首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 668 毫秒
1.
Moles have modified thoracic limbs with hypertrophied pectoral girdle muscles that allow them to apply remarkably high lateral out‐forces during the power stroke when burrowing. To further understand the high force capabilities of mole forelimbs, architectural properties of the thoracic limb muscles were quantified in the Eastern mole (Scalopus aquaticus). Architectural properties measured included muscle mass, moment arm, belly length, fascicle length, and pennation angle, and these were used to provide estimates of maximum isometric force, joint torque, and power. Measurements of muscle moment arms and limb lever lengths were additionally used to analyze the out‐force contributions of the major pectoral girdle muscles. Most muscles have relatively long fascicles and little‐to‐no pennation. The humeral abductor/rotators as a functional group are massive and are capable of relatively high force, power, and joint torque. Of this group, the bipennate m. teres major is the most massive and has the capacity to produce the highest force and joint torque to abduct and axially rotate the humerus. In general, the distal limb muscles are relatively small, but have the capacity for high force and mechanical work by fascicle shortening. The muscle architectural properties of the elbow extensors (e.g., m. triceps brachii) and carpal flexors (e.g., m. palmaris longus) are consistent with the function of these muscles to augment lateral out‐force application. The humeral abductor/rotators m. latissimus dorsi, m. teres major, m. pectoralis, and m. subscapularis are calculated to contribute 13.9 N to out‐force during the power stroke, and this force is applied in a ‘frontal’ plane causing abduction of the humerus about the sternoclavicular joint. Moles have several specializations of their digging apparatus that greatly enhance the application of out‐force, and these morphological features suggest convergence on limb form and burrowing function between New and Old World moles. J. Morphol. 274:1277–1287, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
The present study examined the morphometric properties of the forelimb, including the inertial properties of the body segments and the morphometric parameters of 21 muscles spanning the shoulder and/or elbow joints of six Macaca mulatta and three M. fascicularis. Five muscle parameters are presented: optimal fascicle length (L(0)(M)), tendon slack length (L(S)(T)), physiological cross-sectional area (PCSA), pennation angle (alpha(0)), and muscle mass (m). Linear regressions indicate that muscle mass, and to a lesser extent PCSA, correlated with total body weight. Segment mass, center-of-mass, and the moment of inertia of the upper arm, forearm, and hand are also presented. Our data indicate that for some segments, radius of gyration (rho) predicts segment moment of inertia better than linear regressions based on total body weight. Key differences between the monkey and human forelimb are highlighted.  相似文献   

3.
Tree sloths have reduced skeletal muscle mass, and yet they are able to perform suspensory behaviors that require both strength and fatigue resistance to suspend their body mass for extended periods of time. The muscle architecture of sloths is hypothesized to be modified in ways that will enhance force production to compensate for this reduction in limb muscle mass. Our objective is to test this hypothesis by quantifying architecture properties in the forelimb musculature of the brown-throated three-toed sloth (Bradypus variegatus: N = 4). We evaluated architecture from 52 forelimb muscles by measuring muscle moment arm (r m), muscle mass (MM), belly length (ML), fascicle length (LF), pennation angle (θ), and physiological cross-sectional area (PCSA), and these metrics were used to estimate isometric force, joint torque, and power. Overall, the musculature becomes progressively more pennate from the extrinsic to intrinsic regions of the forelimb, and the flexors are more well developed than the extensors as predicted. However, most muscles are indicative of a mechanical design for fast joint rotational velocity instead of large joint torque (i.e., strength), although certain large, parallel-fibered shoulder (e.g., m. latissimus dorsi) and elbow (e.g., m. brachioradialis) flexors are capable of producing appreciable torques by having elongated moment arms. This type of functional tradeoff between joint rotational velocity and mechanical advantage is further exemplified by muscle gearing in Bradypus that pairs synergistic muscles with opposing LF/r m ratios in each functional group. These properties are suggested to facilitate the slow, controlled movements in sloths. In addition, the carpal/digital flexors have variable architectural properties, but their collective PCSA and joint torque indicates the capability for maintaining grip force and carpal stability while distributing load from the manus to the shoulder. The observed specializations provide a basis for understanding sustained suspension in sloths.  相似文献   

