首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Washed cell suspensions of the facultative methylotroph strain IMB-1 grown on methyl bromide (MeBr) were able to consume methyl chloride (MeCl) and methyl iodide (MeI) as well as MeBr. Consumption of >100 microM MeBr by cells grown on glucose, acetate, or monomethylamine required induction. Induction was inhibited by chloramphenicol. However, cells had a constitutive ability to consume low concentrations (<20 nM) of MeBr. Glucose-grown cells were able to readily oxidize [(14)C]formaldehyde to (14)CO(2) but had only a small capacity for oxidation of [(14)C]methanol. Preincubation of cells with MeBr did not affect either activity, but MeBr-induced cells had a greater capacity for [(14)C]MeBr oxidation than did cells without preincubation. Consumption of MeBr was inhibited by MeI, and MeCl consumption was inhibited by MeBr. No inhibition of MeBr consumption occurred with methyl fluoride, propyl iodide, dibromomethane, dichloromethane, or difluoromethane, and in addition cells did not oxidize any of these compounds. Cells displayed Michaelis-Menten kinetics for the various methyl halides, with apparent K(s) values of 190, 280, and 6,100 nM for MeBr, MeI, and MeCl, respectively. These results suggest the presence of a single oxidation enzyme system specific for methyl halides (other than methyl fluoride) which runs through formaldehyde to CO(2). The ease of induction of methyl halide oxidation in strain IMB-1 should facilitate its mass culture for the purpose of reducing MeBr emissions to the atmosphere from fumigated soils.  相似文献   

2.
Benzene Oxidation Coupled to Sulfate Reduction   总被引:16,自引:5,他引:11       下载免费PDF全文
Highly reduced sediments from San Diego Bay, Calif., that were incubated under strictly anaerobic conditions metabolized benzene within 55 days when they were exposed initially to 1 (mu)M benzene. The rate of benzene metabolism increased as benzene was added back to the benzene-adapted sediments. When a [(sup14)C]benzene tracer was included with the benzene added to benzene-adapted sediments, 92% of the added radioactivity was recovered as (sup14)CO(inf2). Molybdate, an inhibitor of sulfate reduction, inhibited benzene uptake and production of (sup14)CO(inf2) from [(sup14)C]benzene. Benzene metabolism stopped when the sediments became sulfate depleted, and benzene uptake resumed when sulfate was added again. The stoichiometry of benzene uptake and sulfate reduction was consistent with the hypothesis that sulfate was the principal electron acceptor for benzene oxidation. Isotope trapping experiments performed with [(sup14)C]benzene revealed that there was no production of such potential extracellular intermediates of benzene oxidation as phenol, benzoate, p-hydroxybenzoate, cyclohexane, catechol, and acetate. The results demonstrate that benzene can be oxidized in the absence of O(inf2), with sulfate serving as the electron acceptor, and suggest that some sulfate reducers are capable of completely oxidizing benzene to carbon dioxide without the production of extracellular intermediates. Although anaerobic benzene oxidation coupled to chelated Fe(III) has been documented previously, the study reported here provides the first example of a natural sediment compound that can serve as an electron acceptor for anaerobic benzene oxidation.  相似文献   

3.
The white rot fungus Pleurotus ostreatus was able to mineralize to (sup14)CO(inf2) 7.0% of [(sup14)C]catechol, 3.0% of [(sup14)C]phenanthrene, 0.4% of [(sup14)C]pyrene, and 0.19% of [(sup14)C]benzo[a]pyrene by day 11 of incubation. It also mineralized [(sup14)C]anthracene (0.6%) much more slowly (35 days) and [(sup14)C]fluorene (0.19%) within 15 days. P. ostreatus did not mineralize fluoranthene. The activities of the enzymes considered to be part of the ligninolytic system, laccase and manganese-inhibited peroxidase, were observed during fungal growth in the presence of the various polycyclic aromatic hydrocarbons. Although activity of both enzymes was observed, no distinct correlation to polycyclic aromatic hydrocarbon degradation was found.  相似文献   

