首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High salinity is one of the major environmental factors limiting the productivity of crop species worldwide. Improving the stress tolerance of cultivated plants and thus increasing crop yields in an environmentally friendly way is a crucial task in agriculture. In the present work the ability of a new derivative, S-methylmethionine-salicylate (MMS), to improve the salt tolerance of wheat plants was tested parallel with its related compounds salicylic acid and S-methylmethionine. The results show that while these compounds are harmful at relatively high concentration (0.5 mM), they may provide protection against high salinity at lower (0.1 mM) concentration. This was confirmed by gas exchange, chlorophyll content and chlorophyll-a fluorescence induction measurements. While osmotic adjustment probably plays a critical role in the improved salt tolerance, neither Na or K transport from the roots to the shoots nor proline synthesis are the main factors in the tolerance induced by the compounds tested. MMS, S-methylmethionine and Na-salicylate had different effects on flavonol biosynthesis. It was also shown that salt treatment had a substantial influence on the SA metabolism in wheat roots and leaves. Present results suggest that the investigated compounds can be used to improve salt tolerance in plants.  相似文献   

2.
The S-methylmethionine sulfonium (MMS) concentrations in fruits of citrus hybrids were measured, and found to increase during ripening of the fruit. However, three of eleven hybrids of ‘Seto unshiu’ crossed with ‘Morita ponkan’ and four of 9 hybrids of ‘Murcott’ tangor crossed with ‘Seto unshiu’ had low MMS concentrations even at late harvest stage. Crossbreeding is useful in producing new citrus fruits that have juices with the desirable characteristics of their parents without formation of dimethyl sulfide which is an off-flavor.  相似文献   

3.
The effect of the natural compound S-methylmethionine (SMM) on the functioning of the photosynthetic apparatus, the efficiency of photosynthesis and the synthesis of stress-induced phenoloids and anthocyanins involved in defence was investigated in young maize plants exposed to moderate and severe chilling stress. Damage to PSII was observed as a reduction in the value of variable fluorescence (Fv/Fm) which could be detected even after few hours of mild chilling stress. At temperatures below 10°C, the reduction in Fv/Fm was more pronounced. Changes in the value of net photosynthesis exhibited a similar tendency. SMM has a moderating effect on this reduction and its protective effect was more pronounced under long-lasting chilling stress and at the lowest temperatures. Monitoring of fluorescence intensities and ratios correlated with the levels of stress defence compounds. The fluorescence intensities were found to increase over the course of chilling stress in response to SMM, with the highest values being recorded in plants exposed to the longest period of stress. A similar tendency was observed for the quantity of anthocyanins. The results confirm the complex role of SMM, which is manifested both in preserving the ability of the photosynthetic apparatus to function and in stimulating the synthesis of metabolites involved in stress defence.  相似文献   

4.
Mudd SH  Datko AH 《Plant physiology》1990,93(2):623-630
The metabolism of S-methylmethionine has been studied in cultures of plants of Lemna paucicostata and of cells of carrot (Daucus carota) and soybean (Glycine max). In each system, radiolabeled S-methylmethionine was rapidly formed from labeled l-methionine, consistent with the action of S-adenosyl-l-methionine:methionine S-methyltransferase, an enzyme which was demonstrated during these studies in Lemna homogenates. In Lemna plants and carrot cells radiolabel disappeared rapidly from S-methylmethionine during chase incubations in nonradioactive media. The results of pulse-chase experiments with Lemna strongly suggest that administered radiolabeled S-methylmethionine is metabolized initially to soluble methionine, then to the variety of compounds formed from soluble methionine. An enzyme catalyzing the transfer of a methyl group from S-methylmethionine to homocysteine to form methionine was demonstrated in homogenates of Lemna. The net result of these reactions, together with the hydrolysis of S-adenosylhomocysteine to homocysteine and adenosine, is to convert S-adenosylmethionine to methionine and adenosine. A physiological advantage is postulated for this sequence in that it provides the plant with a means of sustaining the pool of soluble methionine even when overshoot occurs in the conversion of soluble methionine to S-adenosylmethionine. The facts that the pool of soluble methionine is normally very small relative to the flux into S-adenosylmethionine and that the demand for the latter compound may change very markedly under different growth conditions make it plausible that such overshoot may occur unless the rate of synthesis of S-adenosylmethionine is regulated with exquisite precision. The metabolic cost of this apparent safeguard is the consumption of ATP. This S-methylmethionine cycle may well function in plants other than Lemna, but further substantiating evidence is neeeded.  相似文献   

