首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ecotones mark zones of rapid change in ecological structure at various spatial scales. They are believed to be particularly susceptible to shifts caused by environmental transformation, making them key regions for studying the effects of global change. Here, we explored the variation in assemblage structure of aquatic primary producer and consumer communities across latitudinal transects in northeastern North America (Québec‐Labrador) to identify spatial patterns in biodiversity that indicated the location of transition zones across the landscape. We analyzed species richness and the cumulative rate of compositional change (expressed as beta‐diversity) of diatoms and chironomids to detect any abrupt shifts in the rate of spatial taxonomic turnover. We used principal coordinates analysis to estimate community turnover with latitude, then applied piecewise linear regression to assess the position of ecotones. Statistically significant changes in assemblage composition occurred at 52 and 55°N, corresponding to the transition between closed‐ and open‐crown forest, and to the southern onset of the forest tundra (i.e., the forest limit), respectively. The spatial distribution of ecotones was most strongly related to air temperature for chironomids and to vegetation‐ and soil‐related chemical attributes of lake water for diatoms, including dissolved organic carbon content and water color. Lakes at mid‐ to high‐latitudes currently face pressures from rapidly rising temperatures, accompanied by large increases in organic carbon inputs from their catchments, often leading to browning and its associated effects. The biota at the base of food webs in lakes located in transition zones are disproportionately affected by the cascading effects of these multi‐factorial changes, concurrent with pronounced terrestrial greening observed in these regions. Similar patterns of biotic shifts have been observed along alpine aquatic transects, indicating the potential for widespread restructuring of cold, high‐altitude and high‐latitude freshwater communities due to global change.  相似文献   

2.
Water is crucial for plant productivity and survival as a fundamental resource, but water conditions can also cause physiological stress and mechanical disturbance to vegetation. However, these different influences of water on vegetation patterns have not been evaluated simultaneously. Here, we demonstrate the importance of three water aspects (spatial and temporal variation of soil moisture and fluvial disturbance) for three ecologically and evolutionary distinct taxonomical groups (vascular plants, mosses and lichens) in Fennoscandian mountain tundra. Fine‐scale plant occurrence data for 271 species were collected from 378 × 1 m2 plots sampled over broad environmental gradients (water, temperature, radiation, soil pH, cryogenic processes and the dominant allelopathic plant species). While controlling all other key environmental variables, water in its different aspects proved to be a crucial environmental driver, acting on individual species and on community characteristics. The inclusion of the water variables significantly improved our models. In this high‐latitude system, the importance of spatial variability of water exceeds the importance of temperature for the fine‐scale distribution of species from the three taxonomical groups. We found differing responses to the three water variables between and within the taxonomical groups. Water as a resource was the most important water‐related variable in species distribution models across all taxonomical groups. Both water resource and disturbance were strongly related to vascular plant species richness, whereas for moss species richness, water resources had the highest influence. For lichen species richness, water disturbance was the most influential water‐related variable. These findings demonstrate that water variables are not only independent properties of tundra hydrology, but also that water is truly a multifaceted driver of vegetation patterns at high‐latitudes.  相似文献   

3.
Terrestrial transects for global change research   总被引:1,自引:0,他引:1  
The International Geosphere-Biosphere Program has proposed a set of large-scale terrestrial transects to study the effects of changes in climate, land use, and atmospheric composition (global change) on biogeochemistry, surface-atmosphere exchange, and vegetation dynamics of terrestrial ecosystems. The transects ( 1000 km) will be located along existing environmental and land use intensity gradients that span transitions between biomes in regions likely to be widely affected by forcing from components of global change or where the impacts of global change are likely to feed back to affect atmospheric, climatic, or hydrologic systems. Experimental studies on the transects will examine short-term changes in ecosystem function and biosphere-atmosphere interaction in response to variation in primary controlling variables. A hierarchy of modeling approaches will develop predictions of long-term changes in biome boundaries and vegetation distribution. The proposed initial set of IGBP terrestrial transects are located in four key regions: (1) humid tropical forests undergoing land use change, (2) high latitudes including the transition from boreal forest to tundra, (3) semi-arid tropical regions including transitions from dry forest to shrublands and savannas, and (4) mid latitude semi-arid regions encompassing transitions from shrubland or grassland to forests. We discuss here the rationale and general research design of transect studies proposed for each of these priority regions.GCTE Focus 1 Office  相似文献   

