首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ricin is a cytotoxic protein that inactivates ribosomes by hydrolyzing the N-glycosidic bond between the base and the ribose of the adenosine at position 4324 in eukaryotic 28 S rRNA. Ricin A-chain will also catalyze depurination in naked prokaryotic 16 S rRNA; the adenosine is at position 1014 in a GAGA tetraloop. The rRNA identity elements for recognition by ricin A-chain and for the catalysis of cleavage were examined using synthetic GAGA tetraloop oligoribonucleotides. The RNA designated wild-type, an oligoribonucleotide (19-mer) that approximates the structure of the ricin-sensitive site in 16 S rRNA, and a number of mutants were transcribed in vitro from synthetic DNA templates with phage T7 RNA polymerase. With the wild-type tetraloop oligoribonucleotide the ricin A-chain-catalyzed reaction has a Km of 5.7 microM and a Kcat of 0.01 min-1. The toxin alpha-sarcin, which cleaves the phosphodiester bond on the 3' side of G4325 in 28 S rRNA, does not recognize the tetraloop RNA, although alpha-sarcin does affect a larger synthetic oligoribonucleotide that has a 17-nucleotide loop with a GAGA sequence; thus, there is a clear divergence in the identity elements for the two toxins. Mutants were constructed with all of the possible transitions and transversions of each nucleotide in the GAGA tetraloop; none was recognized by ricin A-chain. Thus, there is an absolute requirement for the integrity of the GAGA sequence in the tetraloop. The helical stem of the tetraloop oligoribonucleotide can be reduced to three base-pairs, indeed, to two base-pairs if the temperature is decreased, without affecting recognition; the nature of these base-pairs does not influence recognition or catalysis by ricin A-chain. If the tetraloop is opened so as to form a GAGA-containing hexaloop, recognition by ricin A-chain is lost. This suggests that during the elongation cycle, a GAGA tetraloop either exists or is formed in the putative 17-member single-stranded region of the ricin domain in 28 S rRNA and this bears on the mechanism of protein synthesis.  相似文献   

2.
Ribosomal RNA identity elements for ricin A-chain recognition and catalysis   总被引:7,自引:0,他引:7  
Ricin is a cytotoxic protein that inactivates ribosomes by hydrolyzing the N-glycosidic bond between the base and the ribose at position A4324 in eukaryotic 28 S rRNA. The requirements for the recognition by ricin A-chain of this nucleotide and for the catalysis of cleavage were examined using a synthetic oligoribonucleotide that reproduces the sequence and the secondary structure of the RNA domain (a helical stem, a bulged nucleotide, and a 17-member single-stranded loop). The wild-type RNA (35mer) and a number of mutants were transcribed in vitro from synthetic DNA templates with phage T7 RNA polymerase. With the wild-type oligoribonucleotide the ricin A-chain catalyzed reaction has a Km of 13.55 microM and a Kcat of 0.023 min-1. Recognition and catalysis by ricin A-chain has an absolute requirement for A at the position that corresponds to 4324. The helical stem is also essential; however, the number of base-pairs can be reduced from the seven found in 28 S rRNA to three without loss of identity. The nature of these base-pairs can affect catalysis. A change of the second set from one canonical (G.C) to another (U.A) reduces sensitivity to ricin A-chain; whereas, a change of the third pair (U.A----G.C) produces supersensitivity. The bulged nucleotide does not contribute to identification. Hydrolysis is affected by altering the nucleotides in the universal sequence surrounding A4324 or by changing the position in the loop of the tetranucleotide GA(ricin)GA: all of these mutants have a null phenotype. If ribosomes are treated first with alpha-sarcin to cleave the phosphodiester bond at G4325 ricin can still catalyze depurination at A4324. This implies that cleavage by alpha-sarcin at the center of what has been presumed to be a 17 nucleotide single-stranded loop in 28 S rRNA produces ends that are constrained in some way. On the other hand, hydrolysis by alpha-sarcin of the corresponding position in the synthetic oligoribonucleotide prevents recognition by ricin A-chain. The results suggest that the loop has a complex structure, affected by ribosomal proteins, and this bears on the function in protein synthesis of the alpha-sarcin/ricin rRNA domain.  相似文献   