4.
A key feature of successful motor control is the ability to counter unexpected perturbations. This process is complicated in multijoint systems, like the human arm, by the fact that loads applied at one joint will create motion at other joints [1-3]. Here, we test whether our most rapid corrections, i.e., reflexes, address this complexity through an internal model of the limb's mechanical properties. By selectively applying torque perturbations to the subject's shoulder and/or elbow, we revealed a qualitative difference between the arm's short-latency/spinal reflexes and long-latency/cortical reflexes. Short-latency reflexes of shoulder muscles were linked exclusively to shoulder motion, whereas its long-latency reflexes were sensitive to both shoulder and elbow motion, i.e., matching the underlying shoulder torque. In fact, a long-latency reflex could be evoked without even stretching or lengthening the shoulder muscle but by displacing just the elbow joint. Further, the shoulder's long-latency reflexes were appropriately modified across the workspace to account for limb-geometry changes that affect the transformation between joint torque and joint motion. These results provide clear evidence that long-latency reflexes possess an internal model of limb dynamics, a degree of motor intelligence previously reserved for voluntary motor control [3-5]. The use of internal models for both voluntary and reflex control is consistent with substantial overlap in their neural substrates and current notions of intelligent feedback control [6-8].  相似文献   

5.
The aim of the present study was to determine how the intra-muscular segments of three shoulder muscles were coordinated to produce isometric force impulses around the shoulder joint and how muscle segment coordination was influenced by changes in movement direction, mechanical line of action and moment arm (ma). Twenty male subjects (mean age 22 years; range 18-30 years) with no known history of shoulder pathologies, volunteered to participate in this experiment. Utilising an electromyographic technique, the timing and intensity of contraction within 19 muscle segments of three superficial shoulder muscles (Pectoralis Major, Deltoid and Latissimus Dorsi) were studied and compared during the production of rapid (e.g. approximately 400ms time to peak) isometric force impulses in four different movement directions of the shoulder joint (flexion, extension, abduction and adduction). The results of this investigation have suggested that the timing and intensity of each muscle segment's activation was coordinated across muscles and influenced by the muscle segment's moment arm and its mechanical line of action in relation to the intended direction of shoulder movement (e.g. flexion, extension, abduction or adduction). There was also evidence that motor unit task groups were formed for individual motor tasks which comprise motor units from both adjacent and distant muscles. It was also confirmed that for any particular motor task, individual muscle segments can be functionally classified as prime mover, synergist or antagonist - classifications which are flexible from one movement to the next.  相似文献   

6.
This study investigates the morphological basis of differences between humans and chimpanzees in the kinematical and dynamical parameters of the musculature of the thumb. It is partly intended to test an hypothesis that human thumb muscles can exert significantly greater torques, due to larger muscle cross-sectional areas or to longer tendon moment arms or to both. We focus on the estimation of the potentials of thumb muscles to exert torques about joint axes in a sample of eight chimpanzee cadaver hands. The potential torque of a muscle is estimated by taking the product of a muscle's physiological cross-sectional area (an estimator of force) with its dynamical moment arm (derived from the slope of tendon excursion versus joint angular displacement, obtained during passive movements of cadaver thumb joints). Comparison of our results with similar data obtained for humans at the same Mayo Clinic laboratory shows significant differences between humans and chimpanzees in potential torque of most thumb muscles, those of humans generally exhibiting larger values. The primary reason for the larger torques in humans is that their average moment arms are significantly longer, permitting greater torque for a given muscle size. An additional finding is that chimpanzees and humans differ in the direction of secondary thumb metacarpal movements elicited by contraction of some muscles, as shown by differences in moment arm signs for a given movement in the same muscle. The differences appear to be related to differences in the musculo-skeletal structures of the trapeziometacarpal joint.  相似文献   

