首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 476 毫秒
1.
A gymnast model and forward dynamics simulation of a dismount preparation swing on the uneven parallel bars were evaluated by comparing experimental and predicted joint positions throughout the maneuver. The bar model was a linearly elastic spring with a frictional bar/hand interface, and the gymnast model consisted of torso/head, arm and two leg segments. The hips were frictionless balls and sockets, and shoulder movement was planar with passive compliant structures approximated by a parallel spring and damper. Subject-specific body segment moments of inertia, and shoulder compliance were estimated. Muscles crossing the shoulder and hip were represented as torque generators, and experiments quantified maximum instantaneous torques as functions of joint angle and angular velocity. Maximum torques were scaled by joint torque activations as functions of time to produce realistic motions. The downhill simplex method optimized activations and simulation initial conditions to minimize the difference between experimental and predicted bar-center, shoulder, hip, and ankle positions. Comparing experimental and simulated performances allowed evaluation of bar, shoulder compliance, joint torque, and gymnast models. Errors in all except the gymnast model are random, zero mean, and uncorrelated, verifying that all essential system features are represented. Although the swing simulation using the gymnast model matched experimental joint positions with a 2.15cm root-mean-squared error, errors are correlated. Correlated errors indicate that the gymnast model is not complex enough to exactly reproduce the experimental motion. Possible model improvements including a nonlinear shoulder model with active translational control and a two-segment torso would not have been identified if the objective function did not evaluate the entire system configuration throughout the motion. The model and parameters presented in this study can be effectively used to understand and improve an uneven parallel bar swing, although in the future there may be circumstances where a more complex model is needed.  相似文献   

2.
In the optimisation of sports movements using computer simulation models, the joint actuators must be constrained in order to obtain realistic results. In models of a gymnast, the main constraint used in previous studies was maximum voluntary active joint torque. In the stalder, gymnasts reach their maximal hip flexion under the bar. The purpose of this study was to introduce a model of passive torque to assess the effect of the gymnast's flexibility on the technique of the straddled stalder. A three-dimensional kinematics driven simulation model was developed. The kinematics of the shoulder flexion, hip flexion and hip abduction were optimised to minimise torques for four hip flexion flexibilities: 100°, 110°, 120° and 130°. With decreased flexibility, the piked posture period is shorter and occurs later. Moreover the peaks of shoulder and hip torques increase. Gymnasts with low hip flexibility need to be stronger to achieve a stalder; hip flexibility should be considered by coaches before teaching this skill.  相似文献   

3.
The dismount from the high bar is one of the most spectacular skills performed in Men's Artistic Gymnastics. Hiley and Yeadon [2005. Maximal dismounts from high bar. Journal of Biomechanics 38, 2221-2227] optimised the technique in the backward giant circle prior to release using a computer simulation model to show that a gymnast could generate sufficient linear and angular momentum to perform a triple piked backward somersault dismount with a sufficiently large release window (the period of time during which the gymnast could release the bar and successfully complete the dismount). In the present study, it was found that when the timing of the actions at the hip and shoulder joints from the optimum simulation were perturbed by 30ms the resulting simulation could no longer meet the criteria for sufficient aerial rotation and release window. Since it is to be expected that a gymnast's technique can cope with small errors in timing for consistent performance, a requirement of robustness to timing perturbations should be included within the optimisation process. When the technique in the backward giant circle was optimised to be robust to 30ms perturbations, it was found that sufficient linear and angular momentum for a triple piked dismount could be achieved with a realistic release window.  相似文献   

