首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21141篇
  免费   1622篇
  国内免费   7篇
  2023年   64篇
  2021年   257篇
  2020年   226篇
  2019年   321篇
  2018年   382篇
  2017年   355篇
  2016年   572篇
  2015年   961篇
  2014年   1084篇
  2013年   1366篇
  2012年   1577篇
  2011年   1476篇
  2010年   980篇
  2009年   913篇
  2008年   1185篇
  2007年   1110篇
  2006年   1122篇
  2005年   1090篇
  2004年   1038篇
  2003年   911篇
  2002年   958篇
  2001年   303篇
  2000年   263篇
  1999年   269篇
  1998年   276篇
  1997年   196篇
  1996年   220篇
  1995年   205篇
  1994年   223篇
  1993年   229篇
  1992年   198篇
  1991年   156篇
  1990年   138篇
  1989年   152篇
  1988年   153篇
  1987年   110篇
  1986年   106篇
  1985年   133篇
  1984年   151篇
  1983年   114篇
  1982年   144篇
  1981年   109篇
  1980年   107篇
  1979年   92篇
  1978年   88篇
  1977年   79篇
  1976年   57篇
  1975年   48篇
  1974年   65篇
  1973年   66篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Insertions in the protease (PR) region of human immunodeficiency virus (HIV) represent an interesting mechanism of antiviral resistance against HIV PR inhibitors (PIs). Here, we demonstrate the improved ability of a phosphonate-containing experimental HIV PI, GS-8374, relative to that of other PIs, to effectively inhibit patient-derived recombinant HIV strains bearing PR insertions and numerous other mutations. We correlate enzyme inhibition with the catalytic activities of corresponding recombinant PRs in vitro and provide a biochemical and structural analysis of the PR-inhibitor complex.  相似文献   
2.
N-Glycosylation is an important post-translational modification of proteins, which mainly occurs in the endoplasmic reticulum (ER). Glycoproteins that are unable to fold properly are exported to the cytosol for degradation by a cellular system called ER-associated degradation (ERAD). Once misfolded glycoproteins are exported to the cytosol, they are subjected to deglycosylation by peptide:N-glycanase (PNGase) to facilitate the efficient degradation of misfolded proteins by the proteasome. Interestingly, the ortholog of PNGase in some filamentous fungi was found to be an inactive deglycosylating enzyme. On the other hand, it has been shown that in filamentous fungi genomes, usually two different fungi-specific endo-β-N-acetylglucosamidases (ENGases) can be found; one is predicted to be localized in the cytosol and the other to have a signal sequence, while the functional importance of these enzymes remains to be clarified. In this study the ENGases of the filamentous fungus Trichoderma atroviride was characterized. By heterologous expression of the ENGases Eng18A and Eng18B in Saccharomyces cerevisiae, it was found that both ENGases are active deglycosylating enzymes. Interestingly, only Eng18B was able to enhance the efficient degradation of the RTL protein, a PNGase-dependent ERAD substrate, implying the involvement of this enzyme in the ERAD process. These results indicate that T. atroviride Eng18B may deglycosylate misfolded glycoproteins, substituting the function of the cytoplasmic PNGase in the ERAD process.  相似文献   
3.
Planktonic crustaceans are traditionally identified based on morphological and morphometric characters. However, such characters may be hardly distinguishable and often overlap between species. A probability of misidentification is thus relatively high. Molecular techniques may increase the accuracy of identification if appropriate markers are used. Aim of our work was to develop a simple molecular procedure enabling discrimination between four species of Simocephalus occurring in Europe. PCR-RFLP technique proved to be suitable for such discrimination. Within the 709 bp fragment of mitochondrial cytochrome c oxidase subunit 1 gene we found unique combinations of restriction sites of the BbsI and SacI enzymes for Simocephalus vetulus, S. exspinosus, S. serrulatus and S. congener. PCR products of samples from several locations in Slovakia were digested with the two enzymes and electrophoresed on an agarose gel. The restriction patterns were clearly visible and easily distinguishable. This method is applicable for identifying the four species in any life-stage. Considering its simplicity and cost-effectiveness it can be widely used as a diagnostic tool for discriminating between Simocephalus species with overlapping morphologic characters.  相似文献   
4.
Transitional cell carcinoma (TCC), the most common cancer of the urinary bladder in dogs, is usually diagnosed at an advanced disease stage with limited response to chemotherapy. Commercial screening tests lack specificity and current diagnostic procedures are invasive. A proof of concept pilot project for analyzing the canine urinary proteome as a noninvasive diagnostic tool for TCC identification was conducted. Urine was collected from 12 dogs in three cohorts (healthy, urinary tract infection, TCC) and analyzed using liquid chromatography tandem mass spectrometry. The presence of four proteins (macrophage capping protein, peroxiredoxin 5, heterogeneous nuclear ribonucleoproteins A2/B, and apolipoprotein A1) was confirmed via immunoblot. Of the total 379 proteins identified, 96 were unique to the TCC group. A statistical model, designed to evaluate the accuracy of this multiplex biomarker approach for diagnosis of TCC, predicted the presence of disease with 90% accuracy.  相似文献   
5.
6.
IL‐18 is known to play a key role limiting Cryptosporidium parvum infection. In this study, we show that IL‐18 depletion in SCID mice significantly exacerbates C. parvum infection, whereas, treatment with recombinant IL‐18 (rIL‐18), significantly decreases the parasite load, as compared to controls. Increases in serum IFN‐γ levels as well as the up‐regulation of the antimicrobial peptides, cathelicidin antimicrobial peptide and beta defensin 3 (Defb3) were observed in the intestinal mucosa of mice treated with rIL‐18. In addition, C. parvum infection significantly increased mRNA expression levels (> 50 fold) of the alpha defensins, Defa3 and 5, respectively. Interestingly, we also found a decrease in mRNA expression of IL‐33 (a recently identified cytokine in the same family as IL‐18) in the small intestinal tissue from mice treated with rIL‐18. In comparison, the respective genes were induced by IL‐18 depletion. Our findings suggest that IL‐18 can mediate its protective effects via different routes such as IFN‐γ induction or by directly stimulating intestinal epithelial cells to increase antimicrobial activity.  相似文献   
7.

