首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
报道了鳞毛蕨科的4个属(毛枝蕨属Leptorumohra、石盖蕨属Lithostegia、黔蕨属Phanerophlebiopsis和柳叶蕨属Cyrtogonellum)6种植物的染色体数目及生殖方式。其中柳叶蕨Cyrtogonellum fraxinellum 'n'=123, 2n=123; 离脉柳叶蕨C. caducum 'n'=123; 斜基柳叶蕨C. inaequalis 2n=123; 四回毛枝蕨Leptorumohra quadripinnata n=41; 石盖蕨Lithostegia foeniculacea 2n=164; 长叶黔蕨Phanerophlebiopsis neopodophylla 2n=82。石盖蕨属、黔蕨属和柳叶蕨属的染色体数目为首次报道。结果表明这3个属的染色体基数和鳞毛蕨科中其他属一样均为x=41。细胞学证据支持将石盖蕨属、黔蕨属置于鳞毛蕨科的处理。本文还发现柳叶蕨属与贯众属Cyrtomium的一些种一样, 具有无融合生殖方式, 而其他3个属仅具有在蕨类植物中较为常见的有性生殖方式。  相似文献   

2.
A. Spencer Tomb 《Brittonia》1974,26(2):203-216
Chromosome numbers are reported from over 230 populations representing species in eight genera. First counts are reported for three species ofStephanomeria, five species ofLygodesmia, and one species ofPinaropappus. Base chromosome numbers,x = 6, 7, 8, and 9 are known in the subtribe;x = 9 is found in six of the 12 genera and presumably is the ancestral base number for the subtribe. Two phyletic lines, aMalacothrix line and aStephanomeria line are recognized on morphological grounds. A key to the 12 genera is provided.  相似文献   

3.
Chromosome numbers are reported for 12 species from nine genera of South African Umbelliferae, of which seven species and one genus (Itasina) are recorded for the first time. A detailed list of all published chromosome counts for southern African species is also presented, together with a review of the literature. The new data obtained are briefly discussed in the context of the taxonomy and relationships of local Umbelliferae. The counts agree with previous reports except that Annesorhiza appears to have 2n = 22, with or without one additional B-chromosome, and not 2n = 24 as reported in the literature. The number for Itasina (2n = 24) is of considerable interest and indicates that a detailed chromosome study of the South African genera Annesorhiza and Chamarea may yield valuable taxonomic information.  相似文献   

4.
Chromosome numbers are reported for 20 collections of Hawaiian Lobelioideae (Campanulaceae), representing six genera, 13 species, and two interspecific hybrids. All are n = 14. Chromosome numbers are reported for the first time for eight species of Clermontia, Cyanea, Delissea, Lobelia, and Trematolobelia; the report for Delissea is the first for that genus. Additional determinations confirmed previously reported numbers in five other species of Brighamia, Clermontia, and Cyanea. Chromosome numbers are now known for all seven genera and 20 of the 110 species. All accepted counts are n = 14. It is suggested that all Hawaiian Lobelioideae share this number and are paleotetraploid. There is no evidence that the prolific speciation evident among these plants was accompanied by euploid or aneuploid change in chromosome number. The Hawaiian Lobelioideae, particularly the monophyletic lineage of 91 baccate species, offer further support for the generalization that change in chromosome number is an uncommon mode of speciation in insular floras.  相似文献   

5.
Loranthaceae (73 genera and ca. 900 species) comprise mostly aerial hemiparasitic plants. Three monotypic genera considered relicts are root parasites. The family is diverse in tropical areas, but representatives are also found in temperate habitats. Previous classifications were based on floral and inflorescence morphology, karyological information, and biogeography. The family has been divided into three tribes: Nuytsiae, Elytrantheae (subtribes Elytranthinae and Gaiadendrinae), and Lorantheae (subtribes Loranthinae and Psittacanthinae). Nuytsiae and Elytrantheae are characterized by a base chromosome number of x = 12, whereas subtribes Loranthinae (x = 9) and Psittacanthinae (x = 8) numbers are derived via aneuploid reduction. To elucidate the phylogeny of the family, we analyzed sequences from five genes (nuclear small and large subunit rDNA and the chloroplast genes rbcL, matK, and trnL-F) representing most genera using parsimony, likelihood, and Bayesian inference. The three root parasites, Nuytsia, Atkinsonia, and Gaiadendron, are supported as successive sister taxa to the remaining genera, resulting in a monophyletic group of aerial parasites. Three major clades are resolved each corresponding to a subtribe. However, two South American genera (Tristerix and Notanthera) and the New Zealand genus Tupeia, which were previously classified in subtribe Elytranthinae, are weakly supported as part of a clade representing the South American subtribe Psittacanthinae.  相似文献   