5.
Wollastonia biflora (L.) DC. plants accumulate the osmoprotectant 3-dimethylsulfoniopropionate (DMSP), particularly when salinized. DMSP is known to be synthesized in the chloroplast from S-methylmethionine (SMM) imported from the cytosol, but the sizes of the chloroplastic and extrachloroplastic pools of these compounds are unknown. We therefore determined DMSP and SMM in mesophyll protoplasts and chloroplasts. Salinization with 30% (v/v) artificial seawater increased protoplast DMSP levels from 4.6 to 6.0 μmol mg−1 chlorophyll (Chl), and chloroplast levels from 0.9 to 1.9 μmol mg−1 Chl. The latter are minimum values because intact chloroplasts leaked DMSP during isolation. Correcting for this leakage, it was estimated that in vivo about one-half of the DMSP is chloroplastic and that stromal DMSP concentrations in control and salinized plants are about 60 and 130 mm, respectively. Such concentrations would contribute significantly to chloroplast osmoregulation and could protect photosynthetic processes from stress injury. SMM levels were measured using a novel mass-spectrometric method. About 40% of the SMM was located in the chloroplast in unsalinized W. biflora plants, as was about 80% in salinized plants; the chloroplastic pool in both cases was approximately 0.1 μmol mg−1 Chl. In contrast, ≥85% of the SMM was extrachloroplastic in pea (Pisum sativum L.) and spinach (Spinacia oleracea L.), which lack DMSP. DMSP synthesis may be associated with enhanced accumulation of SMM in the chloroplast.  相似文献   

6.
The d-methionine- and 2-methyl-dl-methionine analogs of the enzymatic methyl donor, (?)S-adenosyl-l-methionine, were synthesized by methylation of S-adenosyl-d-homocysteine and S-adenosyl-2-methyl-dl-homocysteine with methyl iodide. By chromatographic purification, S-adenosyl-d-methionine and S-adenosyl-2-methyl-dl-methionine were obtained. The structure of the latter was ascertained by hydrolysis to 2-methylmethionine in strong acid, and to 5′-methylthioadenosine and 2-methylhomoserine at pH 4. Reference material of the latter compound was obtained by alkaline hydrolysis of 2-methylmethionine methylsulfonium iodide. The sulfonium compounds were tested as methyl donors with N-acetylserotonin O-methyltransferase, l-homocysteine S-methyltransferase, histamine N-methyltransferase, and guanidinoacetate N-methyltransferase. In most instances, methyl donor activity was observed.  相似文献   

7.
S-Methylmethionine Metabolism in Escherichia coli   总被引:1,自引:0,他引:1       下载免费PDF全文
Selenium-accumulating Astragalus spp. contain an enzyme which specifically transfers a methyl group from S-methylmethionine to the selenol of selenocysteine, thus converting it to a nontoxic, since nonproteinogenic, amino acid. Analysis of the amino acid sequence of this enzyme revealed that Escherichia coli possesses a protein (YagD) which shares high sequence similarity with the enzyme. The properties and physiological role of YagD were investigated. YagD is an S-methylmethionine: homocysteine methyltransferase which also accepts selenohomocysteine as a substrate. Mutants in yagD which also possess defects in metE and metH are unable to utilize S-methylmethionine for growth, whereas a metE metH double mutant still grows on S-methylmethionine. Upstream of yagD and overlapping with its reading frame is a gene (ykfD) which, when inactivated, also blocks growth on methylmethionine in a metE metH genetic background. Since it displays sequence similarities with amino acid permeases it appears to be the transporter for S-methylmethionine. Methionine but not S-methylmethionine in the medium reduces the amount of yagD protein. This and the existence of four MET box motifs upstream of yfkD indicate that the two genes are members of the methionine regulon. The physiological roles of the ykfD and yagD products appear to reside in the acquisition of S-methylmethionine, which is an abundant plant product, and its utilization for methionine biosynthesis.  相似文献   

8.
9.
10.
11.
12.
Assay for S-adenosylmethionine: methionine methyltransferase   总被引:1,自引:0,他引:1  
A quantitative assay for S-adenosylmethionine: methionine methyltransferase in phosphate buffer extracts has been developed. This enzyme catalyzes the biosynthesis of S-methylmethionine from methionine and S-adenosylmethionine. The radioactively labeled product, S-methylmethionine, is first separated from the radioactively labeled substrate, l-methionine, by means of ion-exchange chromatography. Once separated thusly, the amount present can then be directly determined by the use of a liquid scintillation spectrometer.  相似文献   

13.
Supplementation of the culture medium of Candida utilis with d-methionine or 2-methyl-dl-methionine leads to intracellular synthesis of S-adenosyl-d-methionine and S-adenosyl-2-methylmethionine. The identity of the sulfonium compounds was established by tracer technique, chromatography, acid hydrolysis, and examination of the released methionine and 2-methylmethionine. In addition to the expected sulfur amino acid component, both adenosine sulfonium fractions contained S-adenosyl-l-methionine. This is explained by transmethylation of S-adenosyl-d-methionine and of S-adenosyl-2-methyl-methionine with endogenous l-homocysteine; the resulting l-methionine reacts with ATP to form S-adenosyl-l-methionine. Experiments with purified cell-free preparations of S-adenosylmethionine synthetase (EC 2.5.1.6) from C. utilis confirmed the reaction of ATP with d-methionine or 2-methyl-dl-methionine.  相似文献   