7.
Evaluation of the relationships between muscle structure and digging function in fossorial species is limited. Badgers and other fossorial specialists are expected to have massive forelimb muscles with long fascicles capable of substantial shortening for high power and applying high out‐force to the substrate. To explore this hypothesis, we quantified muscle architecture in the thoracic limb of the American badger (Taxidea taxus) and estimated the force, power, and joint torque of its intrinsic musculature in relation to the use of scratch‐digging behavior. Architectural properties measured were muscle mass, belly length, fascicle length, pennation angle, and physiological cross‐sectional area. Badgers possess hypertrophied shoulder flexors/humeral retractors, elbow extensors, and digital flexors. The triceps brachii is particularly massive and has long fascicles with little pennation, muscle architecture consistent with substantial shortening capability, and high power. A unique feature of badgers is that, in addition to elbow joint extension, two biarticular heads (long and medial) of the triceps are capable of applying high torques to the shoulder joint to facilitate retraction of the forelimb throughout the power stroke. The massive and complex digital flexors show relatively greater pennation and shorter fascicle lengths than the triceps brachii, as well as compartmentalization of muscle heads to accentuate both force production and range of shortening during flexion of the carpus and digits. Muscles of most functional groups exhibit some degree of specialization for high force production and are important for stabilizing the shoulder, elbow, and carpal joints against high limb forces generated during powerful digging motions. Overall, our findings support the hypothesis and indicate that forelimb muscle architecture is consistent with specializations for scratch‐digging. Quantified muscle properties in the American badger serve as a comparator to evaluate the range of diversity in muscle structure and contractile function that exists in mammals specialized for fossorial habits. J. Morphol. 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
A parametric model was developed to describe the relationship between muscle moment arm and joint angle. The model was applied to the dorsiflexor muscle group in mice, for which the moment arm was determined as a function of ankle angle. The moment arm was calculated from the torque measured about the ankle upon application of a known force along the line of action of the dorsiflexor muscle group. The dependence of the dorsiflexor moment arm on ankle angle was modeled as r=R sin(a+Δ), where r is the moment arm calculated from the measured torque and a is the joint angle. A least-squares curve fit yielded values for R, the maximum moment arm, and Δ, the angle at which the maximum moment arm occurs as offset from 90°. Parametric models were developed for two strains of mice, and no differences were found between the moment arms determined for each strain. Values for the maximum moment arm, R, for the two different strains were 0.99 and 1.14 mm, in agreement with the limited data available from the literature. While in some cases moment arm data may be better fitted by a polynomial, use of the parametric model provides a moment arm relationship with meaningful anatomical constants, allowing for the direct comparison of moment arm characteristics between different strains and species.  相似文献   

9.
Moment arms are important for understanding muscular behavior and for calculating internal muscle forces in musculoskeletal simulations. Biarticular muscles cross two joints and have moment arms that depend on the angle of both joints the muscles cross. The tendon excursion method was used to measure the joint angle-dependence of hamstring (biceps femoris, semimembranosus and semitendinosus) moment arm magnitudes of the feline hindlimb at the knee and hip joints. Knee angle influenced hamstring moment arm magnitudes at the hip joint; compared to a flexed knee joint, the moment arm for semimembranosus posterior at the hip was at most 7.4 mm (25%) larger when the knee was extended. On average, hamstring moment arms at the hip increased by 4.9 mm when the knee was more extended. In contrast, moment arm magnitudes at the knee varied by less than 2.8 mm (mean=1.6 mm) for all hamstring muscles at the two hip joint angles tested. Thus, hamstring moment arms at the hip were dependent on knee position, while hamstring moment arms at the knee were not as strongly associated with relative hip position. Additionally, the feline hamstring muscle group had a larger mechanical advantage at the hip than at the knee joint.  相似文献   