4.
Sediments from mercury-contaminated and uncontaminated reaches of the Carson River, Nevada, were assayed for sulfate reduction, methanogenesis, denitrification, and monomethylmercury (MeHg) degradation. Demethylation of [(sup14)C]MeHg was detected at all sites as indicated by the formation of (sup14)CO(inf2) and (sup14)CH(inf4). Oxidative demethylation was indicated by the formation of (sup14)CO(inf2) and was present at significant levels in all samples. Oxidized/reduced demethylation product ratios (i.e., (sup14)CO(inf2)/(sup14)CH(inf4) ratios) generally ranged from 4.0 in surface layers to as low as 0.5 at depth. Production of (sup14)CO(inf2) was most pronounced at sediment surfaces which were zones of active denitrification and sulfate reduction but was also significant within zones of methanogenesis. In a core taken from an uncontaminated site having a high proportion of oxidized, coarse-grain sediments, sulfate reduction and methanogenic activity levels were very low and (sup14)CO(inf2) accounted for 98% of the product formed from [(sup14)C]MeHg. There was no apparent relationship between the degree of mercury contamination of the sediments and the occurrence of oxidative demethylation. However, sediments from Fort Churchill, the most contaminated site, were most active in terms of demethylation potentials. Inhibition of sulfate reduction with molybdate resulted in significantly depressed oxidized/reduced demethylation product ratios, but overall demethylation rates of inhibited and uninhibited samples were comparable. Addition of sulfate to sediment slurries stimulated production of (sup14)CO(inf2) from [(sup14)C]MeHg, while 2-bromoethanesulfonic acid blocked production of (sup14)CH(inf4). These results reveal the importance of sulfate-reducing and methanogenic bacteria in oxidative demethylation of MeHg in anoxic environments.  相似文献   

5.
Cell suspensions of Methylococcus capsulatus mineralized methyl bromide (MeBr), as evidence by its removal from the gas phase, the quantitative recovery of Br- in the spent medium, and the production of 14CO2 from [14C]MeBr. Methyl fluoride fluoride (MeF) inhibited oxidation of methane as well as that of [14C]MeBr. The rate of MeBr consumption by cells varied inversely with the supply of methane, which suggested a competitive relationship between these two substrates. However, MeBr did not support growth of the methanotroph. In soils exposed to high levels (10,000 ppm) of MeBr, methane oxidation was completely inhibited. At this concentration, MeBr removal rates were equivalent in killed and live controls, which indicated a chemical rather than biological removal reaction. At lower concentration (1,000 ppm) of MeBr, methanotrophs were active and MeBr consumption rates were 10-fold higher in live controls than in killed controls. Soils exposed to trace levels (10 ppm) of MeBr demonstrated complete consumption within 5 h of incubation, while controls inhibited with MeF or incubated without O2 had 50% lower removal rates. Aerobic soils oxidized [14C]MeBr to 14CO2, and MeF inhibited oxidation by 72%. Field experiments demonstrated slightly lower MeBr removal rates in chambers containing MeF than in chambers lacking MeF. Collectively, these results show that soil methanotrophic bacteria, as well as other microbes, can degrade MeBr present in the environment.  相似文献   

6.
[(sup14)C]naphthalene and phenanthrene were oxidized to (sup14)CO(inf2) without a detectable lag under strict anaerobic conditions in sediments from San Diego Bay, San Diego, Calif., that were heavily contaminated with polycyclic aromatic hydrocarbons (PAHs) but not in less contaminated sediments. Sulfate reduction was necessary for PAH oxidation. These results suggest that the self-purification capacity of PAH-contaminated sulfate-reducing environments may be greater than previously recognized.  相似文献   

