliana.  相似文献   

6.
The effects of simulated microgravity conditions produced by a horizontal clinostat on the entire life cycle of Arabidopsis thaliana ecotype Columbia and Landsberg erecta were studied. Horizontal clinorotation affected little germination of seeds, growth and development of rosette leaves and roots during early vegetative growth stage, and the onset of the bolting of inflorescence axis and flower formation in reproductive growth stage, although it suppressed elongation of inflorescence axes. The clinorotation substantially reduced the numbers of siliques and seeds in Landsberg erecta, and completely inhibited seed production in Columbia. Seeds produced in Landsberg erecta on the clinostat were capable of germinating and developing rosette leaves normally on the ground. On the other hand, growth of pin formed mutant (pin/pin) of Arabidopsis ecotype Enkheim, which has a unique structure of inflorescence axis with no flower and extremely low levels of auxin polar transport activity, was inhibited and the seedlings frequently died during vegetative stage on the clinostat. Seed formation and inflorescence growth of the seedlings with normal shape (pin/+ or +/+) were also suppressed on the clinostat. These results suggest that the growth and development of Arabidopsis, especially in reproductive growth stage, is suppressed under simulated microgravity conditions on a clinostat. To complete the life cycle probably seems to be quite difficult, although it is possible in some ecotypes.  相似文献   

7.
The life cycle of Arabidopsis plants was examined by growing them on a horizontal clinostat. Seeds on agar media were allowed to germinate and seedlings were grown under a simulated microgravity on a horizontal clinostat. Clinorotation (3 rpm) did not appear to interfere with germination of plant seeds and development of cotyledons and leaves. Stress relaxation parameters of the cell wall, the minimum relaxation time and the relaxation rate did not appear to be affected by clinostat rotation. On the other hand, the length of inflorescences was reduced to 61-62% by clinostat rotation. Rotation was found to inhibit the polar transport of auxin, although inflorescence growth and auxin transport were not completely inhibited. From these facts, it is possible that the life cycle in Arabidopsis plants could be accomplished in space, although growth phenomena involving auxin transport and its action may be disturbed. Plants may have a capacity to grow in space and we may be able to cultivate crops in space.  相似文献   

8.
The principal objective of the space experiment, BRIC-AUX on STS-95, was the integrated analysis of the growth and development of etiolated pea and maize seedlings in space, and the effect of microgravity conditions in space on auxin polar transport in the segments. Microgravity conditions in space strongly affected the growth and development of etiolated pea and maize seedlings. Etiolated pea and maize seedlings were leaned and curved during space flight, respectively. Finally the growth inhibition of these seedlings was also observed. Roots of some pea seedlings grew toward the aerial space of Plant Growth Chamber. Extensibilities of cell walls of the third internode of etiolated pea epicotyls and the top region of etiolated maize coleoptiles which were germinated and grown under microgravity conditions in space were significantly low. Activities of auxin polar transport in the second internode segments of etiolated pea seedlings and coleoptile segments of etiolated maize seedlings were significantly inhibited and extremely promoted, respectively, under microgravity conditions in space. These results strongly suggest that auxin polar transport as well as the growth and development of plants is controlled under gravity on the earth.  相似文献   

9.
Arabidopsis thaliana ecotype Columbia and Landsberg erecta were studied. Horizontal clinorotation affected little germination of seeds, growth and development of rosette leaves and roots during early vegetative growth stage, and the onset of the bolting of inflorescence axis and flower formation in reproductive growth stage, although it suppressed elongation of inflorescence axes. The clinorotation substantially reduced the numbers of siliques and seeds in Landsberg erecta, and completely inhibited seed production in Columbia. Seeds produced in Landsberg erecta on the clinostat were capable of germinating and developing rosette leaves normally on the ground. On the other hand, growth of pin-formed mutant (pin/pin) of Arabidopsis ecotype Enkheim, which has a unique structure of inflorescence axis with no flower and extremely low levels of auxin polar transport activity, was inhibited and the seedlings frequently died during vegetative stage on the clinostat. Seed formation and inflorescence growth of the seedlings with normal shape (pin/+ or +/+) were also suppressed on the clinostat. These results suggest that the growth and development of Arabidopsis, especially in reproductive growth stage, is suppressed under simulated microgravity conditions on a clinostat. To complete the life cycle probably seems to be quite difficult, although it is possible in some ecotypes. Received 18 June 1999/ Accepted in revised form 27 August 1999  相似文献   

