首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nisin Z and thymol were tested, alone and in combination, for antibacterial activity against Listeria monocytogenes ATCC 7644 and Bacillus subtilis ATCC 33712. The antibacterial effect of nisin Z, produced by Lactococcus lactis KE3 isolated from the traditional Moroccan fermented milk, was greatly potentiated by sub-inhibitory concentrations of thymol in both bacterial strains. Our data showed that the concentration of nisin required for effective control of food-borne pathogenic bacteria could be considerably lowered by the use of thymol in combination. The use of low concentrations of nisin could lead to a less favourable condition for the occurrence of nisin-resistant bacterial sub-populations.  相似文献   

2.
乳链菌肽(nisin)抗性机制的研究进展   总被引:5,自引:0,他引:5  
乳链菌肽(nisin)是某些乳酸乳球菌产生的一种羊毛硫细菌素。其对包括食品腐败菌和致病菌在内的许多革兰氏阳性菌具有强烈的抑制作用,是目前世界上唯一被允许用作食品添加剂的细菌素。nisin的广泛使用虽未引发大范围的抗性,但在自然界或实验室的选择压力下,某些非nisin产生菌也获得了抵御nisin攻击的抗性机制。nisin抗性机制通常涉及两种方式,即非特异性的生理适应机制和特异性蛋白酶介导的主动防御机制。本文综述了近年来nisin抗性机制的研究进展。  相似文献   

3.
路遥  蒋立科  陈美玲  还连栋  钟瑾 《微生物学报》2010,50(11):1481-1487
【目的】通过定点突变技术改变乳链菌肽(nisin)特定位置氨基酸,获得性质改善的nisin突变体,为扩大其应用范围提供依据。【方法】在抑菌谱扩大的nisin单突变体M21K nisinZ的基础上,对M21K nisZ基因第29位丝氨酸密码子进行定点突变;将其克隆至乳酸菌表达载体pMG36e,并在Lactococcus lactis NZ9800中进行表达;双突变体M21K/S29K nisinZ经分离纯化后检测其在抑菌活性、抑菌谱和稳定性等方面的变化。【结果】与单突变体M21K nisinZ及野生型nisinZ(wild-type,WT)相比,双突变体M21K/S29K nisinZ对指示菌的抑菌活性虽有所下降,但其对温度及pH值的稳定性有显著提高。同时其抑菌谱与M21K nisinZ相同,可抑制革兰氏阴性菌,扩大了WT的抑菌谱。【结论】通过改变nisin分子特定位置的氨基酸可以改善nisin分子的理化性质,有可能得到应用范围更广的nisin品种。  相似文献   

4.
【背景】雷可肽(Lexapeptide)为首例V型羊毛硫肽家族化合物,具有较好的抗革兰氏阳性菌活性,对耐甲氧西林金黄色葡萄球菌(Methicillin-Resistant Staphylococcus aureus,MRSA)和表皮葡萄球菌(Methicillin-Resistant Staphylococcus epidermidis,MRSE)的抑制作用强于广泛应用的食品防腐剂乳酸链球菌素,其对pH和高温的稳定性也优于乳酸链球菌素,具有较好的应用前景。由于抑菌机制不明确,限制了雷可肽的开发应用。【目的】探究雷可肽抑菌作用特征以及作用机制,为雷可肽开发应用奠定基础。【方法】通过菌落计数法与Mg2+试验表征雷可肽抑菌动力学曲线;采用流式细胞仪和透射电子显微镜研究雷可肽在靶细胞表面的成孔性;利用高效液相色谱与基质辅助激光解吸电离的时间飞行质谱分析雷可肽处理对革兰氏阳性菌肽聚糖前体积累的影响。【结果】雷可肽在抑菌动力学上与乳酸链球菌素没有显著差别,但在更宽的Mg2+浓度范围内仍可保持抑菌活性。雷可肽处理后的细胞具有透过荧光染料的能力,生物型透射电镜观察到细胞发生破损。此外,在雷可肽作用后的细胞中检测到肽聚糖合成的前体尿嘧啶核苷二磷酸-N-乙酰胞壁酸五肽。【结论】雷可肽能够通过抑制细胞壁肽聚糖生物合成并造成细胞损伤进而获得通透性,以此来抑制革兰氏阳性菌生长。  相似文献   

