首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Strains of colistin-resistant Klebsiella pneumoniae are emerging worldwide, due to the increased use of this molecule in antibiotic-resistant nosocomial infections. Comparative genomics was performed on three closely related K. pneumoniae strains isolated from three patients in a single hospital in Bologna, Italy. Two of these isolates are colistin-resistant, while the third is sensitive to this antibiotic. The designed bioinformatic approach detected, among the three analyzed genomes, single nucleotide polymorphisms, insertions and deletions, specific patterns of gene presence and absence, in a total of 270 genes. These genes were analyzed by automatic and manual methods, to identify those potentially involved in colistin resistance, based on the data available in the literature and on the mechanism of action of colistin, the alteration of the outer membrane. Three of the identified genes (waaL, rfbA, vacJ), all presenting non-synonymous substitutions in the colistin resistant strains, resulted to be of special interest, due to the specific function of their protein products, involved in the biosynthesis of the outer bacterial membrane.  相似文献   

2.
S. aureus and A. baumannii are among the ESKAPE pathogens that are increasingly difficult to treat due to the rise in the number of drug resistant strains. Novel therapeutics targeting these pathogens are much needed. The bacterial enoyl reductase (FabI) is as potentially significant drug target for developing pathogen-specific antibiotics due to the presence of alternate FabI isoforms in many other bacterial species. We report the identification and development of a novel N-carboxy pyrrolidine scaffold targeting FabI in S. aureus and A. baumannii, two pathogens for which FabI essentiality has been established. This scaffold is unrelated to other known antibiotic families, and FabI is not targeted by any currently approved antibiotic. Our data shows that this scaffold displays promising enzyme inhibitory activity against FabI from both S. aureus and A. baumannii, as well as encouraging antibacterial activity in S. aureus. Compounds also display excellent synergy when combined with colistin and tested against A. baumannii. In this combination the MIC of colistin is reduced by 10-fold. Our first generation compound displays promising enzyme inhibition, targets FabI in S. aureus with a favorable selectivity index (ratio of cytotoxicity to MIC), and has excellent synergy with colistin against A. baumannii, including a multidrug resistant strain.  相似文献   

3.
The arenas and detailed mechanisms for transfer of antibiotic resistance genes between environmental bacteria and pathogens are largely unclear. Selection pressures from antibiotics in situations where environmental bacteria and human pathogens meet are expected to increase the risks for such gene transfer events. We hypothesize that waste-water treatment plants (WWTPs) serving antibiotic manufacturing industries may provide such spawning grounds, given the high bacterial densities present there together with exceptionally strong and persistent selection pressures from the antibiotic-contaminated waste. Previous analyses of effluent from an Indian industrial WWTP that processes waste from bulk drug production revealed the presence of a range of drugs, including broad spectrum antibiotics at extremely high concentrations (mg/L range). In this study, we have characterized the antibiotic resistance profiles of 93 bacterial strains sampled at different stages of the treatment process from the WWTP against 39 antibiotics belonging to 12 different classes. A large majority (86%) of the strains were resistant to 20 or more antibiotics. Although there were no classically-recognized human pathogens among the 93 isolated strains, opportunistic pathogens such as Ochrobactrum intermedium, Providencia rettgeri, vancomycin resistant Enterococci (VRE), Aerococcus sp. and Citrobacter freundii were found to be highly resistant. One of the O. intermedium strains (ER1) was resistant to 36 antibiotics, while P. rettgeri (OSR3) was resistant to 35 antibiotics. Class 1 and 2 integrons were detected in 74/93 (80%) strains each, and 88/93 (95%) strains harbored at least one type of integron. The qPCR analysis of community DNA also showed an unprecedented high prevalence of integrons, suggesting that the bacteria living under such high selective pressure have an appreciable potential for genetic exchange of resistance genes via mobile gene cassettes. The present study provides insight into the mechanisms behind and the extent of multi-drug resistance among bacteria living under an extreme antibiotic selection pressure.  相似文献   