10.
Increased expression of the auxin-inducible gene PsIAA4/5 was observed in the elongated side of epicotyls in early growth stages of etiolated pea (Pisum sativum L. cv. Alaska) seedlings grown in a horizontal or an inclined position under 1 g conditions. Under simulated microgravity conditions on a 3D clinostat, accumulation of PsIAA4/5 mRNA was found throughout epicotyls showing automorphosis. Polar auxin transport in the proximal side of epicotyls changed when the seedlings were grown in a horizontal or an inclined position under 1 g conditions, but that under clinorotation did not, regardless of the direction of seed setting. Accumulation of PsPIN1 and PsPIN2 mRNAs in epicotyls was affected by gravistimulation, but not by clinorotation. Under 1 g conditions, auxin-transport inhibitors made epicotyls of seedlings grown in a horizontal or inclined position grow toward the proximal direction to cotyledons. These inhibitors led to epicotyl bending toward the cotyledons in seedlings grown in an inclined position under clinorotation. Polar auxin transport, as well as growth direction, of epicotyls of the agravitropic mutant ageotropum did not respond to various gravistimulation. These results suggest that alteration of polar auxin transport in the proximal side of epicotyls regulates the graviresponse of pea epicotyls.  相似文献   

11.
The principal objectives of the space experiment, BRIC-AUX on STS 95, were the integrated analysis of the growth and development of etiolated pea and maize seedlings in space and a study of the effects of microgravity conditions in space on auxin polar transport in these segments. Microgravity significantly affected the growth and development of etiolated pea and maize seedlings. Epicotyls of etiolated pea seedlings were the most oriented toward about 40 to 60 degrees from the vertical. Mesocotyls of etiolated maize seedlings were curved at random during space flight but coleoptiles were almost straight. Finally the growth inhibition of these seedlings in space was also observed. Roots of some pea seedlings grew toward to the aerial space of Plant Growth Chamber. Extensibilities of cell walls of the third internode of etiolated pea epicotyls and the top region of etiolated maize coleoptiles, which were germinated and grown under microgravity conditions in space, were significantly low as compared with those grown on the ground of the earth. Activities of auxin polar transport in the second internode segments of etiolated pea seedlings and coleoptile segments of etiolated maize seedlings were significantly inhibited and promoted, respectively, under microgravity conditions in space. These results strongly suggest that auxin polar transport as well as the growth and development of plants is controlled under gravity on the earth.  相似文献   

12.
Plants have evolved on the earth, indicating the morphology, growth and development, and life cycle of plants are highly influenced by gravity as well as other environmental stimuli. Indeed, simulated microgravity on a clinostat or hypergravity on a centrifuge has recently been reported to change the growth and development of plants (Hoson et al. 1992, 1993, 1995, Rasmussen et al. 1994, Kasahara et al. 1995). Senescence is a final drastic phenomenon in life cycle of plants, which is characterized by the loss of total chlorophyll and protein, and/or the formation of the abscission (Osborne 1973, Thimann 1977, Addicott 1982). Many environmental stimuli as well as the qualitative and quantitative changes of plant hormones have been reported to affect plant senescence. Among those stimuli, light is the most important factor to regulate plant senescence (Leopold 1964). Dark condition promotes leaf senescence due to the decrease in endogenous level of cytokinin and/or the increase in that of abscisic acid or ethylene (Tetley and Thimann 1974, Gepstein and Thimann 1980). However, there are few reports concerning the effect of gravity on leaf senescence. Strenuous effort to learn leaf senescence under microgravity condition has been done using a three-dimensional (3-D) clinostat. In this paper, we report that simulated microgravity condition on a 3-D clinostat promoted the senescence of oat leaf segments in the dark. A possible mechanism of microgravity condition on promoting the senescence is also discussed.  相似文献   

