首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Germination of nondormant seeds of Manfreda brachystachya (Agavaceae) was analyzed at temperatures ranging from 11–35°C. Maximum germination (95%) occurred at 25°C. An exponential sigmoid relationship was found between time and cumulative germination. Germination rate for every subpopulation (10–90% germination) was estimated by means of a normal distribution analysis. The kurtosis indicated die amplitude of the range of temperatures where the highest germination rates were concentrated, and the skew indicated sharply inhibitory temperatures in the range of temperatures used. Based on analysis of the normal distribution models for each subpopulation, we calculated a theoretical function which described germination rate over the temperature range considered: F(T,χ) = A × exp[−B(C−1)2], where A is the function that describes germination rate for each subpopulation (characterized by the percentage [χ] at optimal temperature); B is a shape parameter, 1/(σG2); and C is the ratio between each germination temperature (T) and the optimal germination temperature. The Gaussian curves were used to calculate thermal time, and base and ceiling temperatures. Germination thermal time ranged from 1 333 to 2 373°C h, and base and ceiling temperatures were 10.44 ± 0.7°C and 39.54 ± 0.7°C, respectively. There was a linear relationship between thermal time and cumulative percentage of germination of the subpopulations. Based on fitted curves for each subpopulation, the use of a general model for all the subpopulations has been proven: F8 = A × exp[−5.9437(C−1)2], where changes in the curves for each subpopulation depended on temperature only.  相似文献   

2.
Abstract:  In laboratory bioassays, the efficacy of the entomopathogenic fungus Beauveria bassiana against the spruce bark beetle, Ips typographus , was tested under various conditions. Four of the tested isolates and the commercial product Boverol® caused 99–100% mortality when tested at a concentration of 1.0 × 107 conidia/ml at 25°C. Using B. bassiana isolate 138 at a concentration of 1.0 × 106, the median survival time (MST) was 6.1 d and significantly longer compared with the MST of 4.2 and 4.0 d at 1.0 × 107 and 1.0 × 108 conidia/ml, respectively. In the next experiment, the beetles were maintained on spruce bark, filter paper or artificial diet during the bioassay with Boverol®, and significant differences in the MST of 3.6, 2.5 and 5.3 d, respectively, were noticed. The experiment with Boverol® at different temperatures showed that the beetles lived significantly longer at 15°C (MST 8.7 d) than at 20, 25, 30 and 35°C. At 25°C, the beetles died most rapidly (MST 3.5 d). At different relative humidities (RH) of 40, 70 and 100%, nearly all beetles were dead after treatment with a suspension of Boverol® at 1.0 × 107 conidia/ml. At 40% RH, 49% of the untreated beetles died after 7 d. The best effects were achieved with the following bioassay: beetles were fed for three days on artificial diet, then dipped into a solution of 1.0 × 107 conidia/ml and transferred on a piece of spruce bark in Petri dishes at 25°C and 70% RH.  相似文献   

3.
Survival of Vibrio parahaemolyticus was determined in oyster meat homogenates at various temperatures. (4°C, 0°C, -18°C and -24°C) and bacterial levels (102, 104, 105 and 107 ml-1). In all cases, the numbers of V. parahaemolyticus were a logarithmic function of log time. This study indicates that high numbers of V. parahaemolyticus can be inactivated at low temperatures. The time of total inactivation depends on the initial number of micro-organisms and incubation temperature. It is possible to use this information to determine the storage time necessary to reduce V. parahaemolyticus hazards in fish.  相似文献   

4.
Spores of psychrotrophic (able to grow at 5°C) aerobic sporeformers occurred in soil in high numbers (2 × 103-5 × 106/g), whereas psychrophilic (able to grow at 0°C) spores were present at significantly lower levels (500–105/g). Psychrotrophic spores were absent in herbs and spices: in pasteurized meals prepared industrially their numbers varied from <10 to 1000/g. For spores harvested from Trypticase Soy Agar (TSA), the heat resistance of the cold-tolerant sporeformers was low with D 90°C-values from 1–11 min. The recovery of heated psychrophilic spores on this medium at 5°C was equal to their recovery at 20°C. However, the recovery of heated psychrotrophic spores was lower at 5°C than at 20°C, whereas unheated spores gave the same counts at both temperatures. The heat resistance of naturally occurring spores of cold-tolerant sporeformers washed from soil was comparable with the resistance of spores formed on TSA.  相似文献   

