首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Six cultivars of barley ( Hordeum vulgare L., cvs Salve, Nürnberg II, Bomi, Risø 1508, Mona and Sv 73 608) were exposed for three weeks to combinations of high and low mineral supply and differential root/shoot temperature. For all the parameters tested [fresh and dry weights, contents and levels of N, K+, Ca2+ and Mg2+, and influx of Rb+(86Rb)] the cultivar differences were influenced by the mineral supply, the root temperature and the age of the plants.
The cultivar differences in N nutrition of three-week-old plants could partly be attributed to variation in root size, uptake of N and in use-efficiency of the element. The cultivar variation in root-shoot partitioning of N was small, except when low mineral supply was combined with a low root temperature. Similarly, cultivar differences in contents of K+, Ca2+ and Mg2+ were influenced by variation in uptake, use-efficiency and root/shoot partitioning of the elements. Low root temperature increased cultivar variation in K+, Ca2+ and Mg2+ partitioning.
The modern cultivar Salve was compared with Nürnberg II, which is derived from a German land race. Nürnberg II performed better than Salve when low root temperature and restricted mineral supply were combined. Otherwise Salve grew better, partly due to a more efficient use of N.
Two high-lysine lines, Risø 1508 and Sv 73 608, were compared with their mother lines Bomi and Mona. The differences obtained revealed no general effect of the high-lysine genes on growth and mineral nutrition of up to three-week-old barley plants.  相似文献   

2.
The effects of switches between high and low nutrient supplies on growth and mineral nutrition of winter wheat ( Triticum aestivum L. cv. Martonvásári-8) were followed in four main developmental phases: tillering, shooting, heading and grain filling. Growth of the shoots was significantly affected by switches. Under low nutrient supply the life cycle was shortened. Root growth was only slightly affected by switches, but an early high nutrient supply followed by low nutrient supply gave an impetus for root development. In general, the growth data indicate that the nutrient status of the plants is determined by the nutrient level supplied during shooting. A high level of nutrients during shooting leads also to high vegetative growth, whereas the best grain yield was obtained by a high dose of nutrients during tillering followed by low nutrient conditions during the shooting stage and later. K+(86Rb) influx in the roots decreased with age. The potential for K+ (86Rb) influx was low in plants of high-salt status, but it became high in response to switching to low supply at shooting, whereas later switches had no influence on this function in high-salt plants. The highest K+(86Rb) influx was found in plants starting with high nutrient supply followed by low-salt conditions; this plant group was outstanding also with respect to its high grain yield.  相似文献   

3.
Passive fluxes of K+ (86Rb) into roots of sunflower ( Helianthus annuus L. cv. Uniflorus) were determined at low K+ concentration (0.1 and 1.0 mM K+) in the ambient solution. Metabolic uptake of K+ was inhibited by 10−4M 2,4-dinitrophenol (DNP). K+ (86Rb) fluxes were studied both continuously and by time differentiation of uptake. In high K+ roots passive uptake was directly proportional to the K+ concentration of the uptake solution, indicating free diffusion. This assumption was supported by the fact that passive Rb+ uptake was not affected by high K+ concentrations. In low K+ roots the passive uptake of K+ was higher than in high K+ roots. The increase was possibly due to carrier-mediated K+ transport. As K+ effluxes were quantitatively similar to influxes, it is suggested that passive K+ fluxes represent exchange diffusion without relation to net K+ transport.  相似文献   

4.
Two cultivars of wheat (Triticum aestivum L. cvs Kadett and WW 20299) were grown for 9 days with 20% relative increase in nutrient supply per day at pH 4.1. Aluminium at 50 μ M retarded the growth of roots more than that of shoots in both cultivars, thus decreasing the root/shoot ratio. The inhibition was largest in WW 20299. With long term Al treatment (9 days), Km for K+(86Rb) influx increased five times in both cultivars and Vmax decreased in WW 20299. Efflux of K+(86Rb) was little affected. When the roots were treated with aluminium for two days, only relative growth rate of roots was retarded, while growth of shoots was unaffected and influx of K+(86Rb) adjusted to the actual K+ demand of the plants. It is concluded that the effects of aluminium on K+ uptake in these wheat cultivars are not primary factors contributing to aluminium sensitivity. However, in soil with Al the demand for a comparatively high concentration of K+ to maintain an adequate K+ uptake rate, in combination with a slow growth rate of the roots, may secondarily lead to K+ deficiency in the plants.  相似文献   