7.
To investigate the possible cometabolic biodegradation of benzo[a]pyrene (BaP), crude oil spiked with [7-(sup14)C]BaP and unlabeled BaP was added to soil with no known pollution history, to give 34 g of oil and 67 mg of BaP/kg of dry soil. The oil-soil mixture was amended with mineral nutrients and incubated in an airtight container with continuous forced aeration. Total CO(inf2) and (sup14)CO(inf2) in the off-gas were trapped and quantified. Soil samples were Soxhlet extracted with dichloromethane at seven time points during the 150-day incubation period, and the extracted soil was subjected to further fractionation in order to recover reversibly and irreversibly bound radiocarbon. Radiocarbon recovery was 100% (plusmn) 3% for each time point. During the first 50 days of incubation, no (sup14)CO(inf2) was evolved, but over the next 100 days, 50% of the BaP radiocarbon was evolved as (sup14)CO(inf2). At 150 days, only 5% of the intact BaP and 23% of the crude oil remained. Of the remaining radiolabel, 20% was found in solvent-extractable metabolites and 25% was incorporated into soil organic matter. Only 1/10 of this could be solubilized by chemical hydrolysis. An abiotic control experiment exhibited binding of only 2% of the BaP, indicating the microbial nature of the BaP transformations. We report that in soil containing suitable cosubstrates, BaP can be completely degraded.  相似文献   

8.
The metabolism of atmospheric methane in a forest soil was studied by radiotracer techniques. Maximum (sup14)CH(inf4) oxidation (163.5 pmol of C cm(sup-3) h(sup-1)) and (sup14)C assimilation (50.3 pmol of C cm(sup-3) h(sup-1)) occurred at the A(inf2) horizon located 15 to 18 cm below the soil surface. At this depth, 31 to 43% of the atmospheric methane oxidized was assimilated into microbial biomass; the remaining methane was recovered as (sup14)CO(inf2). Methane-derived carbon was incorporated into all major cell macromolecules by the soil microorganisms (50% as proteins, 19% as nucleic acids and polysaccharides, and 5% as lipids). The percentage of methane assimilated (carbon conversion efficiency) remained constant at temperatures between 5 and 20(deg)C, followed by a decrease at 30(deg)C. The carbon conversion efficiency did not increase at methane concentrations between 1.7 and 1,000 ppm. In contrast, the overall methane oxidation activity increased at elevated methane concentrations, with an apparent K(infm) of 21 ppm (31 nM CH(inf4)) and a V(infmax) of 188 pmol of CH(inf4) cm(sup-3) h(sup-1). Methane oxidizers from soil depths with maximum methanotrophic activity respired approximately 1 to 3% of the assimilated methane-derived carbon per day. This apparent endogenous respiration did not change significantly in the absence of methane. Similarly, the potential for oxidation of atmospheric methane was relatively insensitive to methane starvation. Soil samples from depths above and below the zone with maximum atmospheric methane oxidation activity showed a dramatic increase in the turnover of the methane assimilated (>20 times increase). Physical disturbance such as sieving or mixing of soil samples decreased methane oxidation and assimilation by 50 to 58% but did not alter the carbon conversion efficiency. Ammonia addition (0.1 or 1.0 (mu)mol g [fresh weight](sup-1)) decreased both methane oxidation and carbon conversion efficiency. This resulted in a dramatic decrease in methane assimilation (85 to 99%). In addition, ammonia-treated soil showed up to 10 times greater turnover of the assimilated methane-derived carbon (relative to untreated soil). The results suggest a potential for microbial growth on atmospheric methane. However, growth was regulated strongly by soil parameters other than the methane concentration. The pattern observed for metabolism of atmospheric methane in soils was not consistent with the physiology of known methanotrophic bacteria.  相似文献   