5.
Peat from three sources was dried, milled and packed separately in polyethylene bags and sterilized by irradiation. The carrier was impregnated with broth cultures of either Rhizobium leguminosarum bv. trifolii strain WU95, Bradyrhizobium japonicum strain CB1809 or B. lupini strain WU425 and sterile water to provide five moisture potentials in the range > - 1 × 104 - 1 × 106 Pa. The packets were stored at 26°C under conditions which restricted moisture loss. Numbers of root nodule bacteria were counted at intervals up to 12 weeks. No single moisture potential was optimum for all strains in all carriers because of a significant ( P < 0.05) interaction between moisture potential × strain × carrier × time. Where direct comparisons could be made, all strains survived best at - 1 × 104 and/or −3.2 × 104 Pa. Seeds of Trifolium subterraneum and polypropylene beads (used to avoid seed coat toxicity), were inoculated with WU95 prepared in two sources of peat and at each of the above moisture potentials and stored at 15°C. Seed coat toxicity significantly effected the log death rate ( k ) of WU95 on subterraneum clover seed for the period 0–0.25 d ( k 1.796) compared with k - 0.399 for polypropylene beads. In the first 24 h moisture did not affect survival but by 28 d rhizobia grown in Badenoch peat survived best at −3.2 × 104 Pa. In Millicent peat, survival was equally as good at −3.2 × 104 and −1 × 104 Pa.  相似文献   

6.
Membrane-bound [NiFe]-hydrogenase from Hydrogenophaga sp. AH-24 was purified to homogeneity. The molecular weight was estimated as 100±10 kDa, consisting of two different subunits (62 and 37 kDa). The optimal pH values for H2 oxidation and evolution were 8.0 and 4.0, respectively, and the activity ratio (H2 oxidation/H2 evolution) was 1.61 × 102 at pH 7.0. The optimal temperature was 75 °C. The enzyme was quite stable under air atmosphere (the half-life of activity was c . 48 h at 4 °C), which should be important to function in the aerobic habitat of the strain. The enzyme showed high thermal stability under anaerobic conditions, which retained full activity for over 5 h at 50 °C. The activity increased up to 2.5-fold during incubation at 50 °C under H2. Using methylene blue as an electron acceptor, the kinetic constants of the purified membrane-bound homogenase (MBH) were V max=336 U mg−1, k cat=560 s−1, and k cat/ K m=2.24 × 107 M−1 s−1. The MBH exhibited prominent electron paramagnetic resonance signals originating from [3Fe–4S]+ and [4Fe–4S]+ clusters. On the other hand, signals originating from Ni of the active center were very weak, as observed in other oxygen-stable hydrogenases from aerobic H2-oxidizing bacteria. This is the first report of catalytic and biochemical characterization of the respiratory MBH from Hydrogenophaga .  相似文献   

7.
1. One temperature shift from 20 to 30°C in darkness induces 30–40% germination in Rumex obtusifolius seeds. The same germination percentages are found with heat treatment varying between 1 and 6h duration, indicating that the total heat sum of the temperature shift is not important.
2. Germination is greatly enhanced by three consecutive heat shifts of 1h at 30°C separated by 1h periods at 20°C.
3. The seeds are activated to a small extent after a slow warming (+2°Ch–1) from 20 to 30°C, followed by incubation for 1h at 30°C. Germination is much higher after rapid heating (+10°Ch–1) to 30°C, followed by 1h incubation at this temperature. Repeated fast heating treatments on four consecutive days enhances germination. Moderately rapid heatings (+3·3°Ch–1) give intermediate results.
4. The rate of cooling does not influence the germination percentage. Cooling alone cannot induce germination.
5. Heating alone from 15 to 25°C without cooling also activates germination. In this temperature range the seeds are more activated by rapid warming than by slow warming.
6. The ecological relevance of the response to different warming rate is discussed. The insensitivity of seeds to a slow warming might keep deeply buried seeds in a dormant stage.  相似文献   