10.
The sliding filament and cross-bridge theories of muscle contraction provide discrete predictions of the tetanic force-length relationship of skeletal muscle that have been tested experimentally. The active force generated by a maximally activated single fiber (with sarcomere length control) is maximal when the filament overlap is optimized and is proportionally decreased when overlap is diminished. The force-length relationship is a static property of skeletal muscle and, therefore, it does not predict the consequences of dynamic contractions. Changes in sarcomere length during muscle contraction result in modulation of the active force that is not necessarily predicted by the cross-bridge theory. The results of in vivo studies of the force-length relationship suggest that muscles that operate on the ascending limb of the force-length relationship typically function in stretch-shortening cycle contractions, and muscles that operate on the descending limb typically function in shorten-stretch cycle contractions. The joint moments produced by a muscle depend on the moment arm and the sarcomere length of the muscle. Moment arm magnitude also affects the excursion (length change) of a muscle for a given change in joint angle, and the number of sarcomeres arranged in series within a muscle fiber determines the sarcomere length change associated with a given excursion.  相似文献   

11.
In this study, a new method is proposed to estimate the torque-vector directions of each shoulder muscle. The method is based on a multiple regression model that reconstructs shoulder torque, which is calculated from the hand force and posture, from the surface EMG of many muscles recorded simultaneously. The torque-vector directions of eleven shoulder muscles of four subjects were obtained at up to 30 different arm postures with this method. The mean confidence interval (p < 0.05) of the estimated torque-vector direction of each subject was 7.7-10.6 degrees. The correlation coefficient between the measured shoulder torque and reconstructed shoulder torque was between 0.76-0.84. The results for majority of the muscles were in accordance with previous studies, and reasonable from the viewpoint of anatomy. The torque-vector directions of a muscle, which are estimated with this method, have more of a functional meaning than a pure anatomical or mechanical one. These indicate the direction of the shoulder torque accompanying the muscle activation for a normal shoulder action that involves the cooperative contraction of many muscles.  相似文献   

12.
In this study, a new method is proposed to estimate the torque-vector directions of each shoulder muscle. The method is based on a multiple regression model that reconstructs shoulder torque, which is calculated from the hand force and posture, from the surface EMG of many muscles recorded simultaneously. The torque-vector directions of eleven shoulder muscles of four subjects were obtained at up to 30 different arm postures with this method. The mean confidence interval ( p< 0.05) of the estimated torque-vector direction of each subject was 7.7-10.6 degrees. The correlation coefficient between the measured shoulder torque and reconstructed shoulder torque was between 0.76-0.84. The results for majority of the muscles were in accordance with previous studies, and reasonable from the viewpoint of anatomy. The torque-vector directions of a muscle, which are estimated with this method, have more of a functional meaning than a pure anatomical or mechanical one. These indicate the direction of the shoulder torque accompanying the muscle activation for a normal shoulder action that involves the cooperative contraction of many muscles.  相似文献   

13.
Forward dynamics simulations of a dismount preparation swing on the uneven parallel bars were optimized to investigate the sensitivity of dismount revolution potential to the maximum bar force before slipping, and to low-bar avoidance. All optimization constraints were classified as 1-anatomical/physiological; limiting maximum hand force on the high bar before slipping, joint ranges of motion and maximum torques, muscle activation/deactivation timing and 2-geometric; avoiding low-bar contact, and requiring minimum landing distance. The gymnast model included torso/head, arm and two leg segments connected by a planar rotating, compliant shoulder and frictionless ball-and-socket hip joints. Maximum shoulder and hip torques were measured as functions of joint angle and angular velocity. Motions were driven by scaling maximum torques by a joint torque activation function of time which approximated the average activation of all muscles crossing the joint causing extension/flexion, or adduction/abduction. Ten joint torque activation values, and bar release times were optimized to maximize dismount revolutions using the downhill simplex method. Low-bar avoidance and maximum bar-force constraints are necessary because they reduce dismount revolution potential. Compared with the no low-bar performance, optimally avoiding the low bar by piking and straddling (abducting) the hips reduces dismount revolutions by 1.8%. Using previously reported experimentally measured peak uneven bar-force values of 3.6 and 4.0 body weight (BW) as optimization constraints, 1.40 and 1.55 revolutions with the body extended and arms overhead were possible, respectively. The bar-force constraint is not active if larger than 6.9 BW, and instead performances are limited only by maximum shoulder and hip torques. Bar forces accelerate the mass center (CM) when performing muscular work to flex/extend the joints, and increase gymnast mechanical energy. Therefore, the bar-force constraint inherently limits performance by limiting the ability to do work and reducing system energy at bar release.  相似文献   