9.
Tritiated thymidine incorporation (TTI) into DNA was used to examine bacterial production in two soil types from the Robertskollen group of nunataks in northwestern Dronning Maud Land, providing the first estimates of bacterial production in soil habitats on the Antarctic continent. Although estimates of bacterial productivity in soils near to bird nests (344 (plusmn) 422 ng of C g [dry weight](sup-1) h(sup-1)) were higher than those for soils from beneath mosses (175 (plusmn) 90 ng of C g [dry weight](sup-1) h(sup-1); measured by TTI at 10(deg)C), these differences were not significant because of patchiness of bacterial activity (P > 0.05). TTI- and [(sup14)C]leucine ([(sup14)C]Leu)-derived estimates of bacterial production were similar when incubations of 3 h were used, although incubations as short as 1 h were sufficient for measurable uptake of radiolabel. Dual-label incorporation of [(sup3)H]thymidine ([(sup3)H]TdR) into DNA and [(sup14)C]Leu into protein indicated that TTI did not reflect bacterial production of in situ assemblages when incubations were longer than 3 h. Isotope dilution analysis indicated that dilution of the specific activity of exogenously supplied [(sup3)H]TdR by de novo synthesis of TdR precursor could be limited by additions of [(sup3)H]TdR at a concentration of 1 nmol per ca. 115 mg of soil. TTI exhibited a psychrotrophic response to variation in temperature, with a temperature optimum of ca. 15(deg)C and a Q(inf10) value for 0 to 10(deg)C of 2.41.  相似文献   

10.
To simulate growth conditions experienced by microbiota at O(inf2)-limited interfaces of organic matter in compost, an experimental system capable of maintaining dual limitations of oxygen and carbon for extended periods, i.e., a pO(inf2)-auxostat, has been used. (sup15)N tracer studies on thermophilic (53(deg)C) decomposition processes occurring in manure-straw aggregates showed the emission of dinitrogen gas from the reactor as a result of simultaneous nitrification and denitrification at low pO(inf2) values (0.1 to 2.0%, vol/vol). The N loss was confirmed by nitrogen budget studies of the system. Depending on the imposed pO(inf2), 0.6 to 1.4 mmol of N/day (i.e., 20 to 40% of input N) was emitted as N(inf2). When the pO(inf2) was raised, the rates of both nitrification and denitrification increased instantaneously, indicating that ammonia oxidation was limited by oxygen. In auxostats permanently running at pO(inf2) >= 2% (vol/vol), the free ammonium pool was almost completely oxidized and was converted to nitrite plus nitrate and N(inf2) gas. Labelling of the auxostat with [(sup13)C]carbonate was conducted to reveal whether nitrification was of autotrophic or heterotrophic origin. Incorporation of (sup13)CO(inf2) into population-specific cellular compounds was evaluated by profiling the saponifiable phospholipid fatty acids (FAs) by using capillary gas chromatography and subsequently analyzing the (sup13)C/(sup12)C ratios of the individual FAs, after their combustion to CO(inf2), by isotope ratio mass spectrometry. Apart from the observed label incorporation into FAs originating from a microflora belonging to the genus Methylococcus (type X group), supporting nitrification of a methylotrophic nature, this analysis also corroborated the absence of truly autotrophic nitrifying populations. Nevertheless, the extent to which ammonia oxidation continued to exist in this thermophilic community suggested that a major energy gain could be associated with it.  相似文献   

11.
Prompted by our limited understanding of the degradation of lignin and lignin-derived aromatic metabolites in termites, we studied the metabolism of monoaromatic model compounds by termites and their gut microflora. Feeding trials performed with [ring-U-(sup14)C]benzoic acid and [ring-U-(sup14)C]cinnamic acid revealed the general ability of termites of the major feeding guilds (wood and soil feeders and fungus cultivators) to mineralize the aromatic nucleus. Up to 70% of the radioactive label was released as (sup14)CO(inf2); the remainder was more or less equally distributed among termite bodies, gut contents, and feces. Gut homogenates of the wood-feeding termites Nasutitermes lujae (Wasmann) and Reticulitermes flavipes (Kollar) mineralized ring-labeled benzoic or cinnamic acid only if oxygen was present. In the absence of oxygen, benzoate was not attacked, and cinnamate was only reduced to phenylpropionate. Similar results were obtained with other, nonlabeled lignin-related phenylpropanoids (ferulic, 3,4-dihydroxycinnamic, and 4-hydroxycinnamic acids), whose ring moieties underwent degradation only if oxygen was present. Under anoxic conditions, the substrates were merely modified (by side chain reduction and demethylation), and this modification occurred at the same time as a net accumulation of phenylpropanoids formed endogenously in the gut homogenate, a phenomenon not observed under oxic conditions. Enumeration by the most-probable-number technique revealed that each N. lujae gut contained about 10(sup5) bacteria that were capable of completely mineralizing aromatic substrates in the presence of oxygen (about 10(sup8) bacteria per ml). In the absence of oxygen, small numbers of ring-modifying microorganisms were found (<50 bacteria per gut), but none of these microorganisms were capable of ring cleavage. Similar results were obtained with gut homogenates of R. flavipes, except that a larger number of anaerobic ring-modifying microorganisms was present (>5 x 10(sup3) bacteria per gut). Neither inclusion of potential cosubstrates (H(inf2), pyruvate, lactate) nor inclusion of hydrogenotrophic partner organisms resulted in anoxic ring cleavage in most-probable-number tubes prepared with gut homogenates of either termite. The oxygen dependence of aromatic ring cleavage by the termite gut microbiota is consistent with the presence, and uptake by microbes, of O(inf2) in the peripheral region of otherwise anoxic gut lumina (as reported in the accompanying paper [A. Brune, D. Emerson, and J. A. Breznak, Appl. Environ. Microbiol. 61:2681-2687, 1995]). Taken together, our results indicate that microbial degradation of plant aromatic compounds can occur in termite guts and may contribute to the carbon and energy requirement of the host.  相似文献   