8.
Abstract An examination of samples obtained from a commercial fish smoker, using seawater agar with incubation at 4°, 15° and 37°C for up to 28 days, revealed the presence of large bacterial populations in smoked fish. However, initially only low bacterial numbers, i.e., 2 × 103/g, were present in the muscle of fresh, whole haddock ( Melanogrammus aeglefinus ). With filleting, there was a sudden increase in numbers to 9.2 × 105/g. Yet immediately after smoking, the bacterial populations decreased (5 × 105/g), followed by a gradual increase with storage (e.g., 2 × 106/g after 24 h). Representative colonies were presumptively identified as Acinetobacter, Alcaligenes , coryneforms, Pseudomonas and Vibrio spp.  相似文献   

9.
Nonanoic acid, which inhibits germination in several seeds, enhanced ion efflux from embryonic axes of Cicer arietinum L., especially at temperatures above 25°C. Other short chain fatty acids had little effect on germination and ion leakage. Nonanoic acid also decreased uptake of 86Rb+ and 22Na+ and increased efflux of both isotopes from the embryonic axes into the incubation solution. Fusicoccin, which stimulates early germination in C. arietinum , counteracted the effects of nonanoic acid at both 25 and 30°C. These results suggest that nonanoic acid affects the integrity of plasmalemma and other membrane systems. Nonanoic acid thus inhibits cell elongation during early germination by disturbing ion exchange and inhibiting water uptake.  相似文献   

10.
The effects of environmental factors on infection of the entomopathogenic fungus, Nomuraea rileyi , isolated from the corn earworm, Helicoverpa armigera , in Taiwan, to its host insect were studied in the laboratory. The fungus caused higher larval mortality at 20°C than at 30°C when 5 × 106 conidia/ml were sprayed on the fourth instar. However, mortality of the fifth instar injected with 1 × 103 conidia/larva was not significantly different when the inoculated larvae were incubated from 15 to 30°C. The fungal development in inoculated larvae was best at 20 and 25°C after shifting from 20°C to either lower or higher temperatures. The germination rate was higher at 20 and 25°C than at 30 or 35°C. Conidial germination was better on the wash-off of insect cuticle than on Sabouraud maltose agar with yeast extract. Sporulation on chill-dried cadavers was maximal at 95 or 100% relative humidity than at lower levels of relative humidity. The time required for sporulation was 2 days less at 100% than at 95% relative humidity. Although photoperiod did not affect fifth instar mortality caused by N. rileyi , the median lethal time (LT50) values were shorter upon incubating under light than in darkness. Incubation of infected cadavers under 12 or 24 h light resulted in 20-fold more conidial production than under full darkness. Therefore, illumination is necessary for development of this isolate on insect cadavers.  相似文献   

11.
SUMMARY: Experiments are described in which minced chicken meat, packed anaerobically, was irradiated at room temperature and in the frozen state with a wide range of doses of 4 MeV cathode rays. Sterility was achieved in 14 out of 15 samples which had received 2 × 106 rads or more. Doses of 0·5 and 1·0 × 106 rads allowed survival of a few bacteria/g, usually spore formers. Bacterial counts indicated an approximately logarithmic decrease in numbers at lower doses, while freezing reduced the bactericidal effect.
The storage life at 5° was prolonged only slightly by doses of 5 × 104 and 10 × 104 rads, and highly variable results were obtained with 17·5 × 104 rads. A dose of 25 × 104 rads, however, increased the storage life very considerably. The types of bacteria present initially, and after irradiation with low doses and storage at 5°, were studied. After storage for 12 days or more various types of nonsporing Gram-positive rods were predominant in almost all samples, both control and irradiated. Streptococci were also important where irradiation with 17·5 × 104 and 25 × 104 rads was followed by long storage.  相似文献   

12.
Weekly estimates of numbers of Pseudocercosporella herpotrichoides conidia on naturally infected wheat straw, made from February to July 1982, showed there were most conidia (8.1 × 106 per straw) in February and least (1.9 × 104 per straw) at the end of June. The viability of these spores remained high throughout this period, with an average of 85 % germination after 24 h.
After removal of spores produced in the field, straws were incubated at 5, 10, 15, 20 or 25°C and subsequent sporulation assessed after 3 or 5 weeks. The optimum temperature for spore production was 5°C and very few spores were produced at 25°C. There was no difference in viability between spores produced at different temperatures.
Wheat seedlings placed amongst infected straw collected and retained spores on the upper and lower surfaces of all leaf blades and on outer leaf sheaths. Both naturally dispersed spores and spores sprayed on to plants were not removed by subsequent rainfall.
When wheat seedlings were inoculated between the coleoptile and outer leaf sheath with different numbers of P. herpotrichoides spores, lesion development was most rapid in seedlings inoculated with the greatest numbers of spores. However, after incubation for 12 weeks visible lesions were present on all plants inoculated with > c. 10 spores.  相似文献   

