首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rewetting of drained peatlands has been recommended to reduce CO2 emissions and to restore the carbon sink function of peatlands. Recently, the combination of rewetting and biomass production (paludiculture) has gained interest as a possible land use option in peatlands for obtaining such benefits of lower CO2 emissions without losing agricultural land. This study quantified the carbon balance (CO2, CH4 and harvested biomass C) of rewetted and drained peat soils under intensively managed reed canary grass (RCG) cultivation. Mesocosms were maintained at five different groundwater levels (GWLs), that is 0, 10, 20 cm below the soil surface, representing rewetted peat soils, and 30 and 40 cm below the soil surface, representing drained peat soils. Net ecosystem exchange (NEE) of CO2 and CH4 emissions was measured during the growing period of RCG (May to September) using transparent and opaque closed chamber methods. The average dry biomass yield was significantly lower from rewetted peat soils (12 Mg ha?1) than drained peat soils (15 Mg ha?1). Also, CO2 fluxes of gross primary production (GPP) and ecosystem respiration (ER) from rewetted peat soils were significantly lower than from drained peat soils, but net uptake of CO2 was higher from rewetted peat soils. Cumulative CH4 emissions were negligible (0.01 g CH4 m?2) from drained peat soils but were significantly higher (4.9 g CH4 m?2) from rewetted peat soils during measurement period (01 May–15 September 2013). The extrapolated annual C balance was 0.03 and 0.68 kg C m?2 from rewetted and drained peat soils, respectively, indicating that rewetting and paludiculture can reduce the loss of carbon from peatlands.  相似文献   

2.
Reed canary grass (RCG, Phalaris arundinacea L.) is a suitable energy crop for cultivation in northern peatlands. However, the atmospheric impact of RCG cultivation as influenced by harvest frequency and fertilization is not clear. Here, we compared the biomass yield and greenhouse gas (GHG) balance for RCG cultivation in peatlands affected by cutting frequency and fertilizer managements. The managements included one-cut (OC) and two-cut (TC) systems that were either fertilized (TC-F) or unfertilized (TC-U) after the first cut in summer. Biomass yield of OC, TC-F and TC-U were 12, 16 and 11 Mg dry biomass per hectare per year, respectively. GHG fluxes of CO2, N2O and CH4 were measured with closed chamber techniques in the period between first and second (final) harvest of the TC managements, i.e. from 15 June to 23 September 2011. In the GHG monitoring period of 100 days, all systems were net sources of CO2 corresponding to 64?±?3, 217?±?15 and 50?±?23 g?CO2-C?m?2 (mean?±?standard error, n?=?3) from the OC, TC-F and TC-U systems, respectively. In the same period, emissions of N2O from TC-F were ten times higher as compared to OC and TC-U. Emissions of CH4 were negligible from all systems. The TC systems could not improve the GHG balance during cultivation (271, 663 and 210 g CO2e-C?m?2 emissions from the OC, TC-F and TC-U systems, respectively), but in a broader GHG life cycle perspective, the increased biomass yield by TC-F could replace more fossil fuel and offset at least some of the higher emissions from the system.  相似文献   

3.

Purpose

The purpose of this study is to assess and calculate the potential impacts of climate change on the greenhouse gas (GHG) emissions reduction potentials of combined production of whole corn bioethanol and stover biomethanol, and whole soybean biodiesel and stalk biomethanol. Both fuels are used as substitutes to conventional fossil-based fuels. The product system includes energy crop (feedstock) production and transportation, biofuels processing, and biofuels distribution to service station.

Methods

The methodology is underpinned by life cycle thinking. Crop system model and life cycle assessment (LCA) model are linked in the analysis. The Decision Support System for Agrotechnology Transfer – crop system model (DSSAT-CSM) is used to simulate biomass and grain yield under different future climate scenarios generated using a combination of temperature, precipitation, and atmospheric CO2. Historical weather data for Gainesville, Florida, are obtained for the baseline period (1981–1990). Daily minimum and maximum air temperatures are projected to increase by +2.0, +3.0, +4.0, and +5.0 °C, precipitation is projected to change by ±20, 10, and 5 %, and atmospheric CO2 concentration is projected to increase by +70, +210, and +350 ppm. All projections are made throughout the growing season. GaBi 4.4 is used as primary LCA modelling software using crop yield data inputs from the DSSAT-CSM software. The models representation of the physical processes inventory (background unit processes) is constructed using the ecoinvent life cycle inventory database v2.0.