3.
Y Endo  K Tsurugi  H Franz 《FEBS letters》1988,231(2):378-380
The site of action of the A-chain of mistletoe lectin (ML-A) from Viscum album on eukaryotic ribosomes was studied. Treatment of rat liver ribosomes with ML-A, followed by treatment of the isolated rRNA with aniline, caused the release of a fragment with about 450 nucleotides from 28 S rRNA. Further analysis of nucleotide sequences of this fragment revealed that the aniline-sensitive site of phosphodiester bond was between positions A-4324 and G-4325 in 28 S rRNA. These results indicate that ML-A inactivates the ribosomes by cleaving a N-glycosidic bond at A-4324 of 28 S rRNA in the ribosomes as ricin A-chain does.  相似文献   

4.
The site of action of six different ribosome-inactivating proteins from plants on eukaryotic ribosomes was studied. Treatment of ribosomes with any one of these proteins caused the 28S rRNA extracted from the inactivated ribosomes to become sensitive to treatment with aniline. A fragment containing about 450 nucleotides was released from the 28S rRNA. Further analysis of the nucleotide sequences of the 450-nucleotide fragments revealed that the aniline-sensitive phosphodiester bond was between A-4324 and G-4325 of the 28S rRNA. These results indicate that all six ribosome-inactivating proteins damage eukaryotic ribosomes by cleaving the N-glycosidic bond at A-4324 of the 28S rRNA of the ribosomes, as does ricin A-chain.  相似文献   

5.
In a previous report (Endo, Y. and Tsurugi, K. (1987) J. Biol. Chem. 262, 8128-8130) it was shown that the RNA N-glycosidase activity of ricin A-chain was responsible for the ability of this protein to inactivate eukaryotic ribosomes. The objective of the present study was to determine whether a similar mechanism was used by a ribosome-inactivating protein from pearled barley (barley toxin). Rat liver ribosomes were incubated either with ricin A-chain or barley toxin, and the rRNA was extracted and treated with acidic aniline to hydrolyze phosphodiester bonds rendered susceptible by removal of a purine or pyrimidine base. Evaluation of the rRNA by polyacrylamide/agarose electrophoresis disclosed two 28 S rRNA-derived fragments which differed in size from those generated by untreated (control) ribosomes. Sequencing of the smaller of these fragments confirmed that - as is the case for ricin A-chain - the aniline-sensitive site in barley toxin-treated ribosomes was between A and G in 28 S rRNA. We conclude that barley toxin inactivates ribosomes via a mechanism identical to that of ricin A-chain: enzymatic hydrolysis of the N-glycosidic bond at A of 28 S rRNA.  相似文献   

6.
7.
The modification reaction of 28 S rRNA in eukaryotic ribosomes by ricin A-chain was characterized. To examine whether ricin A-chain release any bases from 28 S rRNA, rat liver ribosomes were incubated with a catalytic amount of the toxin, and a fraction containing free bases and nucleosides was prepared from the postribosomal fraction of the reaction mixture by means of ion-exchange column chromatography. Thin-layer chromatographic analysis of this fraction revealed a release of 1 mol of adenine from 1 mol of ribosome. When the ribosomes or naked total RNAs were treated with ricin A-chain in the presence of [32P] phosphate, little incorporation of the radioactivity into 28 S rRNA was observed, indicating that the release is not mediated by phosphorolysis. Thus, considering together with the previous result (Endo, Y., Mitsui, K., Motizuki, M., and Tsurugi, K. (1987) J. Biol. Chem. 262, 5908-5912), the results in the present experiments demonstrated that ricin A-chain inactivates the ribosomes by cleaving the N-glycosidic bond of A4324 of 28 S rRNA in a hydrolytic fashion.  相似文献   

8.
Ricin is a cytotoxic plant protein that inactivates ribosomes by hydrolyzing the N-glycosidic bond at position A4324 in eukaryotic 28S rRNA. Recent studies showed that a four-nucleotide loop, GAGA, can function as a minimum substrate for ricin (the first adenosine corresponds to the site of depurination). We previously clarified the solution structure of this loop by NMR spectroscopy [Orita et al. (1993) Nucleic Acids Res. 21, 5670-5678]. To elucidate further details of the structural basis for recognition of its substrate by ricin, we studied the properties of a synthetic dodecanucleotide, r1C2U3C4A5G6dA7G8A9U10G11A12G (6dA12mer), which forms an RNA hairpin structure with a GdAGA loop and in which the site of depurination is changed from adenosine to 2'-deoxyadenosine. The N-glycosidase activity against the GdAGA loop of the A-chain of ricin was 26 times higher than that against the GAGA loop. NMR studies indicated that the overall structure of the GdAGA loop was similar to that of the GAGA loop with the exception of the sugar puckers of 6dA and 7G. Therefore, it appears that the 2'-hydroxyl group of adenosine at the depurination site (6A) does not participate in the recognition by ricin of the substrate. Since the 2'-hydroxyl group can potentially destabilize the developing positive charge of the putative transition state intermediate, an oxycarbonium ion, the electronic effect may explain, at least in part, the faster rate of depurination of the GdAGA loop compared to that of GAGA loop. We also show that the amino group of 7G is essential for substrate recognition the ricin A-chain.  相似文献   