4.
Dairy production is threatened by antibiotic resistant pathogens worldwide, and alternative solutions to treat mastitis are not available. The prevalence of antibiotic resistant strains is not well known in less developed countries. The prevalence of pathogenic bacteria and their resistance to 21 commercial antibiotics were studied in milk samples taken from 122 dairy cows suffering from the symptoms of mastitis in Egypt. The bacterial species were identified with molecular methods, and antibiotic resistance was studied with disc diffusion method. The prevalence of Streptococcus aureus, Escherichia coli and Pseudomonas aeruginosa were 30%, 17% and 3.5%, respectively. Most (90%) of the S. aureus strains showed resistance to penicillin whereas only 10% of the strains were resistant to oxacillin. Nearly half (40%) of E. coli strains showed resistance to streptomycin. Six P. aeruginosa strains showed resistance to several antibiotics, including ceftriaxone, enrofloxacin and levofloxacin. This points out that despite P. aeruginosa was not common, it should be followed up carefully. Potential biocontrol agents against antibiotic resistant mastitis bacteria were searched among 30 endophytic actinobacterial strains derived from wild medicinal plants. Three plants, namely Mentha longifolia, Malva parviflora and Pulicaria undulata were chosen for a more detailed study; their endophytic actinobacteria were used to prepare metabolic extracts. The crude metabolites of the actinobacteria were extracted with ethyl acetate. All metabolic extracts inhibited the growth of S. aureus, methicillin-resistant Staphylococcus aureus (MRSA), E. coli and P. aeruginosa in vitro. The 16S rRNA sequence analysis revealed that the most efficient actinobacterial strains were two Micromonospora sp. and one Actinobacteria bacterium. We conclude that the combination of the metabolites of several endophytic actinobacteria derived from several medicinal plants would be the most efficient against pathogens. Different metabolite cocktails should be studied further in order to develop novel biocontrol agents to treat antibiotic resistant mastitis bacteria in dairy cows.  相似文献   

5.
The widespread agricultural use of antimicrobials has long been considered a crucial influence on the prevalence of resistant genes and bacterial strains. It has been suggested that antibiotic applications in agricultural settings are a driving force for the development of antimicrobial resistance, and epidemiologic evidence supports the view that there is a direct link between resistant human pathogens, retail produce, farm animals, and farm environments. Despite such concerns, little is understood about the population processes underlying the emergence and spread of antibiotic resistance and the reversibility of resistance when antibiotic selective pressure is removed. In this study, hierarchical log-linear modeling was used to assess the association between farm type (conventional versus organic), age of cattle (calf versus cow), bacterial phenotype (resistant versus susceptible), and the genetic composition of Escherichia coli populations (E. coli Reference Collection [ECOR] phylogroup A, B1, B2, or D) among 678 susceptible and resistant strains from a previously published study of 60 matched dairy farms (30 conventional and 30 organic) in Wisconsin. The analysis provides evidence for clonal resistance (ampicillin resistance) and genetic hitchhiking (tetracycline resistance [Tetr]), estimated the rate of compositional change from conventional farming to organic farming (mean, 8 years; range, 3 to 15 years), and discovered a significant association between low multidrug resistance, organic farms, and strains of the numerically dominant phylogroup B1. These data suggest that organic farming practices not only change the frequency of resistant strains but also impact the overall population genetic composition of the resident E. coli flora. In addition, the results support the hypothesis that the current prevalence of Tetr loci on dairy farms has little to do with the use of this antibiotic.  相似文献   

6.
Understanding the soil bacterial resistome is essential to understanding the evolution and development of antibiotic resistance, and its spread between species and biomes. We have identified and characterized multi-drug resistance (MDR) mechanisms in the culturable soil antibiotic resistome and linked the resistance profiles to bacterial species. We isolated 412 antibiotic resistant bacteria from agricultural, urban and pristine soils. All isolates were multi-drug resistant, of which greater than 80% were resistant to 16–23 antibiotics, comprising almost all classes of antibiotic. The mobile resistance genes investigated, (ESBL, bla NDM-1, and plasmid mediated quinolone resistance (PMQR) resistance genes) were not responsible for the respective resistance phenotypes nor were they present in the extracted soil DNA. Efflux was demonstrated to play an important role in MDR and many resistance phenotypes. Clinically relevant Burkholderia species are intrinsically resistant to ciprofloxacin but the soil Burkholderia species were not intrinsically resistant to ciprofloxacin. Using a phenotypic enzyme assay we identified the antibiotic specific inactivation of trimethoprim in 21 bacteria from different soils. The results of this study identified the importance of the efflux mechanism in the soil resistome and variations between the intrinsic resistance profiles of clinical and soil bacteria of the same family.  相似文献   