5.
A number of bacteriocins from lactic acid bacteria and lantibiotics were tested for cross-reactivity in a nisin ELISA and bioassay. The bacteriocins showed no cross-reactivity, reflecting their structural dissimilarity from nisin. The lantibiotic subtilin which shares many common structural features with nisin, showed a high cross-reactivity in both the ELISA and the bioassay suggesting possible modifications to nisin to enhance its activity. Gallidermin did not cross react in the ELISA but did produce a zone of inhibition in the less specific bioassay. Other lantibiotics tested did not react in either assay.  相似文献   

6.
Immunomodulatory effects of nisin in turbot (Scophthalmus maximus L.)   总被引:3,自引:0,他引:3  
In the present work, the effect of nisin on the non-specific immune response of turbot (Scophthalmus maximus L.) leukocytes has been studied both in vitro and in vivo. The head kidney macrophage chemiluminescent (CL) response was significantly increased with intermediate doses of nisin (2.5 and 0.025 micro g ml(-1)) whilst the higher dose (25 micro g ml(-1)) significantly decreased the response after 24h incubation. When the incubation time was extended to 72 h, significant differences between doses were observed and the lower nisin concentration (0.025 micro g ml(-1)) appeared to be the optimum dose for increasing the CL response. The phagocytic activity of HK macrophages was also affected by in vitro nisin treatments. Nisin at 0.25 micro g ml(-1) and 0.025 micro g ml(-1) significantly stimulated the response after 24 and 72 h incubation respectively. Nitric oxide (NO) production by HK macrophages was not influenced by any nisin concentration employed for 24 or 72 h incubationsIn vivo, one week post injection, a slightly but non-significant stimulation of the CL response was observed with the lowest nisin concentration (0.0025 micro g fish(-1)). NO in serum and serum antibacterial index were not significantly affected by nisin treatments. On the other hand, lysozyme concentration in serum was significantly augmented with the lowest nisin dose (0.0025 micro g fish(-1)).The antibacterial effect of nisin against the fish pathogenic bacteria Carnobacterium piscicola (CECT 4020) was also demonstrated in vitro.  相似文献   

7.
Biomolecule labeling by fluorescent markers has emerged as an innovative methodology for bio-analytical purposes in food microbiology, medicine and pharmaceutics due to the great advantages of this method such as precision, wide detection limits, and in vivo recognition. Fluorescent nisin Z was synthesized by linking the carboxyl group and amino group of nisin Z and 5-aminoacetamido fluorescein (AAA-flu). This new structure was fully characterized by mass spectrometry with a molecular weight of 3717.3 Da. Intracellular K+ leakage and transmembrane electrical potential (Δψ) were used to evaluate the antibacterial action of the labeled molecule against three listerial strains and demonstrated that nisin Z endured the labeling process without any activity loss. In vivo activity of labeled nisin was observed by confocal laser microscope which revealed its localization at the septum of listerial cell division site where the membrane-bound cell wall precursor lipid II is maximal. Fluorescent nisin Z showed its great potential as a tool to study antibacterial mechanism of action of nisin in biological systems.  相似文献   

8.
Lactococcus lactis QU 5 isolated from corn produces a novel bacteriocin, termed lacticin Q. By acetone precipitation, cation-exchange chromatography, and reverse-phase high-performance liquid chromatography, lacticin Q was purified from the culture supernatant of this organism, and its molecular mass was determined to be 5,926.50 Da by mass spectrometry. Subsequent analyses of amino acid and DNA sequences revealed that lacticin Q comprised 53 amino acid residues and that its N-terminal methionine residue was formylated. In contrast to most bacteriocins produced by gram-positive bacteria, lacticin Q had no N-terminal extensions such as leader or signal sequences. It showed 66% and 48% identity to AucA, a hypothetical protein from Corynebacterium jeikeium plasmid pA501, and aureocin A53, a bacteriocin from Staphylococcus aureus A53, respectively. The characteristics of lacticin Q were determined and compared to those of nisin A. Similar to nisin A, lacticin Q exhibited antibacterial activity against various gram-positive bacteria. Lacticin Q was very stable against heat treatment and changes in pH; in particular, it was stable at alkaline pH values, while nisin A was inactivated. Moreover, lacticin Q induced ATP efflux from a Listeria sp. strain in a shorter time and at a lower concentration than nisin A, indicating that the former affected indicator cells in a different manner from that of the latter. The results described here clarified the fact that lacticin Q belongs to a new family of class II bacteriocins and that it can be employed as an alternative to or in combination with nisin A.  相似文献   