4.
Uncertainty about controls on long-term carbon (C) and nitrogen (N) balance, turnover, and isotopic composition currently limits our ability to predict ecosystem response to disturbance and landscape change. We used a two-century, postglacial chronosequence in Glacier Bay, Alaska, to explore the influence of C and N dynamics on soil and leaf stable isotopes. C dynamics were closely linked to soil hydrology, with increasing soil water retention during ecosystem development resulting in a linear decrease in foliar and soil δ13C, independent of shifts in vegetation cover and despite constant precipitation across sites. N dynamics responded to interactions among soil development, vegetation type, microbial activity, and topography. Contrary to the predictions of nutrient retention theory, potential nitrification and denitrification were high, relative to inorganic N stocks, from the beginning of the chronosequence, and gaseous and hydrological N losses were highest at mid-successional sites, 140–165 years since deglaciation. Though leaching of dissolved N is considered the predominant pathway of N loss at high latitudes, we found that gaseous N loss was more tightly correlated with δ15N enrichment. These results suggest that δ13C in leaves and soil can depend as much on soil development and associated water availability as on climate and that N availability and export depend on interactions between physical and biological state factors.  相似文献   

5.
The Lund–Potsdam–Jena Dynamic Global Vegetation Model (LPJ) combines process‐based, large‐scale representations of terrestrial vegetation dynamics and land‐atmosphere carbon and water exchanges in a modular framework. Features include feedback through canopy conductance between photosynthesis and transpiration and interactive coupling between these ‘fast’ processes and other ecosystem processes including resource competition, tissue turnover, population dynamics, soil organic matter and litter dynamics and fire disturbance. Ten plants functional types (PFTs) are differentiated by physiological, morphological, phenological, bioclimatic and fire‐response attributes. Resource competition and differential responses to fire between PFTs influence their relative fractional cover from year to year. Photosynthesis, evapotranspiration and soil water dynamics are modelled on a daily time step, while vegetation structure and PFT population densities are updated annually. Simulations have been made over the industrial period both for specific sites where field measurements were available for model evaluation, and globally on a 0.5°° × 0.5°° grid. Modelled vegetation patterns are consistent with observations, including remotely sensed vegetation structure and phenology. Seasonal cycles of net ecosystem exchange and soil moisture compare well with local measurements. Global carbon exchange fields used as input to an atmospheric tracer transport model (TM2) provided a good fit to observed seasonal cycles of CO2 concentration at all latitudes. Simulated inter‐annual variability of the global terrestrial carbon balance is in phase with and comparable in amplitude to observed variability in the growth rate of atmospheric CO2. Global terrestrial carbon and water cycle parameters (pool sizes and fluxes) lie within their accepted ranges. The model is being used to study past, present and future terrestrial ecosystem dynamics, biochemical and biophysical interactions between ecosystems and the atmosphere, and as a component of coupled Earth system models.  相似文献   

6.
Experimental evidence shows that site fertility is a key modulator underlying plant community changes under climate change. Communities on fertile sites, with species having fast dynamics, have been found to react more strongly to climate change than communities on infertile sites with slow dynamics. However, it is still unclear whether this generally applies to high‐latitude plant communities in natural environments at broad spatial scales. We tested a hypothesis that vegetation of fertile sites experiences greater changes over several decades and thus would be more responsive under contemporary climate change compared to infertile sites that are expected to show more resistance. We resurveyed understorey communities (vascular plants, bryophytes, and lichens) of four infertile and four fertile forest sites along a latitudinal bioclimatic gradient. Sites had remained outside direct human disturbance. We analyzed the magnitude of temporal community turnover, changes in the abundances of plant morphological groups and strategy classes, and changes in species diversity. In agreement with our hypothesis, temporal turnover of communities was consistently greater on fertile sites compared to infertile sites. However, our results suggest that the larger turnover of fertile communities is not primarily related to the direct effects of climatic warming. Furthermore, community changes in both fertile and infertile sites showed remarkable variation in terms of shares of plant functional groups and strategy classes and measures of species diversity. This further emphasizes the essential role of baseline environmental conditions and nonclimatic drivers underlying vegetation changes. Our results show that site fertility is a key determinant of the overall rate of high‐latitude vegetation changes but the composition of plant communities in different ecological contexts is variously impacted by nonclimatic drivers over time.  相似文献   