7.
At a human/livestock/wildlife interface, Escherichia coli populations were used to assess the risk of bacterial and antibiotic resistance dissemination between hosts. We used phenotypic and genotypic characterization techniques to describe the structure and the level of antibiotic resistance of E. coli commensal populations and the resistant Enterobacteriaceae carriage of sympatric African buffalo (Syncerus caffer caffer) and cattle populations characterized by their contact patterns in the southern part of Hwange ecosystem in Zimbabwe. Our results (i) confirmed our assumption that buffalo and cattle share similar phylogroup profiles, dominated by B1 (44.5%) and E (29.0%) phylogroups, with some variability in A phylogroup presence (from 1.9 to 12%); (ii) identified a significant gradient of antibiotic resistance from isolated buffalo to buffalo in contact with cattle and cattle populations expressed as the Murray score among Enterobacteriaceae (0.146, 0.258, and 0.340, respectively) and as the presence of tetracycline-, trimethoprim-, and amoxicillin-resistant subdominant E. coli strains (0, 5.7, and 38%, respectively); (iii) evidenced the dissemination of tetracycline, trimethoprim, and amoxicillin resistance genes (tet, dfrA, and blaTEM-1) in 26 isolated subdominant E. coli strains between nearby buffalo and cattle populations, that led us (iv) to hypothesize the role of the human/animal interface in the dissemination of genetic material from human to cattle and toward wildlife. The study of antibiotic resistance dissemination in multihost systems and at anthropized/natural interface is necessary to better understand and mitigate its multiple threats. These results also contribute to attempts aiming at using E. coli as a tool for the identification of pathogen transmission pathway in multihost systems.  相似文献   

8.
In this study the bactericidal effect of the N-terminal fragment of the frog skin peptide esculentin-1b [Esc(1–18)] in combination with clinically used antimicrobial agents was evaluated against Stenotrophomonas maltophilia, either in standard conditions (phosphate buffer) or in the presence of human serum. A synergistic bactericidal effect was observed after a 24 h incubation when combinations of Esc(1–18) and amikacin or colistin were used against clinical strains of S. maltophilia with or without resistance to these antibiotics, both in buffer and in the presence of serum. An indifferent effect was observed when the peptide was combined with levofloxacin or ceftazidime. A synergistic effect was also observed at earlier time points when the peptide was used in combination with colistin. Sequential exposure of bacterial cells to Esc(1–18) and amikacin or colistin, or vice versa, indicated that while Esc(1–18) and colistin cooperated in enhancing the bactericidal effect of their combination, when Esc(1–18) was combined with amikacin, the peptide had a major role in initiating the bactericidal effect, while amikacin was required for the subsequent effector phase. Altogether, the results obtained indicate that exposure of S. maltophilia to sub-bactericidal concentrations of Esc(1–18) increases its susceptibility to amikacin or colistin and may also render resistant strains susceptible to these antibiotics.  相似文献   

9.
Contact angle analysis of cell surface hydrophobicity (CSH) describes the tendency of a water droplet to spread across a lawn of filtered bacterial cells. Colistin‐induced disruption of the Gram‐negative outer membrane necessitates hydrophobic contacts with lipopolysaccharide (LPS). We aimed to characterize the CSH of Acinetobacter baumannii using contact angles, to provide insight into the mechanism of colistin resistance. Contact angles were analysed for five paired colistin‐susceptible and resistant Ac. baumannii strains. Drainage of the water droplet through bacterial layers was demonstrated to influence results. Consequently, measurements were performed 0·66 s after droplet deposition. Colistin‐resistant cells exhibited lower contact angles (38·8±2·8–46·8±1·3°) compared with their paired colistin‐susceptible strains (40·7±3·0–48·0±1·4°; anova ; P < 0·05). Contact angles increased at stationary phase (50·3±2·9–61·5±2·5° and 47·4±2·0–50·8±3·2°, susceptible and resistant, respectively, anova ; P < 0·05) and in response to colistin 32 mg l?1 exposure (44·5±1·5–50·6±2·8° and 43·5±2·2–48·0±2·2°, susceptible and resistant, respectively; anova ; P < 0·05). Analysis of complemented strains constructed with an intact lpxA gene, or empty vector, highlighted the contribution of LPS to CSH. Compositional outer‐membrane variations likely account for CSH differences between Ac. baumannii phenotypes, which influence the hydrophobic colistin–bacterium interaction. Important insight into the mechanism of colistin resistance has been provided. Greater consideration of contact angle methodology is necessary to ensure accurate analyses are performed.  相似文献   