9.
Y Endo  T Oka  K Tsurugi  H Franz 《FEBS letters》1989,248(1-2):115-118
A toxic lectin from Phoradendron californicum (PCL) was found to inactivate catalytically 60 S ribosomal subunits of rabbit reticulocytes, resulting in the inhibition of protein synthesis. To study the mechanism of action of PCL, rat liver ribosomes were treated with the toxin and the extracted rRNA was treated with aniline. A fragment containing about 450 nucleotides was released from the 28 S rRNA. Analysis of the nucleotide sequence of the fragment revealed that the aniline-sensitive phosphodiester bond was between A4324 and G4325 of the 28 S rRNA. These results indicate that PCL inactivates the ribosomes by cleaving an N-glycosidic bond at A4324 of 28 S rRNA in the ribosomes as does ricin A-chain.  相似文献   

10.
Ricin is a potent cytotoxic protein derived from the higher plant Ricinus communis that inactivates eukaryotic ribosomes. In this paper we have studied the mechanism of action of ricin A-chain on rat liver ribosomes in vitro. Our findings indicate that the toxin inactivates the ribosomes by modifying both or either of two nucleoside residues, G4323 and A4324, in 28 S rRNA. These nucleotides are located close to the alpha-sarcin cleavage site and become resistant to all ribonucleases tested. The examination of the lability of phosphodiester bonds of these nucleotides to both mild alkaline digestion and aniline treatment at acidic pH suggests that the base of A4324 is removed by the toxin. This unique activity of ricin A-chain was also observed when naked 28 S rRNA is used as a substrate, indicating that the toxin directly acts on the RNA. Similar activity on 28 S rRNA is also exhibited by abrin and modeccin, ricin-related toxins, suggesting a general mechanistic pathway for ribosome inactivation by lectin toxins.  相似文献   

11.
Ricin A-chain catalyzes the hydrolysis of the N-glycosidic bond of a conserved adenosine residue at position 4324 in the sarcin/ricin domain of 28S RNA of rat ribosome. The GAGA tetraloop closed by C-G pairs is required for recognition of the cleavage site on 28S ribosomal RNA by ricin A-chain. In this study, ricin A-chain (reduced ricin) exhibits specific depurination on a synthetic oligoribonucleotide (named SRD RNA) mimic of the sarcin/ricin domain of rat 28S ribosomal RNA under neutral and weak acidic conditions. Furthermore, the activity of intact ricin is also similar to that of ricin A-chain. However, under more acidic conditions, both enzymes lose their site specificity. The alteration in specificity of depurination is not dependent on the GAGA tetraloop of SRD RNA. A higher concentration of KCl inhibits the non-specific N-glycosidase activity much more than the specific activity of ricin A-chain. In addition, characterization of depurination sites by RNA sequencing reveals that under acidic conditions ricin A-chain can release not only adenines, but also guanines from SRD RNA or 5S ribosomal RNA. This is the first report of the non-specific deadenylation and deguanylation activity of ricin A-chain to the naked RNA under acidic conditions.  相似文献   

12.
An oligoribonucleotide (35-mer) that mimics the alpha-sarcin and the ricin region of eukaryotic 28 S rRNA was transcribed in vitro from a synthetic template with T7 RNA polymerase and was used to test whether the specificity of the hydrolysis by the toxins was retained. alpha-Sarcin, at a low concentration, cleaved a single phosphodiester bond on the 3' side of a guanosine residue in the synthetic oligomer that corresponds to G-4325 in 28 S rRNA, the site of action of the toxin in intact ribosomes. At a high concentration of alpha-sarcin, the substrate (35-mer) was hydrolyzed after each of its purines. alpha-Sarcin was without an effect on a synthetic RNA (20-mer) that reproduces the near universal sequence of nucleotides in the loop, but lacks the stem, of the toxin's domain. Thus, the specificity of the attack of alpha-sarcin on a precise region of 28 S rRNA appears to be contingent on the sequence of the nucleotides and the structure of the domain. Ricin depurinated a nucleotide in the synthetic oligomer (35-mer), and in the presence of aniline the phosphoribose backbone was cleaved at a position that conforms to A-4324 in 28 S rRNA, the site of action of the toxin in vivo.  相似文献   