4.
The release window for a given dismount from the asymmetric bars is the period of time within which release results in a successful dismount. Larger release windows are likely to be associated with more consistent performance because they allow a greater margin for error in timing the release. A computer simulation model was used to investigate optimum technique for maximizing release windows in asymmetric bars dismounts. The model comprised four rigid segments with the elastic properties of the gymnast and bar modeled using damped linear springs. Model parameters were optimized to obtain a close match between simulated and actual performances of three gymnasts in terms of rotation angle (1.5 degrees ), bar displacement (0.014 m), and release velocities (<1%). Three optimizations to maximize the release window were carried out for each gymnast involving no perturbations, 10-ms perturbations, and 20-ms perturbations in the timing of the shoulder and hip joint movements preceding release. It was found that the optimizations robust to 20-ms perturbations produced release windows similar to those of the actual performances whereas the windows for the unperturbed optimizations were up to twice as large. It is concluded that robustness considerations must be included in optimization studies in order to obtain realistic results and that elite performances are likely to be robust to timing perturbations of the order of 20 ms.  相似文献   

5.
In men's artistic gymnastics the triple straight somersault dismount from the high bar has yet to be performed in competition. The present study used a simulation model of a gymnast and the high bar apparatus (J. Appl. Biomech. 19(2003a) 119) to determine whether a gymnast could produce the required angular momentum and flight to complete a triple straight somersault dismount. Optimisations were carried out to maximise the margin for error in timing the bar release for a given number of straight somersaults in flight. The amount of rotation potential (number of straight somersaults) the model could produce whilst maintaining a realistic margin for error was determined. A simulation model of aerial movement (J. Biomech.23 (1990) 85) was used to find what would be possible with this amount of rotation potential. The model was able to produce sufficient angular momentum and time in the air to complete a triple straight somersault dismount. The margin for error when releasing the bar using the optimum technique was 28 ms, which is small when compared with the mean margin for error determined for high bar finalists at the 2000 Sydney Olympic Games (55 ms). Although the triple straight somersault dismount is theoretically possible, it would require close to maximum effort and precise timing of the release from the bar. However, when the model was required to have a realistic margin for error, it was able to produce sufficient angular momentum for a double twisting triple somersault dismount.  相似文献   

6.
This paper investigated the factors that influence Hecht vault performance and assessed the level of model complexity required to give an adequate representation of vaulting. A five-segment planar simulation model with a visco-elastic shoulder joint and a torque generator at the shoulder joint was used to simulate the contact phase in vaulting. The model was customized to an elite gymnast by determining subject-specific segmental inertia and joint torque parameters. The simulation model was matched to a performance of the Hecht vault by varying the visco-elastic characteristics of the shoulders and the arm-horse interface and the activation time history of the shoulder torque generator until the best match was found. Perturbing the matching simulation demonstrated that appropriate initial kinematics are necessary for a successful performance. Fixing the hip and knee angles at their initial values had a small effect with 3 degrees less rotation. Applying shoulder torque during the contact phase also had a small effect with only a 7 degrees range in landing angles. Excluding the hand segment from the model was found to have a moderate effect with 15 degrees less rotation and the time of contact reduced by 38%. Removing shoulder elasticity resulted in 50 degrees less rotation. The use of a five-segment simulation model confirmed that the use of shoulder torque plays a minor role in vaulting performance and that having appropriate initial kinematics at touchdown is essential. However, factors such as shoulder elasticity and the hands which have previously been ignored also have a substantial influence on performance.  相似文献   

7.
Performance in the flight phase of springboard diving is limited by the amounts of linear and angular momentum generated during the takeoff phase. A planar 8-segment torque-driven simulation model combined with a springboard model was used to investigate optimum takeoff technique for maximising rotation in forward dives from the one metre springboard. Optimisations were run by varying the torque activation parameters to maximise forward rotation potential (angular momentum × flight time) while allowing for movement constraints, anatomical constraints, and execution variability. With a constraint to ensure realistic board clearance and anatomical constraints to prevent joint hyperextension, the optimised simulation produced 24% more rotation potential than a simulation matching a 2½ somersault piked dive. When 2 ms perturbations to the torque onset timings were included for the ankle, knee and hip torques within the optimisation process, the model was only able to produce 87% of the rotation potential achieved in the matching simulation. This implies that a pre-planned technique cannot produce a sufficiently good takeoff and that adjustments must be made during takeoff. When the initial onset timings of the torque generators were unperturbed and 10 ms perturbations were introduced into the torque onset timings in the board recoil phase, the optimisation produced 8% more rotation potential than the matching simulation. The optimised simulation had more hip flexion and less shoulder extension at takeoff than the matching simulation. This study illustrates the difficulty of including movement variability within performance optimisation when the movement duration is sufficiently long to allow feedback corrections.  相似文献   