10.
The increasing challenge of antibiotic resistance stimulates the search for novel antibacterial agents, especially such that would be effective against multi-drug resistant bacterial strains. Fortunately, natural compounds are excellent sources of potentially new drug leads. Particularly interesting in this context are polyether antibiotic salinomycin (SAL) and its semi-synthetic derivatives, as they exhibit large spectrum of bioactivity. We synthesized and evaluated the antibacterial activity of a series of SAL analogs; four singly (23, 15, 17) and two doubly modified (16, 18) derivatives were found to show excellent inhibitory activity not only against planktonic Gram(+) bacterial cells, but also towards select strains of methicillin-resistant staphylococci with the MIC values of 1–4 µg mL−1. Of note, the most promising candidates were more effective in preventing bacterial biofilm formation than unmodified SAL and a commonly used antibiotic – ciprofloxacin. Furthermore, we proved that rational modification of C20 hydroxyl of SAL may reduce genotoxic properties of the obtained analogs. Mechanistically, the structure-activity relationship studies suggested that electroneutral transport mechanism could be beneficial in terms of ensuring high antibacterial activity of SAL derivatives.  相似文献   

11.
Colistin resistance in Acinetobacter baumannii, a pathogen of clinical concern, was induced in the susceptible strain ATCC 19606 by growth under increasing pressure of the antibiotic, the only drug universally active against multi‐resistant clinical strains. In 2‐D difference gel electrophoresis (DIGE) experiments, 35 proteins with differences in expression between both phenotypes were identified, most of them appearing as down regulated in the colistin‐resistant strain. These include outer membrane (OM) proteins, chaperones, protein biosynthesis factors, and metabolic enzymes, all suggesting substantial loss of biological fitness in the resistant phenotype, as substantiated by complementary experiments in the absence of colistin. Results shed light on the scarcity of widespread clinical outbreaks for resistant phenotypes.  相似文献   

12.
To address the growing problem of antibiotic resistance, a set of 12 hybrid compounds that covalently link fluoroquinolone (ciprofloxacin) and aminoglycoside (kanamycin A) antibiotics were synthesized, and their activity was determined against both Gram-negative and Gram-positive bacteria, including resistant strains. The hybrids were antagonistic relative to the ciprofloxacin, but were substantially more potent than the parent kanamycin against Gram-negative bacteria, and overcame most dominant resistance mechanisms to aminoglycosides. Selected hybrids were 42–640 fold poorer inhibitors of bacterial protein synthesis than the parent kanamycin, while they displayed similar inhibitory activity to that of ciprofloxacin against DNA gyrase and topoisomerase IV enzymes. The hybrids showed significant delay of resistance development in both E. coli and B. subtilis in comparison to that of component drugs alone or their 1:1 mixture. More generally, the data suggest that an antagonistic combination of aminoglycoside-fluoroquinolone hybrids can lead to new compounds that slowdown/prevent the emergence of resistance.  相似文献   

13.
Escherichia coli strains from swine origin, either susceptible or resistant to colistin, were grown under planktonic and biofilm cultures. After which, they were treated with antibacterial agents including nisin and enterocin DD14 bacteriocins, colistin and their combinations. Importantly, the combination of colistin, enterocin DD14 and nisin eradicated the planktonic and biofilm cultures of E. coli CIP54127 and the E. coli strains with colistin-resistance phenotype such as E. coli 184 (mcr-1 +) and E. coli 289 (mcr-1 ?), suggesting therefore that bacteriocins from lactic acid bacteria could be used as agents with antibiotic augmentation capability.  相似文献   

