首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Anthocyanidin synthase (ANS), an enzyme of the biosynthetic pathway to anthocyanin, has been postulated to catalyze the reaction(s) from the colorless leucoanthocyanidins to the colored anthocyanidins. Although cDNAs have been isolated that encode putative ANS, which exhibits significant similarities in amino acid sequence with members of a family of 2-oxoglutarate-dependent oxygenases, no biochemical evidence has been presented which identifies the actual reaction that is catalyzed by ANS. Here we show that anthocyanidins are formed in vitro through 2-oxoglutarate-dependent oxidation of leucoanthocyanidins catalyzed by the recombinant ANS and subsequent acid treatment. A cDNA encoding ANS was isolated from red and green formas of Perilla frutescens by differential display of mRNA. Recombinant ANS tagged with maltose-binding-protein (MBP) was purified, and the formation of anthocyanidins from leucoanthocyanidins was detected by the ANS-catalyzed reaction in the presence of ferrous ion, 2-oxoglutarate and ascorbate, being followed by acidification with HCI. Equimolar stoichiometry was confirmed for anthocyanidin formation and liberation of CO2 from 2-oxoglutarate. The presumptive two-copy gene of ANS was expressed in leaves and stems of the red forma of P. frutescens but not in the green forma plant. This corresponds to the accumulation pattern of anthocyanin. The mechanism of the reaction catalyzed by ANS is discussed in relation to the molecular evolution of a family of 2-oxoglutarate-dependent oxygenases.  相似文献   

5.
6.
7.
8.
UDP-glucose: anthocyanin 5-O-glucosyltransferase (5-GT) is responsible for the modification of anthocyanins to more stable molecules in complexes for co-pigmentation, supposedly resulting in a purple hue. The cDNA encoding 5-GT was isolated by a differential display applied to two different forms of anthocyanin production in Perilla frutescens var. crispa. Differential display was carried out for mRNA from the leaves of reddish-purple and green forms of P. frutescens, resulting in the isolation of five cDNA clones predominantly expressed in the red form. The cDNA encoded a polypeptide of 460 amino acids, exhibiting a low homology with the sequences of several glucosyltransferases including UDP-glucose: anthocyanidin 3-O-glucosyltransferase. By using this cDNA as the probe, we also isolated a homologous cDNA clone from a petal cDNA library of Verbena hybrida. To identify the biochemical function of the encoded proteins, these cDNAs were expressed in Saccharomyces cerevisiae cells. The recombinant proteins in the yeast extracts catalyzed the conversion of anthocyanidin 3-O-glucosides into the corresponding anthocyanidin 3,5-di-O-glucosides using UDP-glucose as a cofactor, indicating the identity of the cDNAs encoding 5-GT. Several biochemical properties (optimum pH, Km values, and sensitivity to inhibitors) were similar to those reported previously for 5-GTs. Southern blot analysis indicated the presence of two copies of 5-GT genes in the genome of both red and green forms of P. frutescens. The mRNA accumulation of the 5-GT gene was detected in the leaves of the red form but not in those of the green form and was induced by illumination of light, as observed for other structural genes for anthocyanin biosynthesis in P. frutescens.  相似文献   

9.
We have investigated metabolite profiles and gene expression in two chemo-varietal forms, red and green forms, of Perilla frutescens var. crispa. Striking difference in anthocyanin content was observed between the red and green forms. Anthocyanin, mainly malonylshisonin, was highly accumulated in the leaves of the red form but not in the green form. Less obvious differences were also observed in the stems. However, there was no remarkable difference in the contents and patterns of flavones and primary metabolites such as inorganic anions, organic anions and amino acids. These results suggest that only the regulation of anthocyanin production, but not that of other metabolites, differs in red and green forms. Microscopic observation and immunohistochemical studies indicated that the epidermal cells of leaves and stems are the sites of accumulation of anthocyanins and localization of anthocyanidin synthase protein. By differential display of mRNA from the leaves of red and green forms, we could identify several genes encoding anthocyanin-biosynthetic enzymes and presumptive regulatory proteins. The possible regulatory network leading to differential anthocyanin accumulation in a form-specific manner is discussed.  相似文献   