7.
Deforestation is associated with increased atmospheric CO2 and alterations to the surface energy and mass balances that can lead to local and global climate changes. Previous modelling studies show that the global surface air temperature (SAT) response to deforestation depends on latitude, with most simulations showing that high latitude deforestation results in cooling, low latitude deforestation causes warming and that the mid latitude response is mixed. These earlier conclusions are based on simulated large scal land cover change, with complete removal of trees from whole latitude bands. Using a global climate model we examine the effects of removing fractions of 5% to 100% of forested areas in the high, mid and low latitudes. All high latitude deforestation scenarios reduce mean global SAT, the opposite occurring for low latitude deforestation, although a decrease in SAT is simulated over low latitude deforested areas. Mid latitude SAT response is mixed. In all simulations deforested areas tend to become drier and have lower SAT, although soil temperatures increase over deforested mid and low latitude grid cells. For high latitude deforestation fractions of 45% and above, larger net primary productivity, in conjunction with colder and drier conditions after deforestation cause an increase in soil carbon large enough to produce a net decrease of atmospheric CO2. Our results reveal the complex interactions between soil carbon dynamics and other climate subsystems in the energy partition responses to land cover change.  相似文献   

8.
Climate change is predicted to be dramatic at high latitudes. Still, climate impact on high latitude lake ecosystems is poorly understood. We studied 15 subarctic lakes located in a climate gradient comprising an air temperature difference of about 6°C. We show that lake water productivity varied by one order of magnitude along the temperature gradient. This variation was mainly caused by variations in the length of the ice‐free period and, more importantly, in the supply of organic carbon and inorganic nutrients, which followed differences in terrestrial vegetation cover along the gradient. The results imply that warming will have rapid effects on the productivity of high latitude lakes, by prolongation of ice‐free periods. However, a more pronounced consequence will be a delayed stimulation of the productivity following upon changes of the lakes terrestrial surroundings and subsequent increasing input of elements that stimulate the production of lake biota.  相似文献   

9.
Aims The importance of quantifying carbon stocks in terrestrial ecosystems is crucial for determining climate change dynamics. However, the present regional assessments of carbon stocks in tropical grasslands are extrapolated to unsampled areas with a high degree of uncertainty and without considering the carbon and nitrogen composition of vegetation and soil along altitudinal ranges. This study aims to assess carbon and nitrogen concentrations in soil and vegetation, aboveground carbon stocks distribution and soil organic carbon stocks along an altitudinal range in the páramo region in the Ecuadorian Andes.Methods The vegetation inventory was conducted using 15×15 m sampling plots distributed in three altitudinal ranges. Based on the patterns exhibited by the dominant vegetation growth forms, biomass and soil were sampled to quantify the corresponding carbon and nitrogen concentrations. Subsequently, the aboveground live biomass along the páramo altitudinal range was estimated using allometric equations. Finally, soil and vegetation carbon stocks were estimated for the entire basin.Important findings Altitudinal analysis supported a potential distribution of carbon and nitrogen concentrations in soil, litter and live tissues, where higher concentrations were found in the low altitudinal range mainly for tussocks and acaulescent rosettes. Cellulose in litter showed higher concentrations at low altitudinal ranges for acaulescent rosettes and cushions only. For the same growth forms, lignin patterns in litter were higher in high altitudinal ranges. Soil texture provided complementary information: high percentage of silt was highly correlated to high soil nitrogen and carbon concentration. Tussocks were found to be responsive to altitude with their, highest aboveground carbon stocks occurring at the low altitudinal range, but cushions and acaulescent rosettes responded differently. The established relationships among soil, vegetation and altitude shown in this study must be taken into account to estimate both aboveground and soil organic carbon stocks in páramo regions—such estimates will be considerably inaccurate if these relationships are ignored.  相似文献   