8.
The fouetté turn in classical ballet dancing is a continuous turn with the whipping of the gesture leg and the arms and the bending and stretching of the supporting leg. The knowledge of the movement intensities of both legs for the turn would be favorable for the conditioning of the dancer's body. The purpose of this study was to estimate the intensities. The hypothesis of this study was that the intensities were higher in the supporting leg than in the gesture leg. The joint torques of both legs were determined in the turns performed by seven experienced female classical ballet dancers with inverse dynamics using three high-speed cine cameras and a force platform. The hip abductor torque, knee extensor and plantar flexor torques of the supporting leg were estimated to be exerted up to their maximum levels and the peaks of the torques were larger than the peaks of their matching torques of the gesture leg. Thus, the hypothesis was partly supported. Training of the supporting leg rather than the gesture leg would help ballet dancers perform many revolutions of the fouetté turn continuously.  相似文献   

9.
Measurements of human strength can be important during analyses of physical activities. Such measurements have often taken the form of the maximum voluntary torque at a single joint angle and angular velocity. However, the available strength varies substantially with joint position and velocity. When examining dynamic activities, strength measurements should account for these variations. A model is presented of maximum voluntary joint torque as a function of joint angle and angular velocity. The model is based on well-known physiological relationships between muscle force and length and between muscle force and velocity and was tested by fitting it to maximum voluntary joint torque data from six different exertions in the lower limb. Isometric, concentric and eccentric maximum voluntary contractions were collected during hip extension, hip flexion, knee extension, knee flexion, ankle plantar flexion and dorsiflexion. Model parameters are reported for each of these exertion directions by gender and age group. This model provides an efficient method by which strength variations with joint angle and angular velocity may be incorporated into comparisons between joint torques calculated by inverse dynamics and the maximum available joint torques.  相似文献   

10.
The reasons why using the arms can increase standing vertical jump height are investigated by computer simulations. The human models consist of four/five segments connected by frictionless joints. The head-trunk-arms act as a fourth segment in the first model while the arms become a fifth segment in the second model. Planar model movement is actuated by joint torque generators. Each joint torque is the product of three variable functions of activation level, angular velocity dependence, and maximum isometric torque varying with joint angle. Simulations start from a balanced initial posture and end at jump takeoff. Jump height is maximized by finding the optimal combination of joint activation timings. Arm motion enhances jumping performance by increasing mass center height and vertical takeoff velocity. The former and latter contribute about 1/3 and 2/3 to the increased height, respectively. Durations in hip torque generation and ground contact period are lengthened by swinging the arms. Theories explaining the performance enhancement caused by arms are examined. The force transmission theory is questionable because shoulder joint force due to arm motion does not precisely reflect the change in vertical ground reaction force. The joint torque/work augmentation theory is acceptable only at the hips but not at the knees and ankles because only hip joint work is considerably increased. The pull/impart energy theory is also acceptable because shoulder joint work is responsible for about half of the additional energy created by arm swings.  相似文献   

11.
Five elite gymnasts performed giant circles on the high bar under different conditions of loading (without and with 6-kg loads attached to the shoulders, waist or ankles). Comparing the gymnasts' kinematic pattern of movement with that of a triple-pendulum moving under the sole influence of nonmuscular forces revealed qualitative similarities, including the adoption of an arched position during the downswing and a piked position during the upswing. The structuring role of nonmuscular forces in the organization of movement was further reinforced by the results of an inverse dynamics analysis, assessing the contributions of gravitational, inertial and muscular components to the net joint torques. Adding loads at the level of the shoulders, waist or ankles systematically influenced movement kinematics and net joint torques. However, with the loads attached at the level of the shoulders or waist, the load-induced changes in gravitational and inertial torques provided the required increase in net joint torque, thereby allowing the muscular torques to remain unchanged. With the loads attached at the level of the ankles, this was no longer the case and the gymnasts increased the muscular torques at the shoulder and hip joints. Together, these results demonstrate that expert gymnasts skillfully exploit the operative nonmuscular forces, employing muscle force only in the capacity of complementary forces needed to perform the task.  相似文献   