12.
The microbial transformation of [N-methyl-(sup14)C]aldicarb, a carbamate pesticide, occurred in aquifer, lake, and salt marsh sediments. Microbial degradation of aldicarb took place within 21 days in aquifer sediments from sites previously exposed to aldicarb (Jamesport, Long Island, N.Y.) but did not occur in sediments which were not previously exposed (Connetquot State Park, Long Island, N.Y.). At the Jamesport sites, higher aldicarb transformation rates occurred in deep, anoxic sediments than in shallow, oxic sediments. There was a significant negative relationship (P < 0.05) between transformation rates and ambient dissolved O(inf2) levels. Aldicarb hydrolysis rates in Jamesport sediments were 10- to 1,000-fold lower than rates previously reported for soils. In addition, aldicarb degradation rates were not significantly correlated with measurements of bacterial activity and density previously determined in the same sediments. Substantially higher aldicarb degradation rates were found in anoxic lake and salt marsh than in aquifer sediments. Furthermore, we investigated the anaerobic microbial processes involved in aldicarb transformation by adding organic substrates (acetate, glucose), an alternative electron acceptor (nitrate), and microbial inhibitors (molybdate, 2-bromoethanesulfonic acid) to anoxic aquifer, lake, and salt marsh sediments. The results suggest that a methanogenic consortium was important in aldicarb transformation or in the use of aldicarb-derived products such as methylamine. In addition, microbial aldicarb transformation proceeded via different pathways under oxic and anoxic conditions. In the presence of O(inf2), aldicarb transformation was mainly via an oxidation pathway, while in the absence of O(inf2), degradation took place through a hydrolytic pathway (including the formation of methylamine precursors). Under anoxic conditions, therefore, aldicarb can be transformed by microbial consortia to yield products which can be of direct benefit to natural populations of methanogens present in sediments.  相似文献   

13.
The natural stable isotope values of different plants have been used to trace the fate of organic carbon that enters estuarine ecosystems. Experiments were designed to determine the magnitude of (delta) (sup13)C changes of dissolved organic carbon (DOC) derived from tidal marsh vegetation that occurred during bacterial decomposition. Bacteria were grown on DOC leached from estuarine Spartina alterniflora and Typhus angustifolia plants. In four experiments, 25 to 80% of the initial carbon (2.6 to 9.1 mM organic C) was converted to bacterial biomass and CO(inf2). Mass balance calculations showed good recovery of total C and (sup13)C at the end of these experiments (100% (plusmn) 14% total C; (plusmn) 1(permil) (delta) (sup13)C). The (delta) (sup13)C values of DOC, bacterial biomass, and respired CO(inf2) changed only slightly in the four experiments by average values of -0.6, +1.4, and +0.5(permil), respectively. These changes are small relative to the range of (delta) (sup13)C values represented by different organic carbon sources to estuaries. Thus, microbial (delta) (sup13)C values determined in the field helped to identify the source of the carbon assimilated by bacteria.  相似文献   