Results and discussion

Under current baseline climate condition, net greenhouse gas (GHG) emissions savings per hectare from corn-integrated biomethanol synthesis (CIBM) and soybean-integrated biomethanol synthesis (SIBM) were calculated as ?8,573.31 and ?3,441 kg CO2-eq. ha?1 yr?1, respectively. However, models predictions suggest that these potential GHG emissions savings would be impacted by changing climate ranging from negative to positive depending on the crop and biofuel type, and climate scenario. Increased atmospheric level of CO2 tends to minimise the negative impacts of increased temperature.

Conclusions

While policy measures are being put in place for the use of renewable biofuels driven by the desire to reduce GHG emissions from the use of conventional fossil fuels, climate change would also have impacts on the potential GHG emissions reductions resulting from the use of these renewable biofuels. However, the magnitude of the impact largely depends on the biofuel processing technology and the energy crop (feedstock) type.  相似文献   

4.

Purpose

To consider whether feed supplements that reduce methane emissions from dairy cows result in a net reduction in greenhouse gas (GHG) intensity when productivity changes and emissions associated with extra manufacturing and management are included.

Methods

A life cycle assessment was undertaken using a model farm based on dairy farms in Victoria, Australia. The system boundary included the creation of farm inputs and on-farm activities up to the farm gate where the functional unit was 1 L of fat and protein corrected milk (FPCM). Electricity and diesel (scaled per cow), and fertiliser inputs (scaled on farm size) to the model farm were based on average data from a survey of farms. Fertiliser applied to crops was calculated per area of crop. Animal characteristics were based on available data from farms and literature. Three methane-reducing diets (containing brewers grain, hominy or whole cotton seed) and a control diet (cereal grain) were modelled as being fed during summer, with the control diet being fed for the remainder of the year in all cases.

Results and discussion

Greenhouse gas intensity (kg CO2-eq/L FPCM) was lower than the control diet when the hominy (97 % compared with control) and brewers grain (98 %) diets were used but increased when the whole cottonseed diet was used (104 %). On-farm GHG emissions (kg CO2-eq) were lower than the control diet when any of the methane-reducing diets were used (98 to 99.5 % of emissions when control diet fed). Diesel use in production and transport of feed supplements accounted for a large portion (63 to 93 %) of their GHG intensity (kg CO2-eq/t dry matter). Adjusting fertiliser application, changing transport method, changing transport fuel, and using nitrification inhibitors all had little effect on GHG emissions or GHG intensity.

Conclusions

Although feeding strategies that reduce methane emissions from dairy cows can lower the GHG emissions up to the farm gate, they may not result in lower GHG intensities (g CO2-eq/L FPCM) when pre-farm emissions are included. Both transport distance and the effect of the feed on milk production have important impacts on the outcomes.  相似文献   

5.
Greenhouse gas emissions from forestry in East Norway   总被引:1,自引:0,他引:1  

Purpose

So far no calculations have been made for greenhouse gas (GHG) emissions from forestry in East Norway. This region stands for 80 % of the Norwegian timber production. The aim of this study was to assess the annual GHG emissions of Norwegian forestry in the eastern parts of the country from seed production to final felling and transport of timber to sawmill and wood processing industry (cradle-to-gate inventory), based on specific Norwegian data.

Methods

The life cycle inventory was conducted with SimaPro applying primary and secondary data from Norwegian forestry. GHG emissions of fossil-related inputs from the technosphere were calculated for the functional unit of 1 m3 timber extracted and delivered to industry gate in East Norway in 2010. The analysis includes seed and seedling production, silvicultural operations, forest road construction and upgrading, thinning, final felling, timber forwarding and timber transport on road and rail from the forest to the industry. Norwegian time studies of forestry machines and operations were used to calculate efficiency, fuel consumption and transport distances. Due to the lack of specific Norwegian data in Ecoinvent, we designed and constructed unit processes based on primary and secondary data from forestry in East Norway.

Results and discussion

GHG emissions from forestry in East Norway amounted to 17.893 kg CO2-equivalents per m3 of timber delivered to industry gate in 2010. Road transport of timber accounted for almost half of the total GHG emissions, final felling and forwarding for nearly one third of the GHG emissions. Due to longer road transport distances, pulpwood had higher impact on the climate change category than saw timber. The construction of forest roads had the highest impact on the natural land transformation category. The net CO2 emissions of fossil CO2 corresponded to 2.3 % of the CO2 sequestered by 1 m3 of growing forest trees and were compared to a calculation of biogenic CO2 release from the forest floor as a direct consequence of harvesting.