10.
Aim Spatial turnover of species, or beta diversity, varies in relation to geographical distance and environmental conditions, as well as spatial scale. We evaluated the explanatory power of distance, climate and topography on beta diversity of mammalian faunas of North America in relation to latitude. Location North America north of Mexico. Methods The study area was divided into 313 equal‐area quadrats (241 × 241 km). Faunal data for all continental mammals were compiled for these quadrats, which were divided among five latitudinal zones. These zones were comparable in terms of latitudinal and longitudinal span, climatic gradients and elevational gradients. We used the natural logarithm of the Jaccard index (lnJ) to measure species turnover between pairs of quadrats within each latitudinal zone. The slope of lnJ in relation to distance was compared among latitudinal zones. We used partial regression to partition the variance in lnJ into the components uniquely explained by distance and by environmental differences, as well as jointly by distance and environmental differences. Results Mammalian faunas of North America differ more from each other at lower latitudes than at higher latitudes. Regression models of lnJ in relation to distance, climatic difference and topographic difference for each zone demonstrated that these variables have high explanatory power that diminishes with latitude. Beta diversity is higher for zones with higher mean annual temperature, lower seasonality of temperature and greater topographic complexity. For each latitudinal zone, distance and environmental differences explain a greater proportion of the variance in lnJ than distance, climate or topography does separately. Main conclusions The latitudinal gradient in beta diversity of North American mammals corresponds to a macroclimatic gradient of decreasing mean annual temperature and increasing seasonality of temperature from south to north. Most of the variance in spatial turnover is explained by distance and environmental differences jointly rather than distance, climate or topography separately. The high predictive power of geographical distance, climatic conditions and topography on spatial turnover could result from the direct effects of physical limiting factors or from ecological and evolutionary processes that are also influenced by the geographical template.  相似文献   

11.
The precise and accurate quantitative evaluation of the temporal and spatial pattern of carbon (C) storage in forest ecosystems is critical for understanding the role of forests in the global terrestrial C cycle and is essential for formulating forest management policies to combat climate change. In this study, we examined the C dynamics of forest ecosystems in Shaanxi, northwest China, based on four forest inventories (1989–1993, 1994–1998, 1999–2003, and 2004–2008) and field-sampling measurements (2012). The results indicate that the total C storage of forest ecosystems in Shaanxi increased by approximately 29.3%, from 611.72 Tg in 1993 to 790.75 Tg in 2008, partially as a result of ecological restoration projects. The spatial pattern of C storage in forest ecosystems mainly exhibited a latitude-zonal distribution across the province, increasing from north (high latitude) to south (low latitude) generally, which signifies the effect of environmental conditions, chiefly water and heat related factors, on forest growth and C sequestration. In addition, different data sources and estimation methods had a significant effect on the results obtained, with the C stocks in 2008 being considerably overestimated (864.55 Tg) and slightly underestimated (778.07 Tg) when measured using the mean C density method and integrated method, respectively. Overall, our results demonstrated that the forest ecosystem in Shaanxi acted as a C sink over the last few decades. However, further studies should be carried out with a focus on adaption of plants to environmental factors along with forest management for vegetation restoration to maximize the C sequestration potential and to better cope with climate change.  相似文献   

12.
三江并流地区干旱河谷植物物种多样性海拔梯度格局比较   总被引:1,自引:0,他引:1  
在滇西北三江并流地区典型干旱河谷段, 在怒江、澜沧江和金沙江的东、西坡共设置了6条海拔梯度样带, 通过标准样地的植物群落调查, 分析各条样带植物的物种丰富度、物种更替率的海拔梯度格局, 并比较了地理和植被变量对分布格局的解释。干旱河谷植被带位于海拔3,000 m以下, 以灌丛和灌草丛为主, 其在各河谷的分布上限自西向东依次升高。植物物种丰富度的分布主要与海拔、流域、经纬度和植被带有关, 沿纬度和海拔梯度升高而显著增加的格局主要表现在草本层和灌木层, 灌木物种丰富度还呈现自西向东显著增加的趋势。怒江的灌木和草本种物种丰富度显著高于金沙江和澜沧江, 三条江的乔木种丰富度差异则不显著。森林带的样方草本物种丰富度显著低于灌草丛带样方, 并且还拥有后者没有的乔木种。不同样带的植物物种更替速率呈现了不一致的海拔梯度格局, 但均在样带海拔下部的灌草丛群落与海拔上部森林群落之间的交错带出现峰值。森林-灌草丛植被交错带在怒江样带处于海拔1,900-2,100 m处, 在澜沧江河谷位于海拔2,300-2,400 m, 在金沙江河谷位于海拔2,700-2,900 m。所有海拔样带的森林段或灌草丛段相对于同一样带不同植被段之间的物种更替程度为最小, 不仅小于同一流域不同样带相同植被段之间物种更替率的均值, 更小于所有样带相同植被段之间的更替率均值。在三条河流6条海拔样带的12个植被带段之间的物种更替变化中, 空间隔离因素可以解释34.2%, 而植被类型差异仅能解释不到0.5%。本研究结果显示了环境差异对不同植被类型物种丰富度的首要影响, 和各河流之间的空间隔离对植物群落构建和物种构成的主要作用。  相似文献   