12.
This paper describes a new non-orthogonal decomposition method to determine effective torques for three-dimensional (3D) joint rotation. A rotation about a joint coordinate axis (e.g. shoulder internal/external rotation) cannot be explained only by the torque about the joint coordinate axis because the joint coordinate axes usually deviate from the principal axes of inertia of the entire kinematic chain distal to the joint. Instead of decomposing torques into three orthogonal joint coordinate axes, our new method decomposes torques into three "non-orthogonal effective axes" that are determined in such a way that a torque about each effective axis produces a joint rotation only about one of the joint coordinate axes. To demonstrate the validity of this new method, a simple internal/external rotation of the upper arm with the elbow flexed at 90 degrees was analyzed by both orthogonal and non-orthogonal decomposition methods. The results showed that only the non-orthogonal decomposition method could explain the cause-effect mechanism whereby three angular accelerations at the shoulder joint are produced by the gravity torque, resultant joint torque, and interaction torque. The proposed method would be helpful for biomechanics and motor control researchers to investigate the manner in which the central nervous system coordinates the gravity torque, resultant joint torque, and interaction torque to control 3D joint rotations.  相似文献   

13.
In the light of experimental results showing significant forward centre of mass (CoM) displacements within the base of support, this study investigated if whole body reaching movements can be executed whilst keeping the CoM fixed in the horizontal axis. Using kinematic simulation techniques, angular configurations were recreated from experimental data imposing two constraints: a constant horizontal position of the CoM and an identical trajectory of the hand to grasp an object. The comparison between recorded and simulated trials showed that stabilisation of the CoM was associated with greater backward hip displacements, which became more marked with increasing object distance. This was in contrast to recorded trials showing reductions in backward hip displacements with increasing distance. Results also showed that modifications to angular displacements were necessary only at the shoulder and hip joints, but that these modifications were within the limits of joint mobility. The analysis of individual joint torques revealed that the pattern and timing of simulated trials were similar to those recorded experimentally. Peak joint torque values showed particularly that keeping the CoM at a constant horizontal position resulted in significantly smaller ankle peak flexor and extensor torques. It may be concluded from this study that `stabilising' the CoM during human whole body reaching represents a feasible strategy, but not the one chosen by subjects under experimental conditions. Our results also do not support the idea of the CoM as the stabilised reference value for the coordination between posture and goal-directed movements. Received: 22 September 1998 / Accepted in revised form: 2 June 1999  相似文献   

14.
This study investigated how baseball players generate large angular velocity at each joint by coordinating the joint torque and velocity-dependent torque during overarm throwing. Using a four-segment model (i.e., trunk, upper arm, forearm, and hand) that has 13 degrees of freedom, we conducted the induced acceleration analysis to determine the accelerations induced by these torques by multiplying the inverse of the system inertia matrix to the torque vectors. We found that the proximal joint motions (i.e., trunk forward motion, trunk leftward rotation, and shoulder internal rotation) were mainly accelerated by the joint torques at their own joints, whereas the distal joint motions (i.e., elbow extension and wrist flexion) were mainly accelerated by the velocity-dependent torques. We further examined which segment motion is the source of the velocity-dependent torque acting on the elbow and wrist accelerations. The results showed that the angular velocities of the trunk and upper arm produced the velocity-dependent torque for initial elbow extension acceleration. As a result, the elbow joint angular velocity increased, and concurrently, the forearm angular velocity relative to the ground also increased. The forearm angular velocity subsequently accelerated the elbow extension and wrist flexion. It also accelerated the shoulder internal rotation during the short period around the ball-release time. These results indicate that baseball players accelerate the distal elbow and wrist joint rotations by utilizing the velocity-dependent torque that is originally produced by the proximal trunk and shoulder joint torques in the early phase.  相似文献   