Conclusions

Shorter forwarding and road transport distances, increased logging truck size and higher proportion of railway transport may result in lower emissions per volume of transported timber. A life cycle assessment of forestry may also consider impacts on environmental categories other than climate change. Biogenic CO2 emissions from the soil may be up to 10 times higher than the fossil-related emissions, at least in a short-term perspective, and are highly dependent on stand rotation length.  相似文献   

6.

Background and aims

The impact of understory vegetation control or replacement with selected plant species, which are common forest plantation management practices, on soil C pool and greenhouse gas (GHG, including CO2, CH4 and N2O) emissions are poorly understood. The objective of this paper was to investigate the effects of understory vegetation management on the dynamics of soil GHG emissions and labile C pools in an intensively managed Chinese chestnut (Castanea mollissima Blume) plantation in subtropical China.

Methods

A 12-month field experiment was conducted to study the dynamics of soil labile C pools and GHG emissions in a Chinese chestnut plantation under four different understory management practices: control (Control), understory removal (UR), replacement of understory vegetation with Medicago sativa L. (MS), and replacement with Lolium perenne L. (LP). Soil GHG emissions were determined using the static chamber/GC technique.

Results

Understory management did not change the seasonal pattern of soil GHG emissions; however, as compared with the Control, the UR treatment increased soil CO2 and N2O emissions and CH4 uptake, and the MS and LP treatments increased CO2 and N2O emissions and reduced CH4 uptake (P?<?0.05 for all treatment effects, same below). The total global warming potential (GWP) of GHG emissions in the Control, UR, MS, and LP treatments were 36.56, 39.40, 42.36, and 42.99 Mg CO2 equivalent (CO2-e) ha?1 year?1, respectively, with CO2 emission accounting for more than 95 % of total GWP regardless of the understory management treatment. The MS and LP treatments increased soil organic C (SOC), total N (TN), soil water soluble organic C (WSOC) and microbial biomass C (MBC), while the UR treatment decreased SOC, TN and NO3 ?-N but had no effect on WSOC and MBC. Soil GHG emissions were correlated with soil temperature and WSOC across the treatments, but had no relationship with soil moisture content and MBC.

Conclusions

Although replacing competitive understory vegetation with legume or less competitive non-legume species increased soil GHG emissions and total GWP, such treatments also increased soil C and N pools and are therefore beneficial for increasing soil C storage, maintaining soil fertility, and enhancing the productivity of Chinese chestnut plantations.  相似文献   

7.

Purpose

The crude palm oil (CPO) extraction is normally done by a wet extraction process, and wastewater treatment of the wet process emits high levels of greenhouse gases (GHGs). A dry process extracts mixed palm oil (MPO) from palm fruit without using water and has no GHG emissions from wastewater treatment. This work is aimed at determining the GHG emissions of a dry process and at evaluating GHG savings on changing from wet to dry process, including land use change (LUC) effects.

Methods

Life cycle assessment from cradle to gate was used. The raw material is palm fruits. The dry process includes primary production, oil room, and utilities. MPO is the main product, while palm cake and fine palm residue are co-products sold for animal feed. Case studies were undertaken without and with carbon stocks of firewood and of nitrogen recycling at plantations from fronds. Allocations by mass, economic, and heating values were conducted. The trading of GHG emissions from co-products to GHG emissions from animal feed was assessed. The GHG emissions or savings from direct LUC (dLUC) and from indirect LUC (iLUC) effects and for the change from wet to dry process were determined.

Results and discussion

Palm fruit and firewood were the major GHG emission sources. Nitrogen recycling on plantations from fronds significantly affects the GHG emissions. With the carbon stocks, the GHG emissions allocated by energy value were 550 kg CO2 eq/t MPO. The GHG emissions were affected by ?3 to 37% for the change from wet to dry process. When the plantation area was increased by 1 ha and the palm oil extraction was changed from wet to dry process, and the change included dLUC and iLUC, the GHG savings ranged from ?0.94 to 5.08 t CO2 eq/ha year. The iLUC was the main GHG emission source. The GHG saving mostly originated from the change of extraction process and from the dLUC effect. Based on the potential use of biodiesel production from oil palm, during 2015–2036 in Thailand, when the extraction process was changed and dLUC and iLUC effects were included, the saving in GHG emissions was estimated to range from ?35,454 to 274,774 t CO2 eq/year.