9.
Antimicrobial peptides (AMPs) commonly target bacterial membranes and show broad-spectrum activity against microorganisms. In this research we used three AMPs (nisin, epilancin 15×, [R4L10]-teixobactin) and tested their membrane effects towards three strains (Staphylococcus simulans, Micrococcus flavus, Bacillus megaterium) in relation with their antibacterial activity. We describe fluorescence and luminescence-based assays to measure effects on membrane potential, intracellular pH, membrane permeabilization and intracellular ATP levels. The results show that our control peptide, nisin, performed mostly as expected in view of its targeted pore-forming activity, with fast killing kinetics that coincided with severe membrane permeabilization in all three strains. However, the mechanisms of action of both Epilancin 15× as well as [R4L10]-teixobactin appeared to depend strongly on the bacterium tested. In certain specific combinations of assay, peptide and bacterium, deviations from the general picture were observed. This was even the case for nisin, indicating the importance of using multiple assays and bacteria for mode of action studies to be able to draw proper conclusions on the mode of action of AMPs.  相似文献   

10.
The antibacterial activity of royalisin, an antimicrobial peptide from the royal jelly produced by honeybees, has been addressed extensively. However, its mechanism of action remains unclear. In this study, a recombinant royalisin, RAcc-royalisin from the royal jelly of Asian honeybee Apis cerana cerana, was expressed by fusing with glutathione S-transferase (GST) in Escherichia coli BL21, isolated and purified. The agar dilution assays with inhibition zone showed that RAcc-royalisin, similar to nisin, inhibits the growth of Gram-positive bacteria. The antibacterial activity of RAcc-royalisin was associated with its concentration, and was weakened by heat treatment ranging from 55°C to 85°C for 15 min. Both RAcc-royalisin and nisin exhibited the minimum inhibitory concentrations (MIC) of 62.5 µg/ml, 125 µg/ml, and 250 µg/ml against Gram-positive bacterial strains, Bacillus subtilis and Micrococcus flavus and Staphyloccocus aureus in the microplate assay, respectively. However, RAcc-royalisin did not show antimicrobial activity against tested Gram-negative bacterial and fungal strains. The antibacterial activity of RAcc-royalisin agrees well with the decrease in bacterial cell hydrophobicity, the leakage of 260-nm absorbing materials, and the observation by transmission electron microscopy, all indicating that RAcc-royalisin induced the disruption and dysfunction of cell walls and membranes. This is the first report detailing the antibacterial mechanism of royalisin against Gram-positive bacteria, and provides insight into the application of recombinant royalisin in food and pharmaceutical industries as an antimicrobial agent.  相似文献   

11.
We report here that both ultrahigh hydrostatic pressure (UHP) and electroporation (EP) induced sublethal injury to bacterial cells surviving the treatments. The injured cells of both gram-positive and -negative bacteria became sensitive to the bacteriocins pediocin AcH and nisin. Bacteriocins in combination with either UHP or EP have greater antibacterial effectiveness than UHP or EP alone.  相似文献   

12.
细菌素的合成与作用机制   总被引:1,自引:0,他引:1       下载免费PDF全文
细菌素是由细菌产生的抗菌蛋白,可以杀死与产生菌相近的细菌。很多乳酸菌产生不同多样性的细菌素,虽然这些细菌素都是由发酵或非发酵食品中发现的乳酸菌产生的,但是迄今只有乳酸链球菌素(Nisin)作为食品防腐剂被广泛应用。和抗生素不同的是,细菌素由核糖体合成,需经翻译后修饰活化并且通过特定转运系统输到胞外才能发挥其功能,它一般通过作用于靶细胞膜来抑制靶细胞的生长,同时本身合成细菌素的细胞对其产物具有免疫性。细菌素能安全有效地抑制病原体生长,在食品行业中具有广阔的应用前景。  相似文献   