14.
The presence of enterovirulent and/or antibiotic resistant strains of Escherichia coli in recreational bathing waters would represent a clear health issue. In total, 144 E. coli isolated from 26 beaches along the inner Oslo fjord were examined for virulence determinants and resistance to clinically important antibiotics. No isolates possessed the genetic determinants associated with enterotoxigenic strains and none showed the prototypic sorbitol negative, O157:H7 phenotype. A small number (~1 %) produced alpha-hemolysin. Occurrences and patterns of antibiotic resistances were similar to those of E. coli isolated previously from environmental samples. In total, 6 % of the strains showed one or more clinically relevant resistances and 1.4 % were multi-drug resistant. Microarray analyses suggested that the resistance determinants were generally associated with mobile genetic elements. Resistant strains were not clonally related, and were, furthermore not concentrated at one or a few beach sites. This suggests that these strains are entering the waters at a low rate but in a widespread manner. The study demonstrates that resistant E. coli are present in coastal bathing waters where they can come into contact with bathers, and that the resistance determinants are potentially transferable. Some of the resistances registered in the study are to important antibiotics used in human medicine such as fluoroquinolones. The spread of antibiotic resistant genes, from the clinical setting to the environment, has clear implications with respect to the current management of bacterial infections and the long term value of antimicrobial therapy. The present study is the first of its kind in Norway.  相似文献   

15.
Tigecycline and colistin are few of ‘last-resort’ antibiotic defences used in anti-infection therapies against carbapenem-resistant bacterial pathogens. The successive emergence of plasmid-borne tet(X) tigecycline resistance mechanism and mobile colistin resistance (mcr) determinant, renders them clinically useless. Here, we report that co-carriage of tet(X6) and mcr-1 gives co-resistance to both classes of antibiotics by a single plasmid in Escherichia coli. Tet(X6), the new tigecycline resistance enzyme is functionally defined. Both Tet(X6) and MCR-1 robustly interfere accumulation of antibiotic-induced reactive oxygen species (ROS). Unlike that mcr-1 exerts fitness cost in E. coli, tet(X6) does not. In the tet(X6)-positive strain that co-harbors mcr-1, tigecycline resistance is independently of colistin resistance caused by MCR-1-mediated lipid A remodelling, and vice versa. In general consistency with that of MCR-1, Tet(X6) leads to the failure of tigecycline treatment in the infection model of G. mellonella. Taken together, the co-production of Tet(X) and MCR-1 appears as a major clinic/public health concern.  相似文献   

16.
Infections with the bacteria Burkholderia cepacia complex (Bcc) are very difficult to eradicate in cystic fibrosis patients due the intrinsic resistance of Bcc to most available antibiotics and the emergence of multiple antibiotic resistant strains during antibiotic treatment. In this work, we used a whole-cell based assay to screen a diverse collection of small molecules for growth inhibitors of a relevant strain of Bcc, B. cenocepacia K56-2. The primary screen used bacterial growth in 96-well plate format and identified 206 primary actives among 30,259 compounds. From 100 compounds with no previous record of antibacterial activity secondary screening and data mining selected a total of Bce bioactives that were further analyzed. An experimental pipeline, evaluating in vitro antibacterial and antibiofilm activity, toxicity and in vivo antibacterial activity using C. elegans was used for prioritizing compounds with better chances to be further investigated as potential Bcc antibacterial drugs. This high throughput screen, along with the in vitro and in vivo analysis highlights the utility of this experimental method to quickly identify bioactives as a starting point of antibacterial drug discovery.  相似文献   

17.
Pseudomonas aeruginosa, a ubiquitous environmental organism, is a difficult-to-treat opportunistic pathogen due to its broad-spectrum antibiotic resistance and its ability to form biofilms. In this study, we investigate the link between resistance to a clinically important antibiotic, imipenem, and biofilm formation. First, we observed that the laboratory strain P. aeruginosa PAO1 carrying a mutation in the oprD gene, which confers resistance to imipenem, showed a modest reduction in biofilm formation. We also observed an inverse relationship between imipenem resistance and biofilm formation for imipenem-resistant strains selected in vitro, as well as for clinical isolates. We identified two clinical isolates of P. aeruginosa from the sputum of cystic fibrosis patients that formed robust biofilms, but were sensitive to imipenem (MIC?≤?2 μg/ml). To test the hypothesis that there is a general link between imipenem resistance and biofilm formation, we performed transposon mutagenesis of these two clinical strains to identify mutants defective in biofilm formation, and then tested these mutants for imipenem resistance. Analysis of the transposon mutants revealed a role for previously described biofilm factors in these clinical isolates of P. aeruginosa, including mutations in the pilY1, pilX, pilW, algC, and pslI genes, but none of the biofilm-deficient mutants became imipenem resistant (MIC?≥?8 μg/ml), arguing against a general link between biofilm formation and resistance to imipenem. Thus, assessing biofilm formation capabilities of environmental isolates is unlikely to serve as a good predictor of imipenem resistance. We also discuss our findings in light of the limited literature addressing planktonic antibiotic resistance factors that impact biofilm formation.  相似文献   