Conclusions

The change of palm oil extraction process and the LUC effects could minimize the GHG emissions from the palm oil industry. This advantage encourages developing policies that support the dry extraction process and contribute to sustainable developments in palm oil production.
  相似文献   

8.

Purpose

This study seeks to answer the question, “Will the Million Trees LA (Million Trees Los Angeles, MTLA) program be a carbon dioxide (CO2) sink or source?” Because there has never been a full accounting of CO2 emissions, it is unclear if urban tree planting initiatives (TPIs) are likely to be effective means for reaching local reduction targets.

Methods

Using surveys, interviews, field sampling, and computer simulation of tree growth and survival over a 40-year time period, we developed the first process-based life cycle inventory of CO2 for a large TPI. CO2 emissions and reductions from storage and avoided emissions from energy savings were simulated for 91,786 trees planted from 2006 to 2010, of which only 30,813 (33.6 %) were estimated to survive.

Results and discussion

The MTLA program was estimated to release 17,048 and 66,360 t of fossil and biogenic CO2 over the 40-year period, respectively. The total amount emitted (83,408 t) was slightly more than the ?77,942 t CO2 that trees were projected to store in their biomass. The MTLA program will be a CO2 sink if projected 40-year-avoided fossil fuel CO2 emissions from energy savings (?101,679 t) and biopower (?1,939 t) are realized. The largest sources of CO2 emissions were mulch decomposition (65.1 %), wood combustion (14.5 %), and irrigation water (9.7 %).

Conclusions

Although trees planted by the MTLA program are likely to be a net CO2 sink, there is ample opportunity to reduce emissions. Examples of these opportunities include selecting drought-tolerant trees and utilizing wood residue to generate electricity rather than producing mulch.  相似文献   

9.

Purpose

The aim of this study was to estimate the total greenhouse gas (GHG) emissions generated from whole life cycle stages of a sewer pipeline system and suggest the strategies to mitigate GHG emissions from the system.

Methods

The process-based life cycle assessment (LCA) with a city-scale inventory database of a sewer pipeline system was conducted. The GHG emissions (direct, indirect, and embodied) generated from a sewer pipeline system in Daejeon Metropolitan City (DMC), South Korea, were estimated for a case study. The potential improvement actions which can mitigate GHG emissions were evaluated through a scenario analysis based on a sensitivity analysis.

Results and discussion

The amount of GHG emissions varied with the size (150, 300, 450, 700, and 900 mm) and materials (polyvinyl chloride (PVC), polyethylene (PE), concrete, and cast iron) of the pipeline. Pipes with smaller diameter emitted less GHG, and the concrete pipe generated lower amount of GHG than pipes made from other materials. The case study demonstrated that the operation (OP) stage (3.67 × 104 t CO2eq year?1, 64.9%) is the most significant for total GHG emissions (5.65 × 104 t CO2eq year?1) because a huge amount of CH4 (3.51 × 104 t CO2eq year?1) can be generated at the stage due to biofilm reaction in the inner surface of pipeline. Mitigation of CH4 emissions by reducing hydraulic retention time (HRT), optimizing surface area-to-volume (A/V) ratio of pipes, and lowering biofilm reaction during the OP stage could be effective ways to reduce total GHG emissions from the sewer pipeline system. For the rehabilitation of sewer pipeline system in DMC, the use of small diameter pipe, combination of pipe materials, and periodic maintenance activities are suggested as suitable strategies that could mitigate GHG emissions.

Conclusions

This study demonstrated the usability and appropriateness of the process-based LCA providing effective GHG mitigation strategies at a city-scale sewer pipeline system. The results obtained from this study could be applied to the development of comprehensive models which can precisely estimate all GHG emissions generated from sewer pipeline and other urban environmental systems.
  相似文献   

10.

Purpose

Bio-based products are often considered sustainable due to their renewable nature. However, the environmental performance of products needs to be assessed considering a life cycle perspective to get a complete picture of potential benefits and trade-offs. We present a life cycle assessment of the global commodity ethanol, produced from different feedstock and geographical origin. The aim is to understand the main drivers for environmental impacts in the production of bio-based ethanol as well as its relative performance compared to a fossil-based alternative.

Methods

Ethanol production is assessed from cradle to gate; furthermore, end-of-life emissions are also included in order to allow a full comparison of greenhouse gas (GHG) emissions, assuming degradation of ethanol once emitted to air from household and personal care products. The functional unit is 1 kg ethanol, produced from maize grain in USA, maize stover in USA, sugarcane in North-East of Brazil and Centre-South of Brazil, and sugar beet and wheat in France. As a reference, ethanol produced from fossil ethylene in Western Europe is used. Six impact categories from the ReCiPe assessment method are considered, along with seven novel impact categories on biodiversity and ecosystem services (BES).