10.
Differential screening by PCR-select subtraction was carried out for cDNAs from leaves of red and green perilla, two chemovarietal forms of Perilla frutescens regarding anthocyanin accumulation. One hundred and twenty cDNA fragments were selected as the clones preferentially expressed in anthocyanin-accumulating red perilla over the nonaccumulating green perilla. About half of them were the cDNAs encoding the proteins related presumably to phenylpropanoid-derived metabolism. The cDNAs encoding glutathione S-transferase (GST), PfGST1, and chalcone isomerase (CHI), PfCHI1, were further characterized. The expression of PfGST1 in an Arabidopsis thaliana tt19 mutant lacking the GST-like gene involved in vacuole transport of anthocyanin rescued the lesion of anthocyanin accumulation in tt19, indicating a function of PfGST1 in vacuole sequestration of anthocyanin in perilla. The recombinant PfCHI1 could stereospecifically convert naringenin chalcone to (2S)-naringenin. PfGST1 and PfCHI1 were preferentially expressed in the leaves of red perilla, agreeing with the accumulation of anthocyanin and expression of other previously identified genes for anthocyanin biosynthesis. These results suggest that the genes of the whole anthocyanin biosynthetic pathway are regulated in a coordinated manner in perilla.  相似文献   

11.
GDP-D-甘露糖焦磷酸化酶催化GDP-D-甘露糖的合成,是植物抗坏血酸生物合成途径中上游的关键酶。以马铃薯GDP-D-甘露糖焦磷酸化酶cDNA序列为信息探针,在GenBank dbEST数据库中找到65条高度同源的番茄EST序列,通过序列拼接及RACE-PCR得到了番茄该基因的全长cDNA序列,命名为LeGMP。LeGMP与马铃薯GDP-D-甘露糖焦磷酸化酶cDNA序列一致率为96%,推导的氨基酸序列与马铃薯、烟草、紫苜蓿、拟南芥的GDP-D-甘露糖焦磷酸化酶基因的一致率分别为99%、97%、91%、89%。经Northern杂交分析,LeGMP在番茄根、茎、叶、花、果实中都有表达,但表达水平有差异。利用75个番茄远缘杂交重组系(IL系)将LeGMP定位在番茄第3染色体上的D区段(3-D)。  相似文献   

12.
13.
14.
类黄酮3-O-糖基转移酶(flavonoid 3-O-glucosyltransferase,UF3GT)可以把不稳定的花色素催化成花色素苷。本研究采用同源基因克隆技术获得箭叶淫羊藿Epimedium sagittatum(Sieb.and Zucc.)Maxim.UF3GT基因c DNA开放阅读框(Open Reading Frame,ORF)序列,命名为Es UF3GT(Gen Bank注册号为KJ648620)。序列分析表明,该基因ORF全长为1356 bp,编码451个氨基酸,与其它植物中UF3GT蛋白序列的相似性为40%~50%。进化树分析发现,Es UF3GT同催化类黄酮3-O糖基化的糖基转移酶聚为一枝。qRTPCR分析结果显示,Es UF3GT在花中的表达量最高,约为叶片、花蕾中表达水平的2.3倍,果实及根中表达水平的19倍。花青素含量检测表明,花蕾中的含量最高(130.4 mg/100 g),分别是叶片、花、果实及根中含量的3.5、5.2、72、87倍。我们推测Es UF3GT参与了箭叶淫羊藿花色素苷的生物合成,此结果为深入开展EsUF3GT的生化功能研究奠定了基础。  相似文献   

15.
16.
17.
18.
Three distinct basic 14-kD proteins, P14a, P14b, and P14c, were isolated from tomato (Lycopersicon esculentum Mill. cv Baby) leaves infected with Phytophthora infestans. They exhibited antifungal activity against P. infestans both in vitro (inhibition of zoospore germination) and in vivo with a tomato leaf disc assay (decrease in infected leaf surface). Serological cross-reactions and amino acid sequence comparisons showed that the three proteins are members of the PR-1 group of pathogenesis-related (PR) proteins. P14a and P14b showed high similarity to a previously characterized P14, whereas P14c was found to be very similar to a putative basic-type PR-1 from tobacco predicted from isolated DNA clones. This protein, named PR-1 g, was purified from virus-infected tobacco (Nicotiana tabacum Samsun NN) leaves and characterized by amino acid microsequencing, along with the well-known acidic tobacco PR-1a, PR-1b, and PR-1c. The various tomato and tobacco PR-1 proteins were compared for their biological activity and found to display differential fungicidal activity against P. infestans in both the in vitro and in vivo assays, the most efficient being the newly characterized tomato P14c and tobacco PR-1g.  相似文献   

19.
A Youngia japonica strain had a group I intron that was suggested to have been transferred from Protomyces inouyei, a pathogenic fungus of Y. japonica. It was located in the miraculin homologue coding gene by reverse complementation. The deduced amino acid sequence of this miraculin homologue of Y. japonica was similar to the amino acid sequences of tobacco and tomato pathogenesis-related proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号