18.
Given the ability of M. tuberculosis to survive as an intracellular pathogen and its propensity to develop resistance to the existing antituberculosis drugs, its treatment requires new approaches. Here the antimycobacterial properties of verapamil, thioridazine, chlorpromazine, flupenthixol and haloperidol were investigated against a panel of drug resistant M. tuberculosis strains, both in vitro and on human-infected macrophages. These compounds are efflux inhibitors that share among them the characteristic of being ion channel blockers. In vitro, all compounds exhibited synergistic inhibitory activities when combined with isoniazid and rifampicin, and were able to inhibit active efflux, demonstrating their role as efflux inhibitors. Gene expression analysis showed that M. tuberculosis efflux genes were overexpressed in response to antibiotic exposure, in vitro and within macrophages, irrespective of their resistance pattern. These compounds displayed a rapid and high killing activity against M. tuberculosis, associated with a decrease in intracellular ATP levels demonstrating that the bactericidal action of the ion channel blockers against M. tuberculosis clinical strains is associated with their interference with energy metabolism. The compounds led to a decrease in the intracellular mycobacterial load by increasing phagosome acidification and activating lysosomal hydrolases. The results presented in this study enable us to propose the following mechanism of action for these compounds: a) in the bacteria, the compounds generate a cascade of events involving the inhibition of the respiratory chain complexes and energy production for efflux activity. Indirectly, this reduce the resistance level to antituberculosis drugs potentiating their activity; b) on the host cell, the treatment with the ion channel blockers increases phagosome acidification and induces the expression of phagosomal hydrolases, leading to bacterial growth restriction irrespective of their resistance pattern. This work highlights the potential value ion channel blockers as adjuvants of tuberculosis chemotherapy, in particular for the development of new therapeutic strategies, with strong potential for treatment shortening against drug susceptible and resistant forms of tuberculosis. Medicinal chemistry studies are now needed to improve the properties of these compounds, increasing their M. tuberculosis efflux-inhibition and killing-enhancement activity and reduce their toxicity for humans, therefore optimizing their potential for clinical usage.  相似文献   

19.
A collection of bacterial antibiotic resistance strains isolated from arctic permafrost subsoil sediments of various age and genesis was created. The collection included approximately 100 strains of Gram-positive (Firmicutes, Arthrobacter) and Gram-negative bacteria (Bacteroidetes, γ-Proteobacteria, and α-Proteobacteria) resistant to aminoglycoside antibiotics (gentamicin, kanamycin, and streptomycin), chloramphenicol and tetracycline. Antibiotic resistance spectra were shown to differ in Gram-positive and Gram-negative bacteria. Multidrug resistance strains were found for the first time in ancient bacteria. In studies of the molecular nature of determinants for streptomycin resistance, determinants of the two types were detected: strA-strB genes coding for aminoglycoside phosphotransferases and genes aadA encoding aminoglycoside adenylyltransferases. These genes proved to be highly homologous to those of contemporary bacteria.  相似文献   

20.
Environmental microbes harbor an enormous pool of antibiotic and biocide resistance genes that can impact the resistance profiles of animal and human pathogens via horizontal gene transfer. Pseudomonas putida strains are ubiquitous in soil and water but have been seldom isolated from humans. We have established a collection of P. putida strains isolated from in-patients in different hospitals in France. One of the isolated strains (HB3267) kills insects and is resistant to the majority of the antibiotics used in laboratories and hospitals, including aminoglycosides, ß-lactams, cationic peptides, chromoprotein enediyne antibiotics, dihydrofolate reductase inhibitors, fluoroquinolones and quinolones, glycopeptide antibiotics, macrolides, polyketides and sulfonamides. Similar to other P. putida clinical isolates the strain was sensitive to amikacin. To shed light on the broad pattern of antibiotic resistance, which is rarely found in clinical isolates of this species, the genome of this strain was sequenced and analysed. The study revealed that the determinants of multiple resistance are both chromosomally-borne as well as located on the pPC9 plasmid. Further analysis indicated that pPC9 has recruited antibiotic and biocide resistance genes from environmental microorganisms as well as from opportunistic and true human pathogens. The pPC9 plasmid is not self-transmissible, but can be mobilized by other bacterial plasmids making it capable of spreading antibiotic resistant determinants to new hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号