15.
In the single-joint torque exertion task, which has been widely used to control muscle activity, only the relevant joint torque is specified. However, the neglect of the neighboring joint could make the procedure unreliable, considering our previous result that even monoarticular muscle activity level is indefinite without specifying the adjacent joint torque. Here we examined the amount of hip joint torque generated with knee joint torque and its influence on the activity of the knee joint muscles. Twelve healthy subjects were requested to exert various levels of isometric knee joint torque. The knee and hip joint torques were obtained by using a custom-made device. Because no information about hip joint torque was provided to the subjects, the hip joint torque measured here was a secondary one associated with the task. The amount of hip joint torque varied among subjects, indicating that they adopted various strategies to achieve the task. In some subjects, there was a considerable internal variability in the hip joint torque. Such variability was not negligible, because the knee joint muscle activity level with respect to the knee joint torque, as quantified by surface electromyography (EMG), changed significantly when the subjects were requested to change the strategy. This change occurred in a very systematic manner: in the case of the knee extension, as the hip flexion torque was larger, the activity of mono- and biarticular knee extensors decreased and increased, respectively. These results indicate that the conventional single knee joint torque exertion has the drawback that the intersubject and/or intertrial variability is inevitable in the relative contribution among mono- and biarticular muscles because of the uncertainty of the hip joint torque. We discuss that the viewpoint that both joint torques need to be considered will bring insights into various controversial problems such as the shape of the EMG-force relationship, neural factors that help determine the effect of muscle strength training, and so on.  相似文献   

16.
The goal of this study was to examine the possibility of the utilization of high bar and uneven parallel bar elasticity by the gymnasts through muscular work during the giant swing before the Tkatchev exercise on the high bar or uneven parallel bars. The performances were gathered during the Gymnastic World Championship in 1994. The set up consisted of two video cameras (50Hz) and two force measuring bars (500Hz). Twenty giant swings before the Tkatchev exercise, nine giant swings before the Tkatchev exercise after Tkatchev on the high bar and 15 giant swings before the Tkatchev exercise on the uneven parallel bars were analyzed. The giant swings were performed by 20 male and 15 female gymnasts. There are three phases during the giant swing exercise before the Tkatchev in which the systems (high bar-human body) total energy can be changed. During the first phase, energy is transferred from the gymnast's body into the bar. A clearly effective use of the bar's elasticity during the first phase could not be found. During the second phase, energy is transferred from the bar's back into the gymnast's body whose total energy increases. An increase in the energy of the system can only be achieved through muscular work. During the second phase of the various giant swing techniques no significant (p<0.05) difference in the energy increase through muscular work could be found. During the third phase, energy is once again produced by the gymnast through extension at the hip and shoulder joints.  相似文献   

17.
A multi-segment model is used to investigate optimal compliant-surface jumping strategies and is applied to springboard standing jumps. The human model has four segments representing the feet, shanks, thighs, and trunk-head-arms. A rigid bar with a rotational spring on one end and a point mass on the other end (the tip) models the springboard. Board tip mass, length, and stiffness are functions of the fulcrum setting. Body segments and board tip are connected by frictionless hinge joints and are driven by joint torque actuators at the ankle, knee, and hip. One constant (maximum isometric torque) and three variable functions (of instantaneous joint angle, angular velocity, and activation level) determine each joint torque. Movement from a nearly straight motionless initial posture to jump takeoff is simulated. The objective is to find joint torque activation patterns during board contact so that jump height can be maximized. Minimum and maximum joint angles, rates of change of normalized activation levels, and contact duration are constrained. Optimal springboard jumping simulations can reasonably predict jumper vertical velocity and jump height. Qualitatively similar joint torque activation patterns are found over different fulcrum settings. Different from rigid-surface jumping where maximal activation is maintained until takeoff, joint activation decreases near takeoff in compliant-surface jumping. The fulcrum-height relations in experimental data were predicted by the models. However, lack of practice at non-preferred fulcrum settings might have caused less jump height than the models' prediction. Larger fulcrum numbers are beneficial for taller/heavier jumpers because they need more time to extend joints.  相似文献   