5.
Plants of barley ( Hordeum vulgare L. cv. Salve) were grown with 6.5–35% relative increase of K+ supply per day (RKR) using a special computer-controlled culture unit. After a few days on the culture solution the plants adapted their relative growth rate (RGR) to the rate of nutrient supply. The roots of the plants remained in a low salt status irrespective of the rate of nutrient supply, whereas the concentration of K+ in shoots increased with RKR. Both Vmax and Km for K+(86Rb) influx increased with RKR. It is concluded that with a continuous and stable K+ stress, the K+ uptake system is adjusted to provide an effective K+ uptake at each given RKR. Allosteric regulation of K+ influx does not occur and efflux of K+ is very small.  相似文献   

6.
The effects of copper (CuCl2) on active and passive Rb+(86Rb+) influx in roots of winter wheat grown in water culture for 1 week were studied. External copper concentrations in the range of 10–500 μ M in the uptake nutrient solution reduced active Rb+ influx by 20–70%, while passive influx was unaffected (ca 10% of the Rb+ influx in the Cu-free solution). At external Rb+ concentrations of up to 1 m M , Cu exposure (50 μ M decreased Vmax to less than half and increased Km to twice the value of the control. Short Cu exposure reduced the K+ concentration in roots of low K+ status. Pretreatment for 5 min in 50 μ M CuCl2 prior to uptake experiments reduced Rb+ influx by 26%. After 60 min pretreatment with Cu, the corresponding reduction was 63%. Cu in the cultivation solution impeded growth, especially of the roots. The Cu concentration in the roots increased linearly with external Cu concentration (0–100 μ M ) while Cu concentration in the shoots was relatively unchanged. The K+ concentration in both roots and shoots decreased significantly with increased Cu in the cultivation solutions. Possible effects of Cu on membranes and ion transport mechanisms are discussed.  相似文献   

7.
When 1 m M spermidine or spermine was included in an absorption solution which contained 20 m M Na+ and 1 m M Rb+, Na+ influx into excised maize roots ( Zea mays L. cv. Golden Cross Bantam) was reduced. Rb+ influx was reduced in the presence of spermidine and uneffected in the presence of spermine when compared with control solutions. When 1 m M Ca2+ replaced the polyamines, Na+ influx was strongly reduced and Rb+ influx was promoted. Rb+ influx from 1 m M Rb+ solutions which did not contain Na+ was also promoted by 1 m M Ca2+, but was inhibited by 1 m M spermidine. This Ca2+ promotion of Rb+ influx could be reversed by 10 times greater concentration of spermidine in the absorption solution. H+ efflux from excised roots was inhibited by spermidine when compared with Ca2+ or control solutions, however, the plasma membrane ATPase was not inhibited by spermidine. It is concluded that external Ca2+ plays two separate roles in membrane function, only one of which can be substituted for by polyamines. The first role, maintenance of membrane integrity, can be substituted for by spermidine or spermine. The second function, maintenance of the Rb+ transport mechanism, is Ca2+ specific and cannot be substituted for by spermidine or spermine. The results of this study are discussed in terms of electrostatic interactions between the plasma membrane and the Ca2+ or polyamines.  相似文献   

8.
Four-week-old sunflower plants ( Helianthus annuus L. cv. Halcón), grown in different nutrient solutions, were used to study the effects of gibberellic acid (GA3) on K+ (Rb+) uptake by roots or transport to the shoot. Gibberellic acid application to the nutrient solution did not affect the exudation process of excised roots. When GA3 was sprayed on leaves 2 to 6 days before excising the roots, the rate of exudation and the K+ flux increased. When the exudation study was done keeping the roots in a nutrient solution in which Rb+ replaced K+, the GA3 effects were evident also on Rb+ uptake and transport. In intact plants, GA3 increased the Rb+ transported to the shoot but did not affect Rb+ accumulation in the root. It is suggested that these GA3 effects can be explained if it is assumed that GA3 acts on the transport of ions to the xylem vessels.  相似文献   