6.
The phylogenetic position of the African and Malagasy species of Pimpinella is assessed using nrDNA ITS sequence data and a representative sampling of the genus, including 16 species from Africa and Madagascar and 26 species from Eurasia. The results of maximum parsimony and Bayesian analyses of these data show that the African and Malagasy species ally with their Eurasian counterparts in Pimpinelleae. The genus Pimpinella is rendered paraphyletic by the inclusion of African Cryptotaenia and the small African and Malagasy endemic genera Frommia and Phellolophium. Within a paraphyletic Pimpinella, three major clades are recovered, with the African species occupying two of these clades. The current sectional classification of the genus, based predominantly on fruit vestiture, is largely artificial. Chromosome base number, however, was found to be consistent with the groupings recovered in the molecular analyses. Those African and Malagasy Pimpinella species with a chromosome base number of x = 11 and largely glabrous petals and fruits, form the earliest diverging clade together with Frommia, which also has a base count of n = 11 and glabrous petals and fruits. The remaining African species ally with several Eurasian species of Pimpinella and share a chromosome base number of x = 9 and usually hairy petals and fruits.  相似文献   

7.
Chromosome counts are reported for 32 taxa (31 species and 1 subspecies) belonging to 10 genera of Commelinaceae from seven African and Asiatic countries. Counts for 13 species and 1 subspecies are recorded for the first time. Published chromosome numbers for Anhicopsis and Polyspatha are confirmed. It is suggested that Pdisota, Pollia and Stanfieldidla each has a single basic number (x = 20, 16 and 11, respectively). The known cytological diversity in Floscopa is extended. The third continental African species of Coleolrype is found to have the same chromosome number (2n = 36) as the other two. The preponderance of the basic number x = 15 in Commelina is supported. The uncommon basic number x = 13 is reported in four taxa of Cyanotis together with karyotypic differences. The basic number x = 6 is found in a second species of Murdannia . Karyotypic data in addition to chromosome numbers are presented for 24 of the 32 taxa investigated. Karyotypes are found to be useful in assessing relationships in the family, and evolutionary trends in the karyotype are noted.  相似文献   

8.
Eulophiinae comprise c. 270 species divided into nine genera, with the species‐rich terrestrial genus Eulophia representing 60% of this diversity. Remarkable ecological and morphological variation, and an absence of clear diagnostic characters have led to uncertain generic delimitation in the subtribe. Using a combination of new and previously published DNA sequences, we created a dataset representing 122 taxa and all genera of Eulophiinae and inferred a complete generic‐level phylogeny for the subtribe for the first time. Our sampling focused on analysing Afro‐Madagascan taxa and therefore included representatives of the four mostly epiphytic Madagascan endemic genera, the near Madagascan endemic Oeceoclades and additional sampling of the predominantly African genera Eulophia and Orthochilus. In total, 104 new accessions were collected for this study in Zambia and Madagascar (88 of which represented 36 Eulophia spp. and 12 Oeceoclades spp.). Independent plastid and nuclear phylogenetic trees were inferred using Bayesian and maximum‐likelihood algorithms, which recovered strong support for a monophyletic Eulophiinae, the first‐branching position of the mostly epiphytic Madagascan endemic genera, and increased support for recognition of the terrestrial genera Oeceoclades and Orthochilus. Eulophia, the largest genus in the group, was recovered as polyphyletic, but with implications for its classification and that of Geodorum, that was nested in the main Eulophia clade. Although relationships among several genera were resolved with some confidence, the positions of the South African endemic genus Acrolophia and the epiphytic Madagascan endemic Paralophia require further work. Taxon sampling of Asian Eulophia is a priority for future work on the systematics of this group. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 43–56.  相似文献   

9.
Thomas F. Daniel 《Brittonia》2006,58(4):291-300
Meiotic chromosome numbers are reported for 12 species in eight genera of Acanthaceae from Madagascar. Chromosome numbers of 11 species are reported for the first time. Counts inMendoncia (n=19) andNeuracanthus (n=20) are the first for these genera. A new chromosome number (n=30) is reported inJusticia. Systematic implications of the chromosome counts are addressed and basic chromosome numbers for these eight genera of Malagasy Acanthaceae are discussed.  相似文献   

10.
We present the first report on somatic chromosome numbers and morphology in eight of 13 recorded species ofCrossostylis, one of inland genera of Rhizophoraceae. The chromosome number ofCrossostylis is 2n=28 in all species examined; therefore, the genus hasx=14, a number which is the smallest and unknown elsewhere in the family. Based onCrossostylis raiateensis, we further present that 24 of 28 chromosomes at metaphase have centromeres at median position, and the remaining four at submedian or subterminal position. The chromosome morphology seems to imply thatCrossostylis might be a tetraploid with the original base numberx=7, but an extensive study in the other inland genera is needed to find such a small chromosome number.  相似文献   