13.
Evaluating the role of terrestrial ecosystems in the global carbon cycle requires a detailed understanding of carbon exchange between vegetation, soil, and the atmosphere. Global climatic change may modify the net carbon balance of terrestrial ecosystems, causing feedbacks on atmospheric CO2 and climate. We describe a model for investigating terrestrial carbon exchange and its response to climatic variation based on the processes of plant photosynthesis, carbon allocation, litter production, and soil organic carbon decomposition. The model is used to produce geographical patterns of net primary production (NPP), carbon stocks in vegetation and soils, and the seasonal variations in net ecosystem production (NEP) under both contemporary and future climates. For contemporary climate, the estimated global NPP is 57.0 Gt C y–1, carbon stocks in vegetation and soils are 640 Gt C and 1358 Gt C, respectively, and NEP varies from –0.5 Gt C in October to 1.6 Gt C in July. For a doubled atmospheric CO2 concentration and the corresponding climate, we predict that global NPP will rise to 69.6 Gt C y–1, carbon stocks in vegetation and soils will increase by, respectively, 133 Gt C and 160 Gt C, and the seasonal amplitude of NEP will increase by 76%. A doubling of atmospheric CO2 without climate change may enhance NPP by 25% and result in a substantial increase in carbon stocks in vegetation and soils. Climate change without CO2 elevation will reduce the global NPP and soil carbon stocks, but leads to an increase in vegetation carbon because of a forest extension and NPP enhancement in the north. By combining the effects of CO2 doubling, climate change, and the consequent redistribution of vegetation, we predict a strong enhancement in NPP and carbon stocks of terrestrial ecosystems. This study simulates the possible variation in the carbon exchange at equilibrium state. We anticipate to investigate the dynamic responses in the carbon exchange to atmospheric CO2 elevation and climate change in the past and future.  相似文献   

14.
Coupling dynamic models of climate and vegetation   总被引:8,自引:0,他引:8  
Numerous studies have underscored the importance of terrestrial ecosystems as an integral component of the Earth's climate system. This realization has already led to efforts to link simple equilibrium vegetation models with Atmospheric General Circulation Models through iterative coupling procedures. While these linked models have pointed to several possible climate–vegetation feedback mechanisms, they have been limited by two shortcomings: (i) they only consider the equilibrium response of vegetation to shifting climatic conditions and therefore cannot be used to explore transient interactions between climate and vegetation; and (ii) the representations of vegetation processes and land-atmosphere exchange processes are still treated by two separate models and, as a result, may contain physical or ecological inconsistencies. Here we present, as a proof concept, a more tightly integrated framework for simulating global climate and vegetation interactions. The prototype coupled model consists of the GENESIS (version 2) Atmospheric General Circulation Model and the IBIS (version 1) Dynamic Global Vegetation Model. The two models are directly coupled through a common treatment of land surface and ecophysiological processes, which is used to calculate the energy, water, carbon, and momentum fluxes between vegetation, soils, and the atmosphere. On one side of the interface, GENESIS simulates the physics and general circulation of the atmosphere. On the other side, IBIS predicts transient changes in the vegetation structure through changes in the carbon balance and competition among plants within terrestrial ecosystems. As an initial test of this modelling framework, we perform a 30 year simulation in which the coupled model is supplied with modern CO2 concentrations, observed ocean temperatures, and modern insolation. In this exploratory study, we run the GENESIS atmospheric model at relatively coarse horizontal resolution (4.5° latitude by 7.5° longitude) and IBIS at moderate resolution (2° latitude by 2° longitude). We initialize the models with globally uniform climatic conditions and the modern distribution of potential vegetation cover. While the simulation does not fully reach equilibrium by the end of the run, several general features of the coupled model behaviour emerge. We compare the results of the coupled model against the observed patterns of modern climate. The model correctly simulates the basic zonal distribution of temperature and precipitation, but several important regional biases remain. In particular, there is a significant warm bias in the high northern latitudes, and cooler than observed conditions over the Himalayas, central South America, and north-central Africa. In terms of precipitation, the model simulates drier than observed conditions in much of South America, equatorial Africa and Indonesia, with wetter than observed conditions in northern Africa and China. Comparing the model results against observed patterns of vegetation cover shows that the general placement of forests and grasslands is roughly captured by the model. In addition, the model simulates a roughly correct separation of evergreen and deciduous forests in the tropical, temperate and boreal zones. However, the general patterns of global vegetation cover are only approximately correct: there are still significant regional biases in the simulation. In particular, forest cover is not simulated correctly in large portions of central Canada and southern South America, and grasslands extend too far into northern Africa. These preliminary results demonstrate the feasibility of coupling climate models with fully dynamic representations of the terrestrial biosphere. Continued development of fully coupled climate-vegetation models will facilitate the exploration of a broad range of global change issues, including the potential role of vegetation feedbacks within the climate system, and the impact of climate variability and transient climate change on the terrestrial biosphere.  相似文献   