18.
Isokinetic dynamometers measure joint torques about a single fixed rotational axis. Previous studies yet suggested that muscles produce both tangential and radial forces during a movement, so that the contact forces exerted to perform this movement are multidirectional. Then, isokinetic dynamometers might neglect the torque components about the two other Euclidean space axes. Our objective was to experimentally quantify the shear forces impact on the overall shoulder torque, by comparing the dynamometer torque to the torque computed from the contact forces at the hand and elbow. Ten healthy women performed isokinetic maximal internal/external concentric/eccentric shoulder rotation movements. The hand and elbow contact forces were measured using two six-axis force sensors. The main finding is that the contact forces at the hand were not purely tangential to the direction of the movement (effectiveness indexes from 0.26 ± 0.25 to 0.54 ± 0.20), such that the resulting shoulder torque computed from the two force sensors was three-dimensional. Therefore, the flexion and abduction components of the shoulder torque measured by the isokinetic dynamometer were significantly underestimated (up to 94.9%). These findings suggest that musculoskeletal models parameters should not be estimated without accounting for the torques about the three space axes.  相似文献   

19.
This study tested the hypothesis that the effect of hip joint angle on concentric knee extension torque depends on knee joint angle during a single knee extension task. Twelve men performed concentric knee extensions in fully extended and 80° flexed hip positions with maximal effort. The angular velocities were set at 30° s−1 and 180° s−1. The peak torque and torques attained at 30°, 50°, 70° and 90° (anatomical position = 0°) of the knee joint were compared between the two hip positions. Muscle activations of the vastus lateralis, medialis, rectus femoris and biceps femoris were determined using surface electromyography. The peak torque was significantly greater in the flexed than in the extended hip position irrespective of angular velocity. The torques at 70° and 90° of the knee joint at both angular velocities and at 50° at 180° s−1 were significantly greater in the flexed than in the extended hip position, whereas corresponding differences were not found at 30° (at either angular velocity) and 50° (at 30° s−1) of the knee joint. No effect of hip position on muscle activation was observed in any muscle. These results supported our hypothesis and may be related to the force–length and force–velocity characteristics of the rectus femoris.  相似文献   

20.
The force exerted by a muscle is a function of the activation level and the maximum (tetanic) muscle force. In "maximum" voluntary knee extensions muscle activation is lower for eccentric muscle velocities than for concentric velocities. The aim of this study was to model this "differential activation" in order to calculate the maximum voluntary knee extensor torque as a function of knee angular velocity. Torque data were collected on two subjects during maximal eccentric-concentric knee extensions using an isovelocity dynamometer with crank angular velocities ranging from 50 to 450 degrees s(-1). The theoretical tetanic torque/angular velocity relationship was modelled using a four parameter function comprising two rectangular hyperbolas while the activation/angular velocity relationship was modelled using a three parameter function that rose from submaximal activation for eccentric velocities to full activation for high concentric velocities. The product of these two functions gave a seven parameter function which was fitted to the joint torque/angular velocity data, giving unbiased root mean square differences of 1.9% and 3.3% of the maximum torques achieved. Differential activation accounts for the non-hyperbolic behaviour of the torque/angular velocity data for low concentric velocities. The maximum voluntary knee extensor torque that can be exerted may be modelled accurately as the product of functions defining the maximum torque and the maximum voluntary activation level. Failure to include differential activation considerations when modelling maximal movements will lead to errors in the estimation of joint torque in the eccentric phase and low velocity concentric phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号