13.
Abstract. Germination responses of redroot pigweed ( Amaranthus retroflexus L.) seeds to ethylene were determined at 25, 30, 35, or 40° C after preincubation at various temperatures (15–35° C) for different periods (0.5–32 d). After 7 d preincubation, seeds showed a log-linear germination response to ethylene concentration in most of the temperature treatments. Sensitivity to ethylene increased with longer preincubation; response thresholds of 0.03−0.09 cm3 m−3 were observed after 32 d, compared to 0.18−1.6 cm3 m−3 after 7 d of preincubation. Preincubation at 15 or 20° C generally enhanced germinability, whereas 25 or 30° C produced secondary dormancy, which was readily broken with ethylene. Temperature during preincubation also significantly influenced the slope of the dose-response curve. The responses of preincubated redroot pigweed seeds to ethylene suggested that, in the field, seeds would probably not lose their sensitivity to this gas during prolonged burial in soil.  相似文献   

14.
Six cultivars of spring barley ( Hordeum vulgare L. cvs Salve, Nümberg II, Bomi, Risø 1508, Mona and Sv 73 608) were grown in water culture for three weeks with various combinations of mineral supply and differential roots/shoot temperatures during the growth period. Most important for growth and accumulation of N, K+, Ca2+ and Mg2+ was the mineral supply, followed by the root temperature and the choice of cultivar. Treatments with low mineral supply or low root temperature induced a uniform reduction in growth and accumulation of the ions studied. The effects of low mineral supply and low root temperature on growth and N accumulation was additive, which indicates that these factors exert their influence independently of each other.
Roots grown at 10°C were smaller and Rb+(86Rb) influx was higher than in roots grown at 20°C. It is suggested that the control of Rb+(86Rb) influx is affected by the root temperature and the age of the plants. The higher 86Rb+ (86Rb) influx into the low temperature roots could not compensate for the smaller root size. However, the lower total mineral accumulation made up for the needs of the smaller plants and cannot explain the reduction in growth.  相似文献   

15.
Triacontanol at concentrations from 2.3 × 10-9 M to 2.3 × 10-7 M did not affect the germination of lettuce ( Lactuca sativa L., cv. Grand Rapids) seeds in darkness, stimulated by light at 25°C or by benzyladenine at 31°C. Stimulation of seed germination by gibberellin A3 (10-5 M ) was significantly inhibited by triacontanol; the most effective concentration was 4.6 × 10-8 M. Pulse experiments demonstrated that triacontanol was ineffective when applied later than gibberellin, whereas an inverse sequence of treatment caused an inhibition comparable to that resulting from continuous treatment of seeds with both factors. Possible interaction of triacontanol with gibberellin receptor is discussed.  相似文献   

16.
Abstract A method was developed for direct extraction, purification and amplification of DNA from forest soil. Eighty-two % of the DNA in Pseudomonas aeruginosa UG2Lr introduced into soil was recovered. The detection limit for the strain was approximately 800 cfu g−1 of dry soil based on the polymerase chain reaction (PCR). Survival of κ-carrageenan-encapsulated and unencapsulated UG2Lr was monitored by antibiotic selective and bioluminescence-based nonselective plating and PCR-amplification of a tnsA fragment. After freeze-thaw treatment of soil samples, the unencapsulated UG2Lr declined from an initial population density of 1 × 109 cfu g−1 of dry soil to below the detection threshold of both selective (14 cfu g−1 of dry soil) and nonselective (1 × 103 cfu g−1 of dry soil) plating. However, presence of nonculturable UG2Lr cells in the soil was revealed by PCR and resuscitation of the bacteria. Population density of the encapsulated UG2Lr increased from 2.7 × 106 to 2.9 × 108 cfu g−1 of dry soil after a 3-week incubation at 22°C and declined to 6.3 × 106 cfu g−1 of dry soil after the freeze-thaw treatment.  相似文献   