14.
Hill-type muscle models are commonly used in musculoskeletal models to estimate muscle forces during human movement. However, the sensitivity of model predictions of muscle function to changes in muscle moment arms and muscle-tendon properties is not well understood. In the present study, a three-dimensional muscle-actuated model of the body was used to evaluate the sensitivity of the function of the major lower limb muscles in accelerating the whole-body center of mass during gait. Monte-Carlo analyses were used to quantify the effects of entire distributions of perturbations in the moment arms and architectural properties of muscles. In most cases, varying the moment arm and architectural properties of a muscle affected the torque generated by that muscle about the joint(s) it spanned as well as the torques generated by adjacent muscles. Muscle function was most sensitive to changes in tendon slack length and least sensitive to changes in muscle moment arm. However, the sensitivity of muscle function to changes in moment arms and architectural properties was highly muscle-specific; muscle function was most sensitive in the cases of gastrocnemius and rectus femoris and insensitive in the cases of hamstrings and the medial sub-region of gluteus maximus. The sensitivity of a muscle's function was influenced by the magnitude of the muscle's force as well as the operating region of the muscle on its force-length curve. These findings have implications for the development of subject-specific models of the human musculoskeletal system.  相似文献   

15.
We have quantified individual muscle force and moment contributions to net joint moments and estimated the operating ranges of the individual muscle fibers over the full range of motion for elbow flexion/extension and forearm pronation/supination. A three dimensional computer graphics model was developed in order to estimate individual muscle contributions in each degree of freedom over the full range of motion generated by 17 muscles crossing the elbow and forearm. Optimal fiber length, tendon slack length, and muscle specific tension values were adjusted within the literature range from cadaver studies such that the net isometric joint moments of the model approximated experimental joint moments within one standard deviation. Analysis of the model revealed that the muscles operate on varying portions of the ascending limb, plateau region, and descending limb of the force-length curve. This model can be used to further understand isometric force and moment contributions of individual muscles to net joint moments of the arm and forearm and can serve as a comprehensive reference for the forces and moments generated by 17 major muscles crossing the elbow and wrist.  相似文献   

16.
An extensive set of muscle and joint geometry parameters was measured of the right shoulder of an embalmed male. For all muscles the optimal muscle fiber length was determined by laser diffraction measurements of sarcomere length. In addition, tendon length and physiological cross-sectional area were determined. The parameter set was needed to enhance the reliability of a computer model of the shoulder (Van der Helm, 1994a,b Journal of Biomechanics 27, 527-550, 551-569). With the model, an abduction of the arm was simulated in seven positions, at 30 degrees intervals. In each of the simulated arm positions, actual sarcomere lengths were calculated from the lengths of 104 muscle elements, distributed over 16 shoulder muscles. For most muscle elements, the simulated abduction appeared to take place within the sarcomere length range in which the muscle elements can exert force. The muscle elements can then act on the ascending limb as well as on the plateau and on the descending limb of the relative force-length curves of sarcomeres. The produced data set is not only important for the refinement of shoulder modeling, but also for functional analyses of shoulder movements in general.  相似文献   

17.
The biceps brachii is a bi-articular muscle affecting motion at the shoulder and elbow. While its' action at the elbow is well documented, its role in shoulder elevation is less clear. Therefore, the purpose of this project was to investigate the influence of shoulder and elbow joint angles on the shoulder elevation function of the biceps brachii. Twelve males and 18 females were tested on a Biodex dynamometer with the biceps brachii muscle selectively stimulated at a standardized level of voltage. The results indicated that both shoulder and elbow joint angles influence the shoulder joint elevation moment produced by the biceps brachii. Further analysis revealed that the elevation moment was greatest with the shoulder joint at 0 degrees and the elbow flexed 30 degrees or less. The greatest reduction in the elevation moment occurred between shoulder angles of 0 degrees and 30 degrees . The shoulder elevation moment was near zero when shoulder elevation reached or exceeded 60 degrees regardless of elbow angle. These results clarify the role of the biceps in shoulder elevation, as a dynamic stabilizer, and suggest that it is a decelerator of the arm during the throwing motion.  相似文献   