15.
Emerging insights into factors responsible for soil organic matter stabilization and decomposition are being applied in a variety of contexts, but new tools are needed to facilitate the understanding, evaluation, and improvement of soil biogeochemical theory and models at regional to global scales. To isolate the effects of model structural uncertainty on the global distribution of soil carbon stocks and turnover times we developed a soil biogeochemical testbed that forces three different soil models with consistent climate and plant productivity inputs. The models tested here include a first‐order, microbial implicit approach (CASA‐CNP), and two recently developed microbially explicit models that can be run at global scales (MIMICS and CORPSE). When forced with common environmental drivers, the soil models generated similar estimates of initial soil carbon stocks (roughly 1,400 Pg C globally, 0–100 cm), but each model shows a different functional relationship between mean annual temperature and inferred turnover times. Subsequently, the models made divergent projections about the fate of these soil carbon stocks over the 20th century, with models either gaining or losing over 20 Pg C globally between 1901 and 2010. Single‐forcing experiments with changed inputs, temperature, and moisture suggest that uncertainty associated with freeze‐thaw processes as well as soil textural effects on soil carbon stabilization were larger than direct temperature uncertainties among models. Finally, the models generated distinct projections about the timing and magnitude of seasonal heterotrophic respiration rates, again reflecting structural uncertainties that were related to environmental sensitivities and assumptions about physicochemical stabilization of soil organic matter. By providing a computationally tractable and numerically consistent framework to evaluate models we aim to better understand uncertainties among models and generate insights about factors regulating the turnover of soil organic matter.  相似文献   

16.
Abstract. A coupled carbon and water flux model (BIOME2) captures the broad-scale environmental controls on the natural distribution of vegetation structural and phenological types in Australia. Model input consists of latitude, soil type, and mean monthly climate (temperature, precipitation, and sunshine hours) data on a 1/10° grid. Model output consists of foliage projective cover (FPC) for the quantitative combination of plant types that maximizes net primary production (NPP). The model realistically simulates changes in FPC along moisture gradients as a consequence of the trade-off between light capture and water stress. A two-layer soil hydrology model also allows simulation of the competitive balance between grass and woody vegetation including the strong effects of soil texture.  相似文献   

17.
Pantropical trends in mangrove above-ground biomass and annual litterfall   总被引:8,自引:0,他引:8  
A major paradigm in biosphere ecology is that organic production, carbon turnover and, perhaps, species diversity are highest at tropical latitudes, and decrease toward higher latitudes. To examine these trends in the pantropical mangrove forest vegetation type, we collated and analysed data on above-ground biomass and annual litterfall for these communities. Regressions of biomass and litterfall data show significant relationships with height of the vegetation and latitude. It is suggested that height and latitude are causally related to biomass, while the relationship with litterfall reflects the specific growing conditions at the respective study sites. Comparison of mangrove and upland forest litterfall data shows similar trends with latitude but indicates that mangrove litterfall is higher than upland forest litterfall. The regression equations allow the litterfall/biomass ratio to be simulated, and this suggests that the patterns of organic matter partitioning differ according to latitude.  相似文献   