11.
Documented chromosome numbers and meiotic behavior are recorded for an additional 30 taxa representing 25 species of Cactaceae of southwestern United States and northern Mexico. Diploid and polyploid taxa including two triploids were observed, all of which indicate the same base number,x = 11. Trisomism and inversions are reported for the first time in cacti.  相似文献   

12.
This study records the chromosome numbers of 10 species ofStreptocarpus; nine of the counts are new. With the exception ofS. buchananii of mainland Africa, all the results are for plants endemic to Madagascar and the Comoro Islands. While there is a strong correlation between basic number and growth form in the two subgenera of the genus on the African mainland (x = 15 among caulescent species in subgenusStreptocarpella; x = 16 among acaulescent species in subgenusStreptocarpus), the situation appears more complex among Madagascan and Comoro Island species. One notable example of deviation from this correlation is shown byS. papangae, a shrubby caulescent species, with 2n = 32 (x = 16). Polyploidy in the genus appears to be absent on mainland Africa, but is present in Madagascar and the Comoro Islands, ranging from tetraploidy to octoploidy. Evolutionary implications of the cytological observations are considered.  相似文献   

13.
With the present work, we aim to provide a better understanding of chromosome evolutionary trends among southern Brazilian species of Iridoideae. Chromosome numbers and genome sizes were determined for 21 and 22 species belonging to eight genera of Tigridieae and two genera of Trimezieae, respectively. The chromosome numbers of nine species belonging to five genera are reported here for the first time. Analyses of meiotic behaviour, tetrad normality and pollen viability in 14 species revealed regular meiosis and high meiotic indexes and pollen viability (> 90%). The chromosome data obtained here and compiled from the literature were plotted onto a phylogenetic framework to identify major events of chromosome rearrangements across the phylogenetic tree of Iridoideae. Following this approach, we propose that the ancestral base chromosome number for Iridoideae is x = 8 and that polyploidy and dysploidy events have occurred throughout evolution. Despite the variation in chromosome numbers observed in Tigridieae and Trimezieae, for these two tribes our data provide support for an ancestral base number of x = 7, largely conserved in Tigridieae, but a polyploidy event may have occurred prior to the diversification of Trimezieae, giving rise to a base number of x2 = 14 (detected by maximum‐parsimony using haploid number and maximum likelihood). In Tigridieae, polyploid cytotypes were commonly observed (2x, 4x, 6x and 8x), whereas in Trimezieae, dysploidy seems to have been the most important event. This feature is reflected in the genome size, which varied greatly among species of Iridoideae, 4.2‐fold in Tigridieae and 1.5‐fold in Trimezieae. Although no clear difference was observed among the genome sizes of Tigridieae and Trimezieae, an important distinction was observed between these two tribes and Sisyrinchieae, with the latter possessing the smallest genome sizes in Iridoideae. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 177 , 27–49.  相似文献   

14.
Chromosome numbers are reported from 67 populations of 36 taxa, mostly in Phoradendron. The basic number is 14 in Phoradendron and probably also in Arceuthobium. The 4 species of Struthanthus for which chromosome numbers are recorded suggest that the basic number is 8. Numbers of n = 8 and n = 10 have been reported for Psittacanthus. In Phoradendron the 22 taxa examined are all diploid, although 1 instance of polyploidy was discovered. Objects interpreted as supernumerary chromosomes were discovered in a number of species of Phoradendron; no evidence of sex chromosomes previously reported in Phoradendron was observed. The Loranthaceae have chromosomes comparable in size to the largest in the plant kingdom.  相似文献   

15.
Chromosome numbers are reported for 156 collections representing 100 taxa of Umbelliferae. Approximately two thirds of the collections are from Mexico, Central and South America and indicate a high percentage of polyploid species in certain genera found in this area. Chromosome numbers for plants belonging to 78 taxa are published here for the first time, previously published chromosome numbers are verified for 18 taxa and chromosome numbers differing from those previously published are reported in seven instances. No chromosome counts have been previously published for nine of the genera included here. Further aneuploidy and polyploidy were found in Eryngium, and Lomatium columbianum has been found to be a high polyploid with 2n = 14x. Every chromosome count is referable to a cited herbarium specimen.  相似文献   