14.
The effects of different treatments of salicylic acid (SA) on lipid peroxidation, chlorophyll fluorescence and antioxidant enzyme activity in seedlings of Cucumis sativa L. were studied before heat stress treatment, 36 h after heat stress and 24 h after recovery. Compared with the controls (foliar spray of distilled water), a foliar spray of 1 mM SA (SSA treatment) decreased electrolyte leakage and the concentration of H2O2 and thiobarbituric acid reactive substances (TBARS). SSA treatment also enhanced maximum yield of photosystem II photochemical reactions (Fv/Fm) and the quantum yield of the photosystem II electron transport (ΦPSII) after both heat stress and recovery; however, adding 1 mM SA to the nutrient solution (ASA treatment) or both adding 1 mM SA to the nutrient solution and foliar spray of 1 mM SA as well (SSA + ASA treatment) had the opposite effects. SOD activity was stimulated by all SA treatments. CAT activity was stimulated by SSA treatment and inhibited by ASA and SSA + ASA treatments after heat stress and recovery. This suggest that SSA treatment can efficiently remove H2O2 and decrease heat stress, and CAT plays a key role in removing H2O2 in cucumber seedlings under heat stress, while more H2O2 accumulates in ASA and SSA + ASA treatments and therefore induces serious oxidative stress. GPX, APX and GR showed higher activities in all SA treatments under heat stress, however, it appears that they were not key enzymes in removing H2O2 in cucumber subject to heat stress.  相似文献   

15.
16.
17.
马永慧  李永洁  李进 《广西植物》2022,42(4):668-675
干旱、盐分已成为限制植物生长发育的主要因子,在干旱与NaCl双重胁迫下植物的生长发育受到一定影响。为了探究黑果枸杞(Lycium ruthenicum)对盐旱逆境的适应性,该文采用盆栽试验,研究NaCl与干旱胁迫共同作用对其幼苗生长的影响,并观察盐旱逆境下黑果枸杞幼苗对外源水杨酸(SA)的生理响应,探究提高NaCl与干旱胁迫下黑果枸杞幼苗的存活率。结果表明:外源SA(0.1、0.5 mmol·L-1)处理下,盐旱双重胁迫下黑果枸杞叶内可溶性糖、可溶性蛋白和脯氨酸含量有所增加,而丙二醛(MDA)含量显著降低(P<0.05),过氧化氢酶(CAT)、过氧化物酶(POD)和超氧化物歧化酶(SOD)活性上升,且0.5 mmol·L-1 SA处理效果优于0.1 mmol·L-1 处理。综上结果可知,黑果枸杞对于轻度盐旱胁迫具有一定的适应能力,适宜浓度SA可提高盐旱逆境中黑果枸杞叶内渗透调节物质含量及抗氧化酶活性,该研究为进一步了解盐旱双重胁迫下黑果枸杞幼苗的生长发育提供相关理论依据。  相似文献   

18.
H Inoue  C Ishii 《Mutation research》1984,125(2):185-194
Seven different mutants that show high sensitivity to MMS killing were isolated and mapped at different loci. One group, mms-(SA1), mms-(SA2) and mms-(SA6), showed high sensitivity to MMS but not to UV or gamma-rays. Another group, mms-(SA4) and mms-(SA5), showed extremely high sensitivity to UV and MMS. And mms-(SA3) and mms-(SA7) were moderately sensitive to both UV and MMS. Mms-(SA4) and mms-(SA1) were identified as alleles of uvs-2 and mus-7, respectively, which had been previously isolated. The mms-(SA1), mms-(SA6) and mms-(SA7) strains were barren in homozygous crosses, and the mms-(SA5) strain was barren in heterozygous crosses. The mms-(SA1), mms-(SA3) and mms-(SA5) strains showed high sensitivity to histidine. In summary, at least two new loci involved in the repair of MMS damage have been identified. The possibility that some of these new mutants are in new repair pathways is suggested.  相似文献   

19.
20.
  • The effects of elevated glutathione levels on defence responses to powdery mildew (Euoidium longipes) were investigated in a salicylic acid‐deficient tobacco (Nicotiana tabacum cv. Xanthi NahG) and wild‐type cv. Xanthi plants, where salicylic acid (SA) contents are normal.
  • Aqueous solutions of reduced glutathione (GSH) and its synthetic precursor R‐2‐oxothiazolidine‐4‐carboxylic acid (OTC) were injected into leaves of tobacco plants 3 h before powdery mildew inoculation.
  • SA‐deficient NahG tobacco was hyper‐susceptible to E. longipes, as judged by significantly more severe powdery mildew symptoms and enhanced pathogen accumulation. Strikingly, elevation of GSH levels in SA‐deficient NahG tobacco restored susceptibility to E. longipes to the extent seen in wild‐type plants (i.e. enhanced basal resistance). However, expression of the SA‐mediated pathogenesis‐related gene (NtPR‐1a) did not increase significantly in GSH or OTC‐pretreated and powdery mildew‐inoculated NahG tobacco, suggesting that the induction of this PR gene may not be directly involved in the defence responses induced by GSH.
  • Our results demonstrate that artificial elevation of glutathione content can significantly reduce susceptibility to powdery mildew in SA‐deficient tobacco.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号