13.
Involvement of auxin polar transport in flower formation of Arabidopsis thaliana was studied using a pinformed (pin) mutant (Rpin) transformed with the indoleacetamide hydrolase (iaaH) gene and the phenocopy of the pin mutant, which was induced by 9-hydroxyfluorene-9-carboxylic acid (HFCA). The application of indoleacetamide (IAM) did not change aberrant structure of the aerial part of Rpin (pin/pin), but extremely inhibited its root growth. Treatment with IAM increased the endogenous concentrations of free and conjugated IAA in Rpin normal (pin/+ or +/+) due to the expression of the iaaH gene, to 140% and 428% of those in non-treated plants, respectively, and those in Rpin to 378% and 120%, respectively. The activity of IAA polar transport in the inflorescence axis of Rpin remained low even in the presence of IAM, the activity being almost similar, to that in the pin mutant. The activity of IAA polar transport in the HFCA-induced phenocopy of the pin mutant was also extremely low, and it was not restored by the simultaneous application of IAA. Arabidopsis thaliana responded to HFCA applied from 7 to 11 d and from 25 to 29 d after germination in the wild-type plant (Enkheim ecotype) and the late flowering mutant (fb mutant), respectively. These results suggest that the construction of the system of auxin polar transport and its normal activities are essential for the differentiation and the formation of floral meristem in the early growth stage of Arabidopsis thaliana.  相似文献   

14.
In young cucumber seedlings, the peg is a polar out-growth of tissue that functions by snagging the seed coat, thereby freeing the cotyledons. Previous studies have indicated that peg formation is gravity dependent. In this study we analyzed peg formation in cucumber seedlings (Cucumis sativus L. cv Burpee Hybrid II) grown under conditions of normal gravity, microgravity, and simulated microgravity (clinostat rotation). Seeds were germinated on the ground, in clinostats and on board the space shuttle (STS 95) for 1-2 days, frozen and subsequently examined for their stage of development, degree of hook formation, number of pegs formed, and peg morphology. The frequency of peg formation in space grown seedlings was found to be nearly identical to that of clinostat grown seedlings and to differ from that of seedlings germinated under normal gravity only in a minority of cases; approximately 6% of the seedlings formed two pegs and nearly 2% of the seedlings lacked pegs, whereas such abnormalities did not occur in ground controls. The degree of hook formation was found to be less pronounced for space grown seedlings, compared to clinostat grown seedlings, indicating a greater degree of decoupling between peg formation and hook formation in space. Nonetheless, in all seedlings having single pegs and a hook, the peg was found to be positioned correctly on the inside of the hook, showing that there is coordinate development even in microgravity environments. Peg morphologies were altered in space grown samples, with the pegs having a blunt appearance and many pegs showing alterations in expansion, with the peg extending out over the edges of the seed coat and downwards. These phenotypes were not observed in clinostat or ground grown seedlings.  相似文献   

15.
Relationships between the activity of auxin polar transport and flower formation were studied using several flower mutants ofArabidopsis thaliana. The activity of auxin polar transport in the upper portion of inflorescence axis of wildtype plants ofArabidopsis thaliana was significantly lower than that of the basal part. The activities of auxin polar transport in the upper portion of inflorescence axes ofap1 andclv1 mutants were significantly higher than that of wild-type plant. However, those of other flower mutants tested,ap3-1, ag, pi, Fl-40, Fl-54, Fl-89 andpin-formed, were extremely low as compared with that of wild one. We got some evidence that the reduction of the activity of auxin polar transport is concerned with the growth and development of plants. We could mimic it by the removal of all flowers and pods including mature or immature seeds. Moreover, artificial pollination inap3-1 andpi mutants, in which no seeds are found naturally, resulted in the partial recovery of the activity of auxin polar transport in inflorescence axis. Considering these results in this study together with the fact that inhibitors of auxin polar transport generated almost same disruptions ofpin-formed orpinoid mutants which normally had no flowers in inflorescence axis (Okadaet al. 1991, Uedaet al. 1992, Bennettet al. 1995), the systern of auxin polar transport and its activity in inflorescence axis seems to be essential for the development of flower bud in early stage ofArabidopsis thaliana, and the activity of auxin polar transport is also regulated by the formation of flowers and seeds in inflorescence axis.  相似文献   

16.
The living and working environments of spacecraft become progressively contaminated by a number of microorganisms. A large number of microorganisms, including pathogenic microorganisms, some of which are fungi, have been found in the cabins of space stations. However, it is not known how the characteristics of microorganisms change in the space environment. To predict how a microgravity environment might affect fungi, and thus how their characteristics could change on board spacecraft, strains of the pathogenic fungi Aspergillus niger and Candida albicans were subjected to on-ground tests in a simulated microgravity environment produced by a three-dimensional (3D) clinostat. These fungi were incubated and cultured in a 3D clinostat in a simulated microgravity environment. No positive or negative differences in morphology, asexual reproductive capability, or susceptibility to antifungal agents were observed in cultures grown under simulated microgravity compared to those grown in normal earth gravity (1 G). These results strongly suggest that a microgravity environment, such as that on board spacecraft, allows growth of potentially pathogenic fungi that can contaminate the living environment for astronauts in spacecraft in the same way as they contaminate residential areas on earth. They also suggest that these organisms pose a similar risk of opportunistic infections or allergies in astronauts as they do in people with compromised immunity on the ground and that treatment of fungal infections in space could be the same as on earth.  相似文献   