Results and discussion

GHG emissions per kilogram bio-based ethanol range from 0.7 to 1.5 kg CO2 eq per kg ethanol and from 1.3 to 2 kg per kg if emissions at end-of-life are included. Fossil-based ethanol involves GHG emissions of 1.3 kg CO2 eq per kg from cradle-to-gate and 3.7 kg CO2 eq per kg if end-of-life is included. Maize stover in USA and sugar beet in France have the lowest impact from a GHG perspective, although when other impact categories are considered trade-offs are encountered. BES impact indicators show a clear preference for fossil-based ethanol. The sensitivity analyses showed how certain methodological choices (allocation rules, land use change accounting, land use biomes), as well as some scenario choices (sugarcane harvest method, maize drying) affect the environmental performance of bio-based ethanol. Also, the uncertainty assessment showed that results for the bio-based alternatives often overlap, making it difficult to tell whether they are significantly different.

Conclusions

Bio-based ethanol appears as a preferable option from a GHG perspective, but when other impacts are considered, especially those related to land use, fossil-based ethanol is preferable. A key methodological aspect that remains to be harmonised is the quantification of land use change, which has an outstanding influence in the results, especially on GHG emissions.  相似文献   

11.

Purpose

This life cycle assessment evaluates and quantifies the environmental impacts of renewable chemical production from forest residue via fast pyrolysis with hydrotreating/fluidized catalytic cracking (FCC) pathway.

Methods

The assessment input data are taken from Aspen Plus and greenhouse gases, regulated emissions, and energy use in transportation (GREET) model. The SimaPro 7.3 software is employed to evaluate the environmental impacts.

Results and discussion

The results indicate that the net fossil energy input is 34.8 MJ to produce 1 kg of chemicals, and the net global warming potential (GWP) is ?0.53 kg CO2 eq. per kg chemicals produced under the proposed chemical production pathway. Sensitivity analysis indicates that bio-oil yields and chemical yields play the most important roles in the greenhouse gas footprints.

Conclusions

Fossil energy consumption and greenhouse gas (GHG) emissions can be reduced if commodity chemicals are produced via forest residue fast pyrolysis with hydrotreating/FCC pathway in place of conventional petroleum-based production pathways.  相似文献   

12.

Purpose

The purpose of this study was to quantify the spatial and technological variability in life cycle greenhouse gas (GHG) emissions, also called the carbon footprint, of durum wheat production in Iran.

Methods

The calculations were based on information gathered from 90 farms, each with an area ranging from 1 to 150 ha (average 16 ha). The carbon footprint of durum wheat was calculated by quantifying the biogenic GHG emissions of carbon loss from soil and biomass, as well as the GHG emissions from fertilizer application and machinery use, irrigation, transportation, and production of inputs (e.g., fertilizers, seeds, and pesticides). We used Spearman’s rank correlation to quantify the relative influence of technological variability (in crop yields, fossil GHG emissions, and N2O emissions from fertilizer application) and spatial variability (in biogenic GHG emissions) on the variation of the carbon footprint of durum wheat.

Results and discussion

The average carbon footprint of 1 kg of durum wheat produced was 1.6 kg CO2-equivalents with a minimum of 0.8 kg and a maximum of 3.0 kg CO2-equivalents. The correlation analysis showed that variation in crop yield and fertilizer application, representing technological variability, accounted for the majority of the variation in the carbon footprint, respectively 76 and 21%. Spatial variation in biogenic GHG emissions, mainly resulting from differences in natural soil carbon stocks, accounted for 3% of the variation in the carbon footprint. We also observed a non-linear relationship between the carbon footprint and the yield of durum wheat that featured a scaling factor of ?2/3. This indicates that the carbon footprint of durum wheat production (in kg CO2-eq kg?1) typically decreases by 67% with a 100% increase in yield (in kg ha?1 year?1).