18.
Soil organic carbon (SOC) stock in mountain ecosystems is highly heterogeneous because of differences in soil, climate, and vegetation with elevation. Little is known about the spatial distribution and chemical composition of SOC along altitude gradients in subtropical mountain regions, and the controlling factors remain unclear. In this study, we investigated the changes in SOC stock and chemical composition along an elevation gradient (219, 405, 780, and 1268 m a.s.l.) on Lushan Mountain, subtropical China. The results suggested that SOC stocks were significantly higher at high altitude sites (1268 m) than at low altitude ones (219, 405, and 780 m), but the lower altitude sites did not differ significantly. SOC stocks correlated positively with mean annual precipitation but negatively with mean annual temperature and litter C/N ratio. The variations in SOC stocks were related mainly to decreasing temperature and increasing precipitation with altitude, which resulted in decreased litter decomposition at high altitude sites. This effect was also demonstrated by the chemical composition of SOC, which showed lower alkyl C and higher O-alkyl C contents at high altitude sites. These results will improve the understanding of soil C dynamics and enhance predictions of the responses of mountain ecosystem to global warming under climate change.  相似文献   

19.
Natural forest growth and expansion are important carbon sequestration processes globally. Climate change is likely to increase forest growth in some regions via CO2 fertilization, increased temperatures, and altered precipitation; however, altered disturbance regimes and climate stress (e.g. drought) will act to reduce carbon stocks in forests as well. Observations of asynchrony in forest change is useful in determining current trends in forest carbon stocks, both in terms of forest density (e.g. Mg ha?1) and spatially (extent and location). Monitoring change in natural (unmanaged) areas is particularly useful, as while afforestation and recovery from historic land use are currently large carbon sinks, the long‐term viability of those sinks depends on climate change and disturbance dynamics at their particular location. We utilize a large, unmanaged biome (>135 000 km2) which spans a broad latitudinal gradient to explore how variation in location affects forest density and spatial patterning: the forests of the North American temperate rainforests in Alaska, which store >2.8 Pg C in biomass and soil, equivalent to >8% of the C in contiguous US forests. We demonstrate that the regional biome is shifting; gains exceed losses and are located in different spatio‐topographic contexts. Forest gains are concentrated on northerly aspects, lower elevations, and higher latitudes, especially in sheltered areas, whereas loss is skewed toward southerly aspects and lower latitudes. Repeat plot‐scale biomass data (n = 759) indicate that within‐forest biomass gains outpace losses (live trees >12.7 cm diameter, 986 Gg yr?1) on gentler slopes and in higher latitudes. This work demonstrates that while temperate rainforest dynamics occur at fine spatial scales (<1000 m2), the net result of thousands of individual events is regionally patterned change. Correlations between the disturbance/establishment imbalance and biomass accumulation suggest the potential for relatively rapid biome shifts and biomass changes.  相似文献   

20.

Aim

Tropical forests account for a quarter of the global carbon storage and a third of the terrestrial productivity. Few studies have teased apart the relative importance of environmental factors and forest attributes for ecosystem functioning, especially for the tropics. This study aims to relate aboveground biomass (AGB) and biomass dynamics (i.e., net biomass productivity and its underlying demographic drivers: biomass recruitment, growth and mortality) to forest attributes (tree diversity, community‐mean traits and stand basal area) and environmental conditions (water availability, soil fertility and disturbance).

Location

Neotropics.

Methods

We used data from 26 sites, 201 1‐ha plots and >92,000 trees distributed across the Neotropics. We quantified for each site water availability and soil total exchangeable bases and for each plot three key community‐weighted mean functional traits that are important for biomass stocks and productivity. We used structural equation models to test the hypothesis that all drivers have independent, positive effects on biomass stocks and dynamics.

Results

Of the relationships analysed, vegetation attributes were more frequently associated significantly with biomass stocks and dynamics than environmental conditions (in 67 vs. 33% of the relationships). High climatic water availability increased biomass growth and stocks, light disturbance increased biomass growth, and soil bases had no effect. Rarefied tree species richness had consistent positive relationships with biomass stocks and dynamics, probably because of niche complementarity, but was not related to net biomass productivity. Community‐mean traits were good predictors of biomass stocks and dynamics.

Main conclusions

Water availability has a strong positive effect on biomass stocks and growth, and a future predicted increase in (atmospheric) drought might, therefore, potentially reduce carbon storage. Forest attributes, including species diversity and community‐weighted mean traits, have independent and important relationships with AGB stocks, dynamics and ecosystem functioning, not only in relatively simple temperate systems, but also in structurally complex hyper‐diverse tropical forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号