13.
A single chain ribosome-inactivating protein with RNA N-glycosidase activity, here named Dianthin 29, was isolated from leaves of Dianthus barbatus L. Incubation of intact Escherichia coli ribosomes with Dianthin 29 and subsequent aniline treatment of the isolated rRNA releases a rRNA fragment of 243 nucleotides from 23 S rRNA. Nucleotide sequence studies showed that the site of N-glycosidic bond cleavage is at A-2660 within the universally conserved sequence 5'-AGUACGAGAGGA-3' near the 3'-end of 23/28 S rRNAs. To our knowledge, Dianthin 29 is the first ribosome-inactivating protein which is shown to inactivate intact prokaryotic ribosomes in the same manner as eukaryotic ribosomes.  相似文献   

14.
Ricin is a cytotoxic protein that inactivates ribosomes by hydrolyzing the N-glycosidic bond at position A4324 in eukaryotic 28S rRNA. Its substrate domain forms a double helical stem and a 17-base loop that includes the sequence GAGA, the second adenosine of which corresponds to A4324. Recently, studies of mutant RNAs have shown that the four-nucleotide loop, GAGA, can function as a substrate for ricin. To investigate the structure that is recognized by ricin, we studied the properties of a short synthetic substrate, the dodecaribonucleotide r-CUCAGAGAUGAG, which forms a RNA hairpin structure with a GABA loop and a stem of four base pairs. The results of NMR spectroscopy allowed us to construct the solution structure of this oligonucleotide by restrained molecular-dynamic calculations. We found that the stem region exists as an A-form duplex. 5G and 8A in the loop region form an unusual G:A base pair, and the phosphodiester backbone has a turn between 5G and 6A. This turn seems to help ricin to gain access to 6A which is the only site of depurination in the entire structure. The overall structure of the GAGA loop is similar to those of the GAAA and GCAA loops that have been described but that are not recognized by ricin. Therefore, in addition to the adenosine at the depurination site, the neighboring guanosine on the 3' side (7G) may also play a role in the recognition mechanism together with 5G and 8A.  相似文献   

15.
alpha-Sarcin is a ribonuclease that cleaves the phosphodiester bond on the 3' side of G4325 in 28S rRNA; ricin A-chain is a RNA N-glycosidase that depurinates the 5' adjacent A4324. These single covalent modifications inactivate the ribosome. An oligoribonucleotide that reproduces the structure of the sarcin/ricin domain in 28S rRNA was synthesized and mutations were constructed in the 5' C and the 3' G that surround a GAGA tetrad that has the sites of toxin action. Covalent modification of the RNA by ricin, but not by alpha-sarcin, requires a Watson-Crick pair to shut off a putative GAGA tetraloop. Either the recognition elements for the two toxins are different despite their catalyzing covalent modification of adjacent nucleotides in 28S rRNA or there are transitions in the conformation of the alpha-sarcin/ricin domain in 28S rRNA and one conformer is recognized by alpha-sarcin and the other by ricin A-chain.  相似文献   

16.
Cytotoxic ribosome-inactivating lectins from plants   总被引:5,自引:0,他引:5  
A class of heterodimeric plant proteins consisting of a carbohydrate-binding B-chain and an enzymatic A-chain which act on ribosomes to inhibit protein synthesis are amongst the most toxic substances known. The best known example of such a toxic lectin is ricin, produced by the seeds of the castor oil plant, Ricinnus communis. For ricin to reach its substrate in the cytosol, it must be endocytosed, transported through the endomembrane system to reach the compartment from which it is translocated into the cytosol, and there avoid degradation making it possible for a few molecules to inactivate a large proportion of the ribosomes and hence kill the cell. Cell entry by ricin involves the following steps: (i) binding to cell-surface glycolipids and glycoproteins bearing beta-1,4-linked galactose residues through the lectin activity of the B-chain (RTB); (ii) uptake by endocytosis and entry into early endosomes; (iii) transfer by vesicular transport to the trans-Golgi network; (iv) retrograde vesicular transport through the Golgi complex and into the endoplasmic reticulum (ER); (v) reduction of the disulfide bond connecting the A- and B-chains; (vi) a partial unfolding of the A-chain (RTA) to enable it to translocate across the ER membrane via the Sec61p translocon using the pathway normally followed by misfolded ER proteins for targeting to the ER-associated degradation (ERAD) machinery; (vi) refolding in the cytosol into a protease-resistant, enzymatically active structure; (vii) interaction with the sarcin-ricin domain (SRD) of the large ribosome subunit RNA followed by cleavage of a single N-glycosidic bond in the RNA to generate a depurinated, inactive ribosome. In addition to the highly specific action on ribosomes, ricin and related ribosome-inactivating proteins (RIPs) have a less specific action in vitro on DNA and RNA substrates releasing multiple adenine, and in some instances, guanine residues. This polynucleotide:adenosine glycosidase activity has been implicated in the general antiviral, and specifically, the anti HIV-1 activity of several single-chain RIPs which are homologous to the A-chains of the heterodimeric lectins. However, in the absence of clear cause and effect evidence in vivo, such claims should be regarded with caution.  相似文献   