Conclusions

Various sources of variability, including variation between locations and technologies, can influence the results of life cycle assessments. We demonstrated that technological variability exerts a relatively large influence on the carbon footprint of durum wheat produced in Iran with respect to spatial variability. To increase the durum wheat yield at farms with relatively large carbon footprints, technologies such as site-specific nutrient application, combined tillage, and mechanized irrigation techniques should be promoted.
  相似文献   

13.
Drained peat soils are a significant source of greenhouse gas (GHG) emissions to the atmosphere. Rewetting these soils is considered an important climate change mitigation tool to reduce emissions and create suitable conditions for carbon sequestration. Long‐term monitoring is essential to capture interannual variations in GHG emissions and associated environmental variables and to reduce the uncertainty linked with GHG emission factor calculations. In this study, we present GHG balances: carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) calculated for a 5‐year period at a rewetted industrial cutaway peatland in Ireland (rewetted 7 years prior to the start of the study); and compare the results with an adjacent drained area (2‐year data set), and with ten long‐term data sets from intact (i.e. undrained) peatlands in temperate and boreal regions. In the rewetted site, CO2 exchange (or net ecosystem exchange (NEE)) was strongly influenced by ecosystem respiration (Reco) rather than gross primary production (GPP). CH4 emissions were related to soil temperature and either water table level or plant biomass. N2O emissions were not detected in either drained or rewetted sites. Rewetting reduced CO2 emissions in unvegetated areas by approximately 50%. When upscaled to the ecosystem level, the emission factors (calculated as 5‐year mean of annual balances) for the rewetted site were (±SD) ?104 ± 80 g CO2‐C m?2 yr?1 (i.e. CO2 sink) and 9 ± 2 g CH4‐C m?2 yr?1 (i.e. CH4 source). Nearly a decade after rewetting, the GHG balance (100‐year global warming potential) had reduced noticeably (i.e. less warming) in comparison with the drained site but was still higher than comparative intact sites. Our results indicate that rewetted sites may be more sensitive to interannual changes in weather conditions than their more resilient intact counterparts and may switch from an annual CO2 sink to a source if triggered by slightly drier conditions.  相似文献   

14.

Purpose

The aim of this work is to compare greenhouse gas (GHG) emissions from producing tissue paper from virgin pulp (VP) or recycled waste paper (RWP). In doing so, the study aims to inform decision makers at both company and national levels which are the main causes of emissions and to suggest the actions required to reduce pollution.

Methods

An attributional life cycle assessment (LCA) was performed in order to estimate and compare the GHG emissions of the two processes. LCA allows us to assess how the choice of raw material for VP and RWP processes influences total GHG emissions of tissue paper production, what are the main drivers behind these emissions and how do the direct materials; energy requirements and transportation contribute to the generation of emissions. The cradle-to-gate approach is carried out.

Results and discussion

The results show that demands for both thermal energy and electricity are higher for the RWP than for the VP if only the manufacturing stages are considered. However, a different picture emerges when the analysis looks at the entire life cycle of the production. GHG from the VP are about 30 % higher than the RWP, over the life cycle emitting 568 kg CO2 eq more per kilogram of tissue paper. GHG emissions from the wood pulping alone were 559 g CO2 eq per kilogram of tissue paper, three times higher than waste paper collection and transportation.

Conclusions

In terms of GHG emissions from cradle to gate, the recycled process less intensive than the virgin one for two reasons. First, as shown in the results the total GHG emissions from RWP are lower than those from VP due to relatively lower energy and material requirements. Second is the non-recyclability nature of tissue paper. Because the tissue paper is the last use of fibre, using RWP as an input would be preferable over using VP. The environmental profile of the tissue products both from RWP and VP can be improved if the following conditions are considered by the company. First, the company should consider implementing a cogeneration unit to simultaneously generate both useful heat and electricity. Second, it may consider changing the VP mix, in order to avoid the emissions associated with long distance transpiration effort. Third, there is the option of using sludge as fuel, which would reduce the total fossil fuel requirement.  相似文献   

15.

Purpose

The common practice of summing greenhouse gas (GHG) emissions and applying global warming potentials (GWPs) to calculate CO2 equivalents misrepresents the global warming effects of emissions that occur over a product or system??s life cycle at a particular time in the future. The two primary purposes of this work are to develop an approach to correct for this distortion that can (1) be feasibly implemented by life cycle assessment and carbon footprint practitioners and (2) results in units of CO2 equivalent. Units of CO2 equilavent allow for easy integration in current reporting and policy frameworks.