13.
The lantibiotic nisin, a special case or not?   总被引:13,自引:0,他引:13  
Nisin is a 34-residue-long peptide belonging to the group A lantibiotics with antimicrobial activity against Gram-positive bacteria. The presence of dehydrated residues and lanthionine rings (thioether bonds) in nisin, imposing structural restrains on the peptide, make it an interesting case for studying the mode of action. In addition, the relatively high activity (nM range) of nisin against Gram-positive bacteria indicates that nisin may be a special case in the large family of pore-forming peptides antibiotics. In this review, we attempted to dissect the mode of action of nisin concentrating on studies that used model membranes or biological membranes. The picture that emerges suggests that in model membrane systems, composed of only phospholipids, nisin behaves similar to the antimicrobial peptide magainin, albeit with an activity that is much lower as compared to its activity towards biological membranes. This difference can be contributed to a missing factor which nisin needs for its high activity. Novel results have identified the factor as Lipid II, a precursor in the bacterial cell wall synthesis. The special high affinity interaction of nisin with Lipid II resulting in high activity and the active role of Lipid II in the pore-formation process make nisin a special case.  相似文献   

14.
AIMS: Screening for lactic acid bacteria (LAB) producing bacteriocins and other antimicrobial compounds is of a great significance for the dairy industry to improve food safety. METHODS AND RESULTS: Six-hundred strains of LAB isolated from 'rigouta', a Tunisian fermented cheese, were tested for antilisterial activity. Eight bacteriocinogenic strains were selected and analysed. Seven of these strains were identified as Lactococcus lactis and produced nisin Z as demonstrated by mass spectrometry analysis of the purified antibacterial compound. Polymerase chain reaction experiments using nisin gene-specific primers confirmed the presence of nisin operon. Plasmid profiles analysis suggests the presence of, at least, three different strains in this group. MMT05, the eighth strain of this antilisterial collection was identified, at molecular level, as Enterococcus faecalis. The purified bacteriocin produced by this strain showed a molecular mass of 10 201.33 +/- 0.85 Da. This new member of class III bacteriocins was termed enterocin MMT05. CONCLUSIONS: Seven lactococcal strains producing nisin Z were selected and could be useful as bio-preservative starter cultures. Additional experiments are needed to evaluate the promising strain MMT05 as bio-preservative as Enterococci could exert detrimental or beneficial role in foods. SIGNIFICANCE AND IMPACT OF THE STUDY: Only a few antibacterial strains isolated from traditional African dairy products were described. The new eight strains described herein contribute to the knowledge of this poorly studied environment and constitute promising strains for fermented food safety.  相似文献   

15.
The Lactococcus lactis subsp. lactis 194-K strain has been established to be able to produce two bacteriocins, one of which was identified as the known lantibiotic nisin A, and the other 194-D bacteriocin represents a polypeptide with a 2589-Da molecular mass and comprises 20 amino acid residues. Both bacteriocins were produced in varying proportions in all of the studied culture media, which support the growth of the producer. Depending on the cultivation medium, the nisin A content was 380- to 1123-fold lower in the 194-K stain culture broth than that of the 194-D peptide. In comparision to nisin A Bacteriocin 194-D possessed a wide range of antibacterial activity and suppressed the growth of both Gram-positive and Gram-negative bacteria. An optimal medium for 194-D bacteriocin synthesis was shown to be a fermentation medium which contained yeast extract, casein hydrolysate, and potassium phosphate. The biosynthesis of bacteriocin 194-D by the 194-K strain in these media occurred parallel to producer growth, and its maximal accumulation in the culture broth was observed at14–20 h of the strain’s growth.  相似文献   

16.
Mechanisms of nisin resistance in Gram-positive bacteria   总被引:1,自引:0,他引:1  
Nisin is the most prominent lantibiotic and is used as a food preservative due to its high potency against certain Gram-positive bacteria. However, the effectiveness of nisin is often affected by environmental factors such as pH, temperature, food composition, structure, as well as food microbiota. The development of nisin resistance has been seen among various Gram-positive bacteria. The mechanisms under the acquisition of nisin resistance are complicated and may differ among strains. This paper presents a brief review of possible mechanisms of the development of resistance to nisin among Gram-positive bacteria.  相似文献   