14.
Isolated rat hepatocytes rapidly utilized [(14)C]palmitate and, in particular, synthesized large amounts of neutral lipids from palmitate. Incorporation into cellular lipids occurred at a linear rate proportional to the medium concentration of fatty acids. Oxidation of [(14)C]palmitate to CO(2) increased with time and was much slower than palmitate esterification. Since [(14)C]acetate and [(14)C]glucose were oxidized to CO(2) at a linear rate, the lag in fatty acid oxidation to CO(2) did not involve enzymatic steps subsequent to acetate formation. The relative contribution of palmitate to esterification and to CO(2) formation depended upon the molar ratio of palmitate to albumin (v) and the length of incubation. Dibutyryl cyclic AMP (1 mM) reduced the oxidation of palmitate and acetate to CO(2) by about 50 and 90%, respectively, but did not alter palmitate esterification. However, equivalent concentrations of sodium butyrate produced similar decreases in CO(2) formation. Dibutyryl cyclic AMP (1 mM) also stimulated palmitate oxidation to water-soluble products, principally ketone bodies, by 50-100%. Sodium butyrate exerted no effect, while monobutyryl cyclic AMP and cyclic AMP both stimulated this pathway significantly. These results indicate that both v and dibutyryl cyclic AMP regulate the metabolism of fatty acids by isolated hepatocytes and suggest that hormonal stimulation of adenyl cyclase controls hepatic lipid metabolism.  相似文献   

15.
Ash (Fraxinus spp.) logs, infested with fully developed, cold-acclimated larval and prepupal emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), were fumigated with methyl bromide (MeBr) at 4.4 and 10.0 degrees C for 24 h. Concentrations X time dosages of MeBr obtained were 1579 and 1273 g-h/m3 (24-h exposure) at 4.4 and 10.0 degrees C after applied doses of 112 and 96 g/m3, respectively. MeBr concentrations were simultaneously measured with a ContainIR infrared monitor and Fumiscope thermal conductivity meter calibrated for MeBr to measure the effect of CO2 on Fumiscope concentration readings compared with the infrared (IR) instrument. The presence of CO2 caused false high MeBr readings. With the thermal conductivity meter, CO2 measured 11.36 g/m3 MeBr per 1% CO2 in clean air, whereas the gas-specific infrared ContainIR instrument measured 9.55% CO2 as 4.2 g/m3 MeBr (0.44 g/m3 per 1% CO2). The IR instrument was 0.4% as sensitive to CO2 as the thermal conductivity meter. After aeration, fumigated and control logs were held for 8 wk to capture emerging beetles. No A. planipennis adults emerged from any of the fumigated logs, whereas 262 emerged from control logs (139 and 123/m2 at 4.4 and 10.0 degrees C, respectively). An effective fumigation dose and minimum periodic MeBr concentrations are proposed. The use of a CO2 scrubber in conjunction with nonspecific thermal conductivity instruments is necessary to more accurately measure MeBr concentrations.  相似文献   

16.
Y. Feng  K. D. Racke    J. Bollag 《Applied microbiology》1997,63(10):4096-4098
The isolation of a pure culture of bacteria able to use 3,5,6-trichloro-2-pyridinol (TCP) as a sole source of carbon and energy under aerobic conditions was achieved for the first time. The bacterium was identified as a Pseudomonas sp. and designated ATCC 700113. [2,6-(sup14)C]TCP degradation yielded (sup14)CO(inf2), chloride, and unidentified polar metabolites.  相似文献   