Methods

CO2 equivalency is typically calculated using GWPs from the Intergovernmental Panel on Climate Change. GWPs are calculated by dividing a GHG??s global warming effect, as measured by cumulative radiative forcing, over a prescribed time horizon by the global warming effect of CO2 over that same time horizon. Current methods distort the actual effect of GHG emissions at a particular time in the future by summing emissions released at different times and applying GWPs; modeling them as if they occur at the beginning of the analytical time horizon. The method proposed here develops time-adjusted warming potentials (TAWPs), which use the reference gas CO2, and a reference time of zero. Thus, application of TAWPs results in units of CO2 equivalent today.

Results and discussion

A GWP for a given GHG only requires that a practitioner select an analytical time horizon. The TAWP, however, contains an additional independent variable; the year in which an emission occurs. Thus, for each GHG and each analytical time horizon, TAWPs require a simple software tool (TAWPv1.0) or an equation to estimate their value. Application of 100-year TAWPs to a commercial building??s life cycle emissions showed a 30?% reduction in CO2 equivalent compared to typical practice using 100-year GWPs. As the analytical time horizon is extended the effect of emissions timing is less pronounced. For example, at a 500-year analytical time horizon the difference is only 5?%.

Conclusions and recommendations

TAWPs are one of many alternatives to traditional accounting methods, and are envisioned to be used as one of multiple characterizations in carbon accounting or life cycle impact assessment methods to assist in interpretation of a study??s outcome.  相似文献   

16.

Purpose

The rapid growth of vehicle sales and usage has highlighted the need for greenhouse gas (GHG) emission reduction in Macau, a special administrative region (SAR) of China. As the most primary vehicle type, light-duty vehicles (LDV, including light-duty gasoline vehicles (LDGVs) and light-duty diesel vehicles (LDDVs)) play a key role in promoting the GHG reduction and development of green transportation system in Macau.

Methods

This study, on the basis of real-world tested and statistical data, firstly performed a streamlined life-cycle assessment (SLCA) on LDVs, to evaluate the potential GHG emissions and reduction through shifting to hybrid electric vehicles (HEVs) and electric vehicles (EVs).

Results and discussion

The results show that the mean GHG emissions from the LDGVs, LDDVs, and HEVs per 100 km were 25.16, 20.30, and 15.00 kg CO2 eq, respectively. Under the current electricity mix in Macau, EVs with the emissions of 12.39 kg CO2 eq/100 km can achieve a significant GHG emission reduction of LDVs in Macau. The total GHG emissions from LDVs increased from 124.99 to 247.82 thousand metric tons over the periods 2001–2014, with a 5.42% annual growth rate. A scenario analysis indicated that the development of HEVs and EVs—especially EVs—has the potential to control the GHG emissions from LDVs. Under the electricity mix of natural gas (NG) and solar energy (SE), the GHG emissions from EVs would drop by about 22 and 28%, respectively, by 2030.

Conclusions

This study develops a useful approach to evaluate the potential GHG emissions and its reduction strategies in Macau. All the obtained results could be useful for decision makers, providing robust support for drawing up an appropriate plan for improving green transportation systems in Macau.
  相似文献   

17.
Wetlands contribute considerably to the global greenhouse gas (GHG) balance. In these ecosystems, groundwater level (GWL) and temperature, two factors likely to be altered by climate change, exert important control over CO2, CH4 and N2O fluxes. However, little is known about the temperature sensitivity (Q10) of the combined GHG emissions from hydromorphic soils and how this Q10 varies with GWL. We performed a greenhouse experiment in which three different (plant‐free) hydromorphic soils from a temperate spruce forest were exposed to two GWLs (an intermediate GWL of ?20 cm and a high GWL of ?5 cm). Net CO2, CH4 and N2O fluxes were measured continuously. Here, we discuss how these fluxes responded to synoptic temperature fluctuations. Across all soils and GWLs, CO2 emissions responded similarly to temperature and Q10 was close to 2. The Q10 of the CH4 and N2O fluxes also was similar across soil types. GWL, on the other hand, significantly affected the Q10 of both CH4 and N2O emissions. The Q10 of the net CH4 fluxes increased from about 1 at GWL = ?20 cm to 3 at GWL = ?5 cm. For the N2O emissions, Q10 varied around 2 for GWL = ?20 cm and around 4 for GWL = ?5 cm. This substantial GWL‐effect on the Q10 of CH4 and N2O emissions was, however, hardly reflected in the Q10 of the total GHG emissions (which varied around 2), because the contribution of these gases was relatively small compared to that of CO2.  相似文献   

18.

Purpose

Bananas are one of the highest selling fruits worldwide, and for several countries, bananas are an important export commodity. However, very little is known about banana’s contribution to global warming. The aims of this work were to study the greenhouse gas emissions of bananas from cradle to retail and cradle to grave and to assess the potential of reducing greenhouse gas (GHG) emissions along the value chain.