17.
The present study focused on the effects of simulated microgravity on the human follicular thyroid carcinoma cell line ML-1. Cultured on a three-dimensional clinostat ML- 1 cells formed three-dimensional multicellular tumor spheroids (MCTS: 0.3 +/= 0.01mm in diameter). Furthermore, ML-1 cells grown on the clinostat showed elevated amounts of the apoptosis-associated Fas protein, of p53 and of bax, but reduced quantities of bcl-2. In addition, signs of apoptosis as assessed by TdT-mediated DUTP digoxigenin nick end labeling, DAPI staining, DNA laddering and 85-kDa apoptosis-related DNA fragments became detectable. The latter ones resulted from enhanced 116-kDa poly(ADP-ribose)polymerase activity. Electron microscopy revealed all morphological signs of apoptosis. Caspase 3 was clearly upregulated. In conclusion, our experiments show that conditions of simulated microgravity induce early programmed cell death and use different pathways of apoptosis.  相似文献   

18.
In young cucumber seedlings, the peg is a polar outgrowth of tissue that functions by snagging the seed coat, thereby freeing the cotyledons. The development of the peg is thought to be gravity-dependent and has become a model system for plant-gravity response. Peg development requires rapid cell expansion, a process thought to be catalyzed by α -expansins, and thus was a good system to identify expansins that were regulated by gravity. This study identified 7 new α -expansin cDNAs from cucumber seedlings ( Cucumis sativus L. cv Burpee Hybrid II) and examined their expression patterns. Two α -expansins ( CsExp3 and CsExp4 ) were more highly expressed in the peg and the root. Earlier reports stated that pegs tend not to form in the absence of gravity, so the expression levels were compared in the pegs of seedlings grown in space (STS-95), on a clinostat, and on earth (1 g ). Pegs were observed to form at high frequency on clinostat and space-grown seedlings, yet on clinostats there was more than a 4-fold reduction in the expression of CsExp3 in the pegs of seedlings grown on clinostats vs. those grown at 1 g , while the CsExp4 gene appeared to be turned off (below detection limits). There were no detectable differences in expansin gene expression levels for the pegs of seedlings grown in space or in the orbiter environmental simulator (OES) (1 g ) at NASA. The microgravity environment did not affect the expression of CsExp3 or CsExp4 , and the clinostat did not simulate the microgravity environment well.  相似文献   

19.
The development of a hook-like structure at the apical part of the soil-emerging organs has fascinated botanists for centuries, but how it is initiated remains unclear. Here, we demonstrate with high-throughput infrared imaging and 2-D clinostat treatment that, when gravity-induced root bending is absent, apical hook formation still takes place. In such scenarios, hook formation begins with a de novo growth asymmetry at the apical part of a straightly elongating hypocotyl. Remarkably, such de novo asymmetric growth, but not the following hook enlargement, precedes the establishment of a detectable auxin response asymmetry, and is largely independent of auxin biosynthesis, transport and signaling. Moreover, we found that functional cortical microtubule array is essential for the following enlargement of hook curvature. When microtubule array was disrupted by oryzalin, the polar localization of PIN proteins and the formation of an auxin maximum became impaired at the to-be-hook region. Taken together, we propose a more comprehensive model for apical hook initiation, in which the microtubule-dependent polar localization of PINs may mediate the instruction of growth asymmetry that is either stochastically taking place, induced by gravitropic response, or both, to generate a significant auxin gradient that drives the full development of the apical hook.  相似文献   

20.
Inhibition of Polar Auxin Transport by Ethylene   总被引:20,自引:13,他引:7       下载免费PDF全文
Applied ethylene influences the growth of etiolated pea stem sections cut from untreated plants, but has no effect on (14)C-indoleacetic acid uptake, polar transport or destruction. However, the capacity of the polar auxin transport system is markedly reduced in sections cut from plants grown in ethylene, while the velocity of auxin transport is unchanged under these conditions. Inhibition of the polar transport system by ethylene could underlie certain responses in which the gas produces symptoms of auxin deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号