17.
Patterns of (sup14)CO(inf2) incorporation into molecular components of the thermophilic cyanobacterial mat communities inhabiting hot springs located in Yellowstone National Park and Synechococcus sp. strain C1 were investigated. Exponentially growing Synechococcus sp. strain C1 partitioned the majority of incorporated (sup14)CO(inf2) into protein, low-molecular-weight metabolites, and lipid fractions (45, 22, and 18% of total incorporated carbon, respectively). In contrast, mat cores from various hot springs predominantly accumulated polyglucose during periods of illumination (between 77 and 85% of total incorporated (sup14)CO(inf2)). Although photosynthetically active, mat photoautotrophs do not appear to be rapidly growing, since we also detected only limited synthesis of macromolecules associated with growth (i.e., protein and rRNA). To test the hypothesis that polysaccharide reserves are fermented in situ under the dark anaerobic conditions cyanobacterial mats experience at night, mat cores were prelabeled with (sup14)CO(inf2) under illuminated conditions and then transferred to dark anaerobic conditions. Radiolabel in the polysaccharide fraction decreased by 74.7% after 12 h, of which 58.5% was recovered as radiolabeled acetate, CO(inf2), and propionate. These results indicate tightly coupled carbon fixation and fermentative processes and the potential for significant transfer of carbon from primary producers to heterotrophic members of these cyanobacterial mat communities.  相似文献   

18.
Cell extracts (high-speed [150,000 x g] supernatants) from Pseudomonas fluorescens NCIMB 11764 catalyzed the oxidation of cyanide to CO(inf2) (and NH(inf3)). Conversion was both oxygen and NADH dependent, with 1 mol of each being consumed per mol of cyanide degraded. Analysis of (sup13)CO(inf2) by mass spectrometry indicated that one atom each of isotopically labelled oxygen 18 from molecular oxygen and water were incorporated during enzymatic conversion. The results confirm earlier reports of oxygenase-mediated cyanide conversion in this organism. A reaction pathway for cyanide oxidation involving initial monooxygenation followed by hydrolysis of a hypothetical oxygenated intermediate to CO(inf2) (and NH(inf3)) is proposed.  相似文献   

19.
Protoplasts of the monokaryotic strain 52J of Trametes versicolor were treated with UV light and screened for the inability to produce a colored precipitate on guaiacol-containing agar plates. Mutants unable to oxidize guaiacol had absent or very low secretion of laccase and manganese peroxidase (MnP) proteins. All isolates unable to secrete MnP were also unable to bleach or delignify kraft pulp. One mutant strain, M49, which grew normally but did not oxidize guaiacol, was tested further with a number of other substrates whose degradation has been associated with delignification by white rot fungi. Compared with the parent, 52J, mutant M49, secreting no MnP and low laccase, could not brighten or delignify kraft pulp, produced less ethylene from 2-keto methiolbutyric acid, released much less (sup14)CO(inf2) from [(sup14)C]DHP (a synthetic lignin-like polymerizate), and produced much less methanol from pulp. This mutant also displayed decreased abilities to oxidize the dyes poly B-411, poly R-478, and phenol red compared with the wild-type strain and was also unable to decolorize kraft bleachery effluent or mineralize its organochlorine. Addition of purified MnP in conjunction with H(inf2)O(inf2), MnSO(inf4), and an Mn(III) chelator to M49 cultures partially restored methanol production, pulp delignification, and biobleaching in some cases.  相似文献   

20.
A bacterium that was capable of metabolizing atrazine at very high concentrations (>1,000 ppm) was isolated from a herbicide spill site. The organism was differentiated by observing clearing zones on indicator agar plates containing 1,000 ppm atrazine. Detailed taxonomic studies identified the organism as a Pseudomonas sp., designated ADP, that was dissimilar to currently known species. Pseudomonas sp. strain ADP metabolized atrazine as its sole nitrogen source. Nongrowing suspended cells also metabolized atrazine rapidly; for example, 9 x 10(sup9) cells per ml degraded 100 ppm of atrazine in 90 min. Atrazine was metabolized to hydroxyatrazine, polar metabolites, and carbon dioxide. When uniformly ring-labeled [(sup14)C]atrazine was used, 80% of the radioactivity was liberated as (sup14)CO(inf2). These data indicated the triazine ring was completely mineralized. The isolation and characterization of Pseudomonas sp. strain ADP may contribute to efforts on atrazine bioremediation, particularly in environments containing very high pesticide levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号