Methods

Carbon footprint methodology based on ISO-DIS 14067 was used to assess GHG emissions from 1 kg of bananas produced at two plantations in Costa Rica including transport by cargo ship to Norway. Several methodological issues are not clearly addressed in ISO 14067 or the LCA standards 14040 and ISO 14044 underpinning 14067. Examples are allocation, allocation in recycling, representativity and system borders. Methodological choices in this study have been made based on other standards, such as the GHG Protocol Products Standard.

Results and discussion

The results indicate that bananas had a carbon footprint (CF) on the same level as other tropical fruits and that the contribution from the primary production stage was low. However, the methodology used in this study and the other comparative studies was not necessarily identical; hence, no definitive conclusions can be drawn. Overseas transport and primary production were the main contributors to the total GHG emissions. Including the consumer stage resulted in a 34 % rise in CF, mainly due to high wastage. The main potential reductions of GHG emissions were identified at the primary production, within the overseas transport stage and at the consumer.

Conclusions

The carbon footprint of bananas from cradle to retail was 1.37 kg CO2 per kilogram banana. GHG emissions from transport and primary production could be significantly reduced, which could theoretically give a reduction of as much as 44 % of the total cradle-to-retail CF. The methodology was important for the end result. The choice of system boundaries gives very different results depending on which life cycle stages and which unit processes are included. Allocation issues were also important, both in recycling and in other processes such as transport and storage. The main uncertainties of the CF result are connected to N2O emissions from agriculture, methane emissions from landfills, use of secondary data and variability in the primary production data. Thus, there is a need for an internationally agreed calculation method for bananas and other food products if CFs are to be used for comparative purposes.  相似文献   

19.

Aims

Two field microcosm experiments and 15N labeling techniques were used to investigate the effects of biochar addition on rice N nutrition and GHG emissions in an Inceptisol and an Ultisol.

Methods

Biochar N bioavailability and effect of biochar on fertilizer nitrogen-use efficiency (NUE) were studied by 15N-enriched wheat biochar (7.8803 atom% 15N) and fertilizer urea (5.0026 atom% 15N) (Experiment I). Corn biochar and corn stalks were applied at 12 Mg?ha?1 to study their effects on GHG emissions (Experiment II).

Results

Biochar had no significant impact on rice production and less than 2 % of the biochar N was available to plants in the first season. Biochar addition increased soil C and N contents and decreased urea NUE. Seasonal cumulative CH4 emissions with biochar were similar to the controls, but significantly lower than the local practice of straw amendment. N2O emissions with biochar were similar to the control in the acidic Ultisol, but significantly higher in the slightly alkaline Inceptisol. Carbon-balance calculations found no major losses of biochar-C.

Conclusion

Low bio-availability of biochar N did not make a significantly impact on rice production or N nutrition during the first year. Replacement of straw amendments with biochar could decrease CH4 emissions and increase SOC stocks.  相似文献   

20.

Purpose

This paper assesses facility-specific life cycle greenhouse gas (GHG) emission intensities for electricity-generating facilities in the province of Ontario in 2008. It offers policy makers, researchers and other stakeholders of the Ontario electricity system with data regarding some of the environmental burdens from multiple generation technology currently deployed in the province.

Methods

Methods involved extraction of data and analysis from several publically accessible datasets, as well as from the LCA literature. GHG emissions data for operation of power plants came from the Government of Canada GHG registry and the Ontario Power Generation (OPG) Sustainable Development reports. Facility-specific generation data came from the Independent Electricity System Operator in Ontario and the OPG.

Results

Full life cycle GHG intensity (tonnes of CO2 equivalent per gigawatt hour) estimates are provided for 4 coal facilities, 27 natural gas facilities, 1 oil/natural gas facility, 3 nuclear facilities, 7 run-of-river hydro facilities and 37 reservoir hydro facilities, and 7 wind facilities. Average (output weighted) life cycle GHG intensities are calculated for each fuel type in Ontario, and the life cycle GHG intensity for the Ontario grid as a whole (in 2008) is estimated to be 201 t CO2e/GWh.

Conclusions

The results reflect only the global warming impact of electricity generation, and they are meant to inform a broader discussion which includes other environmental, social, cultural, institutional and economic factors. This full range of factors should be included in decisions regarding energy policy for the Province of Ontario, and in future work on the Ontario electricity system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号