17.
Wang W  Tao R  Tong Z  Ding Y  Kuang R  Zhai S  Liu J  Ni L 《Peptides》2012,33(2):212-219
Dental caries and pulpal diseases are common oral bacterial infectious diseases. Controlling and reducing the causative pathogens, such as Streptococcus mutans and Enterococcus faecalis, is a key step toward prevention and treatment of the two diseases. Chrysophsin-1 is a cationic antimicrobial peptide having broad-spectrum bactericidal activity against both Gram-positive and Gram-negative bacteria. In this study, we investigated the antibacterial activity of chrysophsin-1 against several oral pathogens and S. mutans biofilms and performed a preliminary study of the antimicrobial mechanism. Cytotoxic activity of chrysophsin-1 against human gingival fibroblasts (HGFs) was investigated. Minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC) and time-kill assay were used to evaluate the killing effect of chrysophsin-1. Scanning electron microscopy (SEM) was used to analyze morphological and membrane change in oral pathogens. Live/Dead staining, in conjunction with confocal scanning laser microscopy (CSLM), was used to observe and analyze S. mutans biofilms. MIC and MBC results demonstrated that chrysophsin-1 had different antimicrobial activities against the tested oral microbes. Lysis and pore formation of the cytomembrane were observed following treatment of the bacteria with chrysophsin-1 for 4h or 24h by SEM. Furthermore, CLSM images showed that chrysophsin-1 remarkably reduced the viability of cells within biofilms and had a significantly lethal effect against S. mutans biofilms. Toxicity studies showed that chrysophsin-1 at concentration between 8 μg/ml and 32 μg/ml had little effect on viability of HGFs in 5 min. Our findings suggest that chrysophsin-1 may have potential clinical applications in the prevention and treatment of dental caries and pulpal diseases.  相似文献   

18.
An isolate of Lactococcus lactis from fermented milk was found to produce a bacteriocin peptide. The isolate could grow in a medium with an initial pH of 11.0, in which it produced the bacteriocin extracellularly at the highest level. The level of the bacteriocin in the medium increased in parallel to the bacterial growth and reached its peak during the late exponential phase; thereafter it plateaued. The bacteriocin had a broad antibacterial spectrum similar to that of nisin and inhibited several related species of lactic acid bacteria and other Gram-positive bacteria. The inhibitory activity of the bacteriocin was found to be stable over a wide range of pH and temperature. The molecular weight of the peptide was judged to be 2.5 kDa by SDS-polyacrylamide gel electrophoresis.  相似文献   

19.
An effective antimicrobial packaging or food contact surface should be able to kill or inhibit micro-organisms that cause food-borne illnesses. Setting up such systems, by nisin adsorption on hydrophilic and hydrophobic surfaces, is still a matter of debate. For this purpose, nisin was adsorbed on two types of low-density polyethylene: the hydrophobic native film and the hydrophilic acrylic acid-treated surface. The antibacterial activity was compared for those two films and it was highly dependent on the nature of the surface and the nisin-adsorbed amount. The hydrophilic surfaces presented higher antibacterial activity and higher amount of nisin than the hydrophobic surfaces. The effectiveness of the activated surfaces was assessed against Listeria innocua and the food pathogens Listeria monocytogenes, Bacillus cereus, and Staphylococcus aureus. S. aureus was more sensitive than the three other test bacteria toward both nisin-functionalized films. Simulation tests to mimic refrigerated temperature showed that the films were effective at 20 and 4 °C with no significant difference between the two temperatures after 30 min of exposure to culture media.  相似文献   

20.
细菌性疾病的爆发常造成水产养殖业的巨大经济损失,其中副溶血性弧菌(Vibrio parahaemolyticus)引起的细菌性疾病更是引起了人们的关注。拮抗菌在代谢活动中通过分泌抗菌物质直接对病原菌产生抑制或竞争作用来抑制或杀死病原菌,在病害防治中发挥着重大作用。对副溶血性弧菌拮抗菌的种类、产生拮抗物质的种类、筛选拮抗菌常用的方法以及拮抗细菌的抑菌机制进行阐述,以期为副溶血性弧菌的生物防治提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号