18.
In this study we investigated the hypothesis that the simple set of rules used to explain the modulation of muscle activities during single-joint movements could also be applied for reversal movements of the shoulder and elbow joints. The muscle torques of both joints were characterized by a triphasic impulse. The first impulse of each joint accelerated the limb to the target and was generated by an initial burst of the muscles activated first (primary mover). The second impulse decelerated the limb to the target, reversed movement direction and accelerated the limb back to the initial position, and was generated by an initial burst of the muscles activated second (secondary movers). A third impulse, in each joint, decelerated the limb to the initial position due to the generation of a second burst of the primary movers. The first burst of the primary mover decreased abruptly, and the latency between the activation of the primary and secondary movers varied in proportion with target distances for the elbow, but not for the shoulder muscles. All impulses and bursts increased with target distances and were well coupled. Therefore, as predicted, the bursts of muscle activities were modulated to generate the appropriate level of muscle torque.  相似文献   

19.
The purpose of this study was to examine the effects of unilateral isometric leg extension strength training on the strength and integrated electromyogram (IEMG) of both the trained and untrained limbs at multiple joint angles. A training (TRN) group [nine women; mean (SD) age, 20(1) years] exercised for 6 weeks with isometric leg extensions at 80% of maximal isometric torque. A control (CTL) group [eight women; 21(1) years] did not exercise. The training was performed three times per week on a Cybex II isokinetic dynamometer at a joint angle where the lever arm was 0.79 rad below the horizontal plane. The subjects were tested pre- and posttraining for maximal unilateral isometric torque in both limbs at joint angles of zero, 0.26, 0.79,1.31, and 1.57 rad below the horizontal plane. Bipolar surface electrodes were used to record the IEMG of the vastus lateralis (VL) and vastus medialis (VM) during the isometric tests. Three univariate (torque, IEMG-VL, and IEMG-VM) four-way (group x time x limb x angle) mixed factorial ANOVAs were used to analyze the data. The results indicated joint angle specificity for isometric torque in the TRN group only, with significant increases in torque at 0.79 (P = 0.0004) and 1.31 (P = 0.0039) rad. No significant increases in torque were found in the untrained limb of the TRN group or in either limb of the CTL group. Similarly, there were no significant changes in IEMG as a result of the training for the VL or VM. The joint-angle-specific strength increases without concomitant increases in IEMG were hypothesized to result from joint-angle-specific decreases in antagonistic co-contraction and/or preferential hypertropy of the quadriceps femoris at specific levels of the muscle group.  相似文献   

20.
Intramuscular pressure (IMP) and electromyography (EMG) mirror muscle force in the nonfatigued muscle during static contractions. The present study explores whether the constant IMP-EMG relationship with increased force may be extended to dynamic contractions and to fatigued muscle. IMP and EMG were recorded from shoulder muscles in three sessions: 1). brief static arm abductions at angles from 0 to 90 degrees, with and without 1 kg in the hands; 2). dynamic arm abductions at angular velocities from 9 to 90 degrees /s, with and without 1 kg in the hands; and 3). prolonged static arm abduction at 30 degrees for 30 min followed by recovery. IMP and EMG increased in parallel with increasing shoulder torque during brief static tasks. During dynamic contractions, peak IMP and EMG increased to values higher than those during static contractions, and EMG, but not IMP, increased significantly with speed of abduction. In the nonfatigued supraspinatus muscle, a linear relationship was found between IMP and EMG; in contrast, during fatigue and recovery, significant timewise changes of the IMP-to-EMG ratio occurred. The results indicate that IMP should be included along with EMG when mechanical load sharing between muscles is evaluated during dynamic and fatiguing contractions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号