首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
Amphioxus, a cephalochordate, is the closest living relative to the vertebrates. In order to investigate the molecular mechanisms of the early embryogenesis of amphioxus, we constructed a neurula embryo cDNA library of Chinese amphioxus (Branchiostoma belcheri tsingtauense) and generated 5235 expressed sequenced tags in the present study. The initial ESTs consisted of 638 clusters and 1855 singletons, which revealed approximately 2493 unique genes in the data set. Of these sequences, 35.52% ESTs matched to known genes, 12.76% matched to other ESTs, and 51.71% had no match to any known sequences in GenBank. Interestingly we found homologous genes related to neural development and human disease. Bioinformatic analysis showed the direct evidence that the gene homologue found only in vertebrates in previous studies also exists in the amphioxus genome. This study provides a preliminary view of the gene information involved in the development of neurula embryos of Chinese amphioxus and helps our understanding of vertebrate evolution at gene level.  相似文献   

12.
MOTIVATION: Since the simultaneous publication of the human genome assembly by the International Human Genome Sequencing Consortium (HGSC) and Celera Genomics, several comparisons have been made of various aspects of these two assemblies. In this work, we set out to provide a more comprehensive comparative analysis of the two assemblies and their associated gene sets. RESULTS: The local sequence content for both draft genome assemblies has been similar since the early releases, however it took a year for the quality of the Celera assembly to approach that of HGSC, suggesting an advantage of HGSC's hierarchical shotgun (HS) sequencing strategy over Celera's whole genome shotgun (WGS) approach. While similar numbers of ab initio predicted genes can be derived from both assemblies, Celera's Otto approach consistently generated larger, more varied gene sets than the Ensembl gene build system. The presence of a non-overlapping gene set has persisted with successive data releases from both groups. Since most of the unique genes from either genome assembly could be mapped back to the other assembly, we conclude that the gene set discrepancies do not reflect differences in local sequence content but rather in the assemblies and especially the different gene-prediction methodologies.  相似文献   

13.
14.
15.
16.
17.
18.
The complete set of unique γ-gliadin genes is described for the wheat cultivar Chinese Spring using a combination of expressed sequence tag (EST) and Roche 454 DNA sequences. Assemblies of Chinese Spring ESTs yielded 11 different γ-gliadin gene sequences. Two of the sequences encode identical polypeptides and are assumed to be the result of a recent gene duplication. One gene has a 3′ coding mutation that changes the reading frame in the final eight codons. A second assembly of Chinese Spring γ-gliadin sequences was generated using Roche 454 total genomic DNA sequences. The 454 assembly confirmed the same 11 active genes as the EST assembly plus two pseudogenes not represented by ESTs. These 13 γ-gliadin sequences represent the complete unique set of γ-gliadin genes for cv Chinese Spring, although not ruled out are additional genes that are exact duplications of these 13 genes. A comparison with the ESTs of two other hexaploid cultivars (Butte 86 and Recital) finds that the most active genes are present in all three cultivars, with exceptions likely due to too few ESTs for detection in Butte 86 and Recital. A comparison of the numbers of ESTs per gene indicates differential levels of expression within the γ-gliadin gene family. Genome assignments were made for 6 of the 13 Chinese Spring γ-gliadin genes, i.e., one assignment from a match to two γ-gliadin genes found within a tetraploid wheat A genome BAC and four genes that match four distinct γ-gliadin sequences assembled from Roche 454 sequences from Aegilops tauschii, the hexaploid wheat D-genome ancestor.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号