17.
The molecular action of ricin A chain involves cleavage of the N-glycosidic bond between ribose and the adenine 4324 nucleotides from the 5' end of mammalian 28 S rRNA (Endo, Y., and Tsurugi, K. (1987) J. Biol. Chem. 262, 8128-8130). In this paper, four ricin- and abrin-resistant Chinese hamster ovary cell mutants that possess ribosomes resistant to this N-glycosidase action are described. Three of the mutant phenotypes, Lec26, Lec27, and Lec28, were recessive in somatic cell hybrids and define at least two new lectin-resistant complementation groups. The most extensively characterized mutant type, LEC17, was dominant in such hybrids. None of the mutants were cross-resistant to modeccin. Post-mitochondrial supernatants from each of the four mutants were resistant to inhibition of cell-free protein synthesis by ricin, ricin A chain, and abrin. In addition, polysomes isolated from mutant cells were resistant to cleavage of the adenine-ribose N-glycosidic bond by ricin A chain or abrin, as assayed by the release of an approximately 470-nucleotide fragment following aniline treatment of ribosomal RNA extracted from toxin-treated polysomes. The unique lectin-resistance properties of the different mutants suggests that the accessibility of adenine 4324 to each toxin differs. It seems likely that the recessive Chinese hamster ovary ribosomal mutants reflect structural changes in different ribosomal proteins while the dominant phenotype may be due to the modification of protein(s) or rRNA involved in toxin-ribosome interaction. Further analysis of these cell lines should provide new insights into the structure/function relationships of eukaryotic ribosomes.  相似文献   

18.
Ricin, Shiga toxin, and Shiga-like toxin II (SLT-II, Vero toxin 2) exhibit an RNA N-glycosidase activity which specifically removes a single base near the 3' end of 28 S rRNA in isolated rat liver ribosomes and deproteinized 28 S rRNA (Endo Y., Mitsui, K., Motizuki, M., & Tsurugi, K. (1987) J. Biol. Chem. 262, 5908-5912; Endo Y. & Tsurugi, K. (1987) J. Biol. Chem. 262, 8128-8130, Endo, Y., Tsurugi, K., Yutsudo, T., Takeda, Y., Ogasawara, K. & Igarashi, K. (1988) Eur. J. Biochem. 171, 45-50). These workers identified the single base removed, A-4324, by examining a 28 S rRNA degradation product which was generated by contaminating ribonucleases associated with the ribosomes. To determine whether this N-glycosidase activity applies in living cells, we microinjected ricin into Xenopus oocytes. We also microinjected Shiga toxin and a variant of Shiga-like toxin II (SLT-IIv). All three toxins specifically removed A-3732, located 378 nucleotides from the 3' end of 28 S rRNA. This base is analogous to the site observed in rat 28 S rRNA for ricin, Shiga toxin, and SLT-II. Purified, glycosylated, ricin A chain contains this RNA N-glycosidase activity in oocytes. We also demonstrated that the nonglycosylated A subunit of recombinant ricin exhibits this RNA N-glycosidase activity when injected into Xenopus oocytes. Ricin, Shiga toxin, and SLT-IIv also caused a rapid decline in oocyte protein synthesis for nonsecretory proteins.  相似文献   

19.
The cytotoxin sarcin disrupts elongation factor binding and protein synthesis by specifically cleaving one phosphodiester bond in ribosomes. To elucidate the molecular basis of toxin action, we determined three cocrystal structures of the sarcin homolog restrictocin bound to different analogs that mimic the target sarcin/ricin loop (SRL) structure of the rat 28S rRNA. In these structures, restrictocin contacts the bulged-G motif and an unfolded form of the tetraloop of the SRL RNA. In one structure, toxin loops guide selection of the target