9.
Young sunflower plants ( Helianthus annuus L. cv. Halcón), grown in nutrient solution at two K+ levels (0.25 and 2.5 m M ) were used to study the effect of K+ content in the root on uptake and transport of K+ to the exuding stream of decapitated plants. Roots of plants grown in low K+ gave higher exudation flux, higher K+ concentration in exudate and higher K+ flux than high K+ roots. After 6 h of uptake the K+ flux in low K+ roots was about three times that in high K+ roots. When the roots were kept in a nutrient solution in which Rb+ replaced K+, low K+ roots exuded much more Rb+ than K+ after the first 2 h, whereas high K+ roots exuded about similar amounts of K+ and Rb+. In intact plants grown at three different K+ levels (0.1, 1.0 and 10.0 m M ), there was an inverse relationship between the K+ level in the nutrient solution and the Rb+ accumulated in the roots or transported to the shoot. The results suggest that the transport of ions from xylem parenchyma to stele apoplast may be controlled by ions coming down from the shoot in sieve tubes.  相似文献   

10.
Seedlings of spring wheat ( Triticum aestivum L. cv. Svenno) were cultivated at 20°C in continuous light or darkness with the roots in nutrient solutions for six days. The plants were starved for K+ during different periods of time to produce plants with various K+ status. In one cultivation light-grown plants were pretreated in darkness, and vice versa, before the uptake experiment. In all experiments, roots were put in a complete nutrient medium containing 2.0 m M K+ radiolabelled with 86Rb. The uptake time was varied (5, 60 or 120 min).
The K+ concentration in the roots, [K+]root, increased during the course of the uptake experiments, especially in light and at initially low [K+]root, At the same time K+ (86Rb) influx in the roots decreased. The simoidal relationship obtained between K+ (86Rb) influx and [K+]root was affected by these changes, and Hill plots gave various Hill coefficients, nH, depending on the duration of the uptake experiments. nH from three apparently straight line segments of the same plot, in different [K+]root - intervals, indicated a falling degree of interaction between the binding sites as [K+]root increased. For the dark-grown plants negative cooperativity could not be demonstrated.  相似文献   

11.
The validity of compartmental analysis of Rb+ efflux from roots of intact high-salt barley plants ( Hordeum vulgare L. cv. Salve) was examined. 86Rb+ was used as a tracer. Rb+ (1 m M ) was included together with 3 m M K+ in the growth medium, and steady-state conditions were assumed to prevail during the experiment. Three phases of efflux were revealed with half-times of 23 min, 109 min and 12 h, respectively; and the time span of the experiment had to be at least 20 h to make determination of the slow phase possible. We cannot state what compartments in the root the 3 different slopes represent. A comparison of slopes was made between the plots of In efflux vs time and In content vs time. In spite of correction for tracer transport from the roots to the shoot, the slopes for the slow phase did not agree unless up to 85% of the root content of Rb+ is assumed not to participate in efflux.  相似文献   

12.
Puccinellia tenuiflora is a useful monocotyledonous halophyte that might be used for improving salt tolerance of cereals. This current work has shown that P. tenuiflora has stronger selectivity for K+ over Na+ allowing it to maintain significantly lower tissue Na+ and higher K+ concentration than that of wheat under short- or long-term NaCl treatments. To assess the relative contribution of Na+ efflux and influx to net Na+ accumulation, unidirectional 22Na+ fluxes in roots were carried out. It was firstly found that unidirectional 22Na+ influx into root of P. tenuiflora was significantly lower (by 31–37%) than in wheat under 100 and 150 m m NaCl. P. tenuiflora had lower unidirectional Na+ efflux than wheat; the ratio of efflux to influx was similar between the two species. Leaf secretion of P. tenuiflora was also estimated, and found the loss of Na+ content from leaves to account for only 0.0006% of the whole plant Na+ content over 33 d of NaCl treatments. Therefore, it is proposed that neither unidirectional Na+ efflux of roots nor salt secretion by leaves, but restricting unidirectional Na+ influx into roots with a strong selectivity for K+ over Na+ seems likely to contribute to the salt tolerance of P. tenuiflora .  相似文献   