16.
Mitotic chromosome numbers are reported for 31 populations representing 28 taxa of Helichrysum. Twelve are new and eight others provide confirmation of a unique previous reference. A new chromosome number, 2n = 42, is reported for H. odoratissimum. Polyploidy is confirmed as the most significant evolutionary trend in chromosome number within the genus. Chromosome data agree with trends observed in phylogenetic studies: a South African and diploid origin of the genus, followed by a radiation and diversification in southern Africa and several migrations towards the north of the African continent, the Mediterranean basin and Asia. Expansion and diversification of the genus have been accompanied by several genome duplications which have led to the acquisition of the tetraploid, hexaploid and octoploid levels, all in several independent events. Both autopolyploidy and allopolyploidy are suggested as probable speciation agents within the genus. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 158 , 511–521.  相似文献   

17.
Turner , B. L.. and R. M. King . (U. Texas, Austin.) A cytotaxonomic survey of Melampodium (Compositae-Heliantheae). Amer. Jour. Bot. 49(3): 233–26. Illus. 1962.—Chromosome counts are reported for individuals from 89 populations of Melampodium representing 26 species The genus is multibasic with x = 9, 10, 11, 12, 16 and 23. Chromosome numbers on a base of x = 10 characterize the section Melampodium while basic numbers of x = 23, 16, 12, 11 and 9 occur in the section Zarabellia. Melampodium camphoratum (n = 16) differs from all other species examined in having relatively small meiotic chromosomes. Only 6 of the 23 species are polyploid or have polyploid races. Melampodium leucanthum and M. cinereum have both diploid and tetraploid populations; the latter occur without any apparent morphological or geographical correlation and are probably autoploid in origin. A survey of the basic chromosome numbers known for other genera of the subtribe Melampodinae (12 of 22 genera) is presented. and it is suggested that x = 10 is the most probable basic number of the genus and subtribe.  相似文献   

18.
The haplord chromosome numbers of n = 9, 10, 11, 12, 18, 20, 23, 25 ± 1, 27, 30, and 33 have been reported by various authors from 26 of the 37 recognized species of Melampodium. A chromosomal survey of 375 plants from 275 different populations suggests that the recorded numbers are stable within the genus and that infraspecific euploidy and aneuploidy are uncommon. These chromosome numbers can be arranged numerically, with morphological and limited cytogenetic substantiation, into four euploid series of x2 = 9, 10, 11, and 12. Of these four groups of species, the x = 10 series is the largest and morphologically most diverse. This consideration, along with additional evidence from the morphology of sterile disc ovaries, suggests that x = 10 is the ancestral chromosomal base in Melampodium. A comparison of morphological and cytological data from the closely related genera, Acanthospermum and Lecocarpus, indicates that the latter are probably on a common base of x = 11. Present day distributional patterns of all three genera support the hypothesis that x = 10 is the ancestral base for the entire complex.  相似文献   

19.
栌菊木属及白菊木属的细胞学研究   总被引:6,自引:3,他引:3  
对栌菊木属及白菊木属的染色体数目进行了首次报道,对栌菊木(Nouelia insignis Franch.)分布区内的10个居群进行了细胞学研究,染色体数目均为2n=54。白菊木属在中国分布的仅白菊木(Leucomeris decora Kurz)一种,对漾濞这个居群的细胞学研究表明,染色体也为2n=54。这两个属的基数可能x=9,它们可能为6倍体,结合帚木菊族已有染色体报道及形态特征,地理分布等初步分析表明:栌菊木种内分化程度小,是一自然类群;栌菊木和白菊木可能有着较近缘的联系;栌菊木可能是古老孑遗植物的后裔,为适应环境而多倍体化,得以保存下来。  相似文献   

20.
Chromosome numbers are reported for 29 populations of 19 Vernonieae taxa collected mainly in the northeastern region of Brazil. Among them, data for five genera (Blanchetia, Rolandra, Pithecoseris, Stilpnopappus and Vanillosmopsis) are here reported for the first time, and the first chromosome counts are presented for 12 species. Chromosome numbers are quite diverse among and sometimes within genera, especially in the controversial and large subtribe Vernoniinae. The numbers varied from 2n = 18 to 2n = ~72. The main karyoevolutionary mechanism seems to be dysploidy, while polyploidy is probably associated with ancient hybridization processes generating most paleotetraploid genera. All studied species presented semi-reticulated interphase nuclei and proximal-early condensing behavior in prophase to prometaphase. In one species (Vernonia condensata with 2n = 40) fluorochrome staining with CMA/DAPI revealed five chromosome pairs bearing subterminal CMA+/DAPI? heterochromatin, probably NOR-associated, revealing the existence of low amounts of satellite DNA. The role of these features in the evolution of the tribe is discussed, revealing some interesting aspects for understanding of the Vernonieae karyoevolution, especially regarding neotropical members.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号