17.
Within the temperature range 10°C-20°C, temperature had no effect on the mean cell size of C. campylum. Population density also exerted no noticeable effect on mean cell volume. The quantity of energy consumed, however, had a marked effect. In experiments where less than 8000 μJ were consumed/individual/24 h, the mean cell volume decreased. Above this level of energy consumption mean cell volume maintained a constant level.
The maximum values obtained for cell sizes were 160–190 × 103μm3 and the minimum values 40–100 × 103μm3. A response to decreased food concentration and hence decreased energy consumption was obtained within the 24 h experimental period, indicating a rapid response to changed environment by the ciliates.  相似文献   

18.
SYNOPSIS. Euplotes vannus , a hypotrich ciliate. grows well over broad ranges of temperature and salinity. It requires higher densities of food (> 1 × 104 cells/ml) for rapid reproduction than do the other herbivores, the foraminiferan Al-logromia laticollaris (> 1 × 102 cells/ml), and the nematode Chromadorina germanica (∼ 1 × 103 cells/ml), to which it was compared. If food levels were initially very high (∼ 1 × 108 cells/ml) the ciliates reproduced rapidly and consumed the algae faster than it could reproduce. Some balance between the algae and the ciliates was achieved at initial algal concentrations of ∼ 1 × 105 cells/ml. In microcosm experiments at 25 C with equal numbers of C. germanica and A. laticollaris. E. vannus proved to be a very poor competitor; reaching only 20% of control levels when grow with C. germanica and only 13% when cultured with A. laticollaris . It was a better competitor in 2-species microcosms, at lower temperatures, and when its ratio to the other species was initially higher.
The experimental evidence suggests that E. vannus is best adapted to being a migrating initial colonizer of fresh algal blooms.  相似文献   

19.
Aim:  Bioaugumentation of low temperature biogas production was attempted by addition of cold-adapted Clostridium and a methanogen.
Methods and Results:  A psychrotrophic xylanolytic acetogenic strain Clostridium sp. PXYL1 growing optimally at 20°C and pH 5·3 and a Methanosarcina strain, PMET1, growing optimally on acetate and producing methane at 15°C were isolated from a cattle manure digester. Anaerobic conversion of xylose at 15°C with the coculture of the two strains was performed, and batch culture methane production characteristics indicated that methanogenesis occurred via acetate through 'acetoclastic' pathway. Stimulation studies were also undertaken to evaluate the effect of exogenous addition of the coculture on biogas yields at 15°C. Addition of 3 ml of PXYL1 at the rate of 12 × 102 CFU ml−1 increased the biogas 1·7-fold (33 l per kg cowdung) when compared to control (19·3 l per kg cowdung) as well as increased the volatile fatty acid (VFA) levels to 3210 mg l−1 when compared to 1140 mg l−1 in controls. Exogenous of addition of 10 ml PMET1 inoculum at the rate of 6·8 ± 102 CFU ml−1 in addition to PXYL1 served to further improve the biogas yields to 46 l kg−1 as well as significantly brought down the VFA levels to 1350 mg l−1.
Conclusions:  Our results suggest that the rate-limiting methanogenic step at low temperatures could be overcome and that biogas yields improved by manipulating the population of the acetoclastic methanogens.
Significance and Impact of the Study:  Stimulation of biomethanation at low temperature by coculture.  相似文献   

20.
Abstract: The Blue Lagoon in Iceland is a shallow geothermal lake with average temperatures of 37°C, pH 7.5 and about 2.5% salinity. It was formed in 1976 from the effluents of the Svartsengi geothermal power plant and is saturated with silica which constantly precipitates in the lake. It has been colonized by a few types of specialized microorganisms which seem to proliferate in this unusual ecosystem. The average bacterial colony count in the lake was 1.3 × 105 ml−1 on plate count agar made with 50% Blue Lagoon fluid but 2.6 × 106 ml−1 when determined with the MPN method. A total of 99 isolates were purified and characterized by 54 phenotypic tests and then grouped using Numerical Taxonomy. At similarity values of 80%, one major cluster was formed containing 85% of the isolates. Four representative strains from this cluster were further characterized and all shown to be Gram-negative, obligately aerobic, non-motile rods. They were oxidase positive, catalase negative and grew optimally at 45°C and in 3.5% NaCl with doubling time of about 80 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号