Background and Aims

Experimental evidence challenges the approximation, central in crop models, that developmental events follow a fixed thermal time schedule, and indicates that leaf emergence events play a role in the timing of development. The objective of this study was to build a structural development model of maize (Zea mays) based on a set of coordination rules at organ level that regulate duration of elongation, and to show how the distribution of leaf sizes emerges from this.

Methods

A model of maize development was constructed based on three coordination rules between leaf emergence events and the dynamics of organ extension. The model was parameterized with data from maize grown at a low plant population density and tested using data from maize grown at high population density.

Key Results

The model gave a good account of the timing and duration of organ extension. By using initial conditions associated with high population density, the model reproduced well the increase in blade elongation duration and the delay in sheath extension in high-density populations compared with low-density populations. Predictions of the sizes of sheaths at high density were accurate, whereas predictions of the dynamics of blade length were accurate up to rank 9; moderate overestimation of blade length occurred at higher ranks.

Conclusions

A set of simple rules for coordinated growth of organs is sufficient to simulate the development of maize plant structure without taking into account any regulation by assimilates. In this model, whole-plant architecture is shaped through initial conditions that feed a cascade of coordination events.  相似文献   
8.

Background

Severe canopy-removing disturbances are native to many temperate forests and radically alter stand structure, but biotic legacies (surviving elements or patterns) can lend continuity to ecosystem function after such events. Poorly understood is the degree to which the structural complexity of an old-growth forest carries over to the next stand. We asked how pre-disturbance spatial pattern acts as a legacy to influence post-disturbance stand structure, and how this legacy influences the structural diversity within the early-seral stand.

Methods

Two stem-mapped one-hectare forest plots in the Czech Republic experienced a severe bark beetle outbreak, thus providing before-and-after data on spatial patterns in live and dead trees, crown projections, down logs, and herb cover.

Results

Post-disturbance stands were dominated by an advanced regeneration layer present before the disturbance. Both major species, Norway spruce (Picea abies) and rowan (Sorbus aucuparia), were strongly self-aggregated and also clustered to former canopy trees, pre-disturbance snags, stumps and logs, suggesting positive overstory to understory neighbourhood effects. Thus, although the disturbance dramatically reduced the stand’s height profile with ~100% mortality of the canopy layer, the spatial structure of post-disturbance stands still closely reflected the pre-disturbance structure. The former upper tree layer influenced advanced regeneration through microsite and light limitation. Under formerly dense canopies, regeneration density was high but relatively homogeneous in height; while in former small gaps with greater herb cover, regeneration density was lower but with greater heterogeneity in heights.

Conclusion

These findings suggest that pre-disturbance spatial patterns of forests can persist through severe canopy-removing disturbance, and determine the spatial structure of the succeeding stand. Such patterns constitute a subtle but key legacy effect, promoting structural complexity in early-seral forests as well as variable successional pathways and rates. This influence suggests a continuity in spatial ecosystem structure that may well persist through multiple forest generations.  相似文献   
9.

Introduction

The pathophysiology of acute kidney injury (AKI) after cardiac surgery is not completely understood. Recent evidence suggests a pivotal role for the endothelium in AKI. In experimental models of AKI, the endothelial specific receptor Tie2 with its ligands Angiopoietin (Ang) 1 and Ang2 are deranged. This study investigates their status after cardiac surgery, and a possible relation between angiopoietins and AKI.

Methods

From a cohort of 541 patients that underwent cardiac surgery, blood and urine was collected at 5 predefined time points. From this cohort we identified 21 patients who had at least 50% post-operative serum creatinine increase (AKI). We constructed a control group (n = 21) using propensity matching. Systemic levels of Ang1, Ang2, and sTie2 were measured in plasma and the AKI markers albumin, kidney injury molecule-1 (KIM-1) and N-acetyl-beta-D-glucosaminidase (NAG) were measured in the urine.

Results

Ang2 plasma levels increased over time in AKI (from 4.2 to 11.6 ng/ml) and control patients (from 3.0 to 6.7 ng/ml). Ang2 levels increased 1.7-fold more in patients who developed AKI after cardiac surgery compared to matched control patients. Plasma levels of sTie2 decreased 1.6-fold and Ang1 decreased 3-fold over time in both groups, but were not different between AKI and controls (Ang1 P = 0.583 and sTie2 P = 0.679). Moreover, we found a positive correlation between plasma levels of Ang2 and urinary levels of NAG.

Conclusions

The endothelial Ang/Tie2 system is in dysbalance in patients that develop AKI after cardiac surgery compared to matched control patients.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号