13.
Abstract. Rates of proton extrusion and potassium (86Rb) influx by intact roots of barley ( Hordeum vulgare cvs . Fergus, Conquest and Betzes) plants were simultaneously measured in short-term (15min) experiments. The nature and extent of apparent coupling between these ion fluxes was explored by manipulating conditions of temperature, pH and cation composition and concentration during flux determinations. In addition, the influence of salt status upon these fluxes was examined. At low K+ concentrations (0.01 to 1 mol m−3), H+ efflux and K+ influx were strongly correlated in both low- and high-K+ roots, although K+: H+ exchange stoichiometries were almost consistently greater than 2:1. At higher concentrations (1 to 5 mol m−3), H+ efflux was either reduced or remained unchanged while K+ influxes increased. In the presence of Na2SO4, rates of H+ extrusion demonstrated similar cation dependence, although below 10 mol m−3 Na2SO4, H+ fluxes were generally 50% lower than in equivalent concentrations of K2SO4. These observations are considered in the context of current hypotheses regarding the mechanisms of k+/H+ exchange.  相似文献   

14.
The effects of abscisic acid (ABA) on growth, uptake and translocation of potassium ions, K+,Mg2+-ATPase activity and transpiration were investigated in young wheat ( Triticum aestivum L. cv. Martonvásári-8) plants grown at different K+ supplies. Long-term treatment with ABA (10 μ M ) reduced growth in high-K+ plants, but had less effect under low-K+ conditions. K+(86Rb) uptake was inhibited by about 70 and 40% in low- and high-K+ plants, respectively. The stimulation by K+ of the Mg2+-ATPase activity in the root microsomal fraction was lost with ABA treatment. It is suggested that the inhibitory effect of ABA on K+ uptake may be related to this effects on the K+,Mg2+-ATPase. Translocation of K+ to the shoot was inhibited in low-K+ plants only, and it was not affected in high-K+ plants. In parallel to this, ABA treatment reduced transpiration by about 50% in low-K+ plants, whereas a much smaller effect was seen in high-K+ plants. These observations suggest that the regulation by ABA of the stomatal movements is strongly counteracted by high-K+ status.  相似文献   

15.
Abstract— Mouse brain slices were depleted of K+ by three 10-min incubations-in oxygenated HEPES-buffered medium lacking glucose and K+. Addition of K+ or Rb+ (or Cs+, to a smaller degree) with glucose, or with succinate, malate, and pyruvate (SMP) before incubation at 37°C with 14C-amino acids restored active low-affinity transport of d -Glu, α-aminoisobutyrate (AIB), GABA, Gly, His, Val, Leu, Lys, and Orn. Ouabain at 1–2μ m with Rb+ was more inhibitory with SMP than with glucose, suggesting that the glycoside may affect specific energy coupling to transport. Valinomycin, in contrast, showed no specificity of inhibition of amino acid uptake with glucose or SMP and K+ or Rb+. Cs+ partially restored amino acid uptake, but Li+ was less effective than Cs +. NaF at 10 m m with SMP + Rb+, or SMP + K+ did not inhibit amino acid uptake. Therefore, it was possible to dissociate glycolysis and Na+, K + -ATPase activity from amino acid transport. The ion replacements for K + that supported active amino acid transport indicate that the specificity of ions in possible ionic gradients for transport energetics should be reexamined.  相似文献   

16.
Uptake of Rb+ from a complete nutrient solution with 2.0 mM Rb+ was studied in roots of spring wheat seedlings ( Triticum aestivum L. cv. Svenno) with different K+ levels. The relationship between Rb+ uptake and concentration of K+ in the roots indicated a negative feedback mechanism operating through allosteric control. The Rb+ uptake process in root cells was divided into two steps: (1) binding of the ion in the free space, and (ii) transmembrane transport into the cytoplasm. Metabolic and non-metabolic components of uptake were separated by addition of the metabolic inhibitor 2,4-dinitrophenol (DNP) to the nutrient solution. It is suggested that metabolic Rb+ uptake requires energy in two uptake steps (for binding to the carrier entity in the free space and for transmembrane transport) or in one step only (for transmembrane transport), dependent on the K+ status of the roots. The change from metabolic to non-metabolic binding in the free space is accomplished by changing the conformational state of the carrier (slow/fast transitions). There may be a hysteretic effect on metabolic Rb+ uptake through a slow transition between carrier states. This is superimposed on the negative cooperativity, strengthening further cooperativity at intermediate K+ levels in the roots. Non-metabolic Rb+ uptake probably consists of two components, a carrier-mediated (facilitated diffusion) and a parallel diffusive component.  相似文献   

17.
Approximation of the total escape area of the xylem in an inbred line of tomato (Ly-copersicon escutentum Mill. cv. Tiny Tim) with help of the frequency distribution of xylem vessel radii provides the possibility to calculate realistic escape constant values from uptake experiments of several elements into tomato stem segments. Comparison of the lateral escape rates of 24Na+, 42K+, 86Rb+ and 134Cs+ indicate that Na+ escape is rate-limited by its uptake into a rather constant number of surrounding cells, regardless of changes in the total escape area of the xylem vessels. The escape of K+, Rb+ and Cs+ seems to be proportional to the surface area of the xylem vessels and their escape is apparently controlled by their transport across the cell walls of the transport channels. The calculated small values for the escape rate constants (apparent permeability of the xylem cell walls, ca 2–3 · 10−9 m s−7) are probably due to the presence of lignin in the xylem cell walls, the discrimination between ions as a result of differing affinities and selectivities and the presence of other solutes in the applied solution.  相似文献   

18.
The effects of pH on the growth and the K+ (86Rb) uptake and K+ content of excised rice ( Oryza sativa L. cv. Dunghan Shali) and wheat ( Triticum aestivum L. cv. GK Szeged) roots were investigated. Rice roots responded to H+ stress with an increased K+(86Rb) influx and a decreased K+ content, suggesting an increased exchange between the cytoplasmic K+ pool and the external medium. Under the same experimental conditions wheat did not show any anomalous K+(86Rb) influx. Growth of both rice and wheat was relatively insensitive to pH between 4 to 10.  相似文献   

19.
Vitamin D3 at low concentration (10−9 M) inhibited the growth of Phaseolus vulgaris L. (cv. Contrancha) roots in vitro as measured by elongation (14 h) and [3H]-leucine incorporation into protein (2 h), and increased their labelling with 45Ca2+ (2 h). Cycloheximide and puromycin (50 u.M) blocked vitamin D3 stimulation of root 45Ca2+ labelling, indicating that it is mediated by de novo protein synthesis. The calcium ionophore X-537A (10−5JW) induced similar changes both in root elongation and 45Ca2+ uptake (14 h). This may indicate that the inhibitory effects of the sterol on root growth are mediated by changes in Ca2+ fluxes. However, this interpretation should be further strengthened by additional studies as the ionophore may have acted on root growth, affecting physiological processes other than Ca2+ transport.  相似文献   

20.
The uptake of Cd2+ by excised roots of Tamarix aphylla (L.) Karst, was investigated using roots of hydroponically grown plants. The concentration isotherm of Cd2+ uptake approached saturation with a single phase hyperbola. The time course of Cd2+ absorption was generally hyperbolic, with an apparent linear section between 2 and 30 min. The temperature response varied among different temperature ranges: a Q10 of approximately 1.9 was found between 10 and 20°C, but at higher and lower temperatures Q10 values were only 1–1.3. It is concluded that Cd2+ uptake by the roots of T. aphylla at moderate temperatures is mediated by a metabolic process, combined with a passive influx component that becomes dominant at higher and lower temperatures. The distribution of the absorption sites for Cd2+ and for Fe2+ along the roots of T. aphylla was also investigated. Cadmium uptake showed no apparent pattern, whereas a distinct pattern of uptake was observed for Fe2+, with the highest rates at the root tip. Iron absorption was stimulated in the presence of nutrients, whereas that of Cd2+ was inhibited. Adsorption and absorption of Cd2+ were strongly inhibited by Ca2+ and by Mg2+, but were unaffected by Fe2+. Monovalent ions (Na+, K+, Li+) also reduced Cd2+ absorption, but to a lesser extent than Ca2+ and Mg2+. Uptake of Cd+ was reduced at lower pH of the medium. The importance of interfering cations for Cd2+ tolerance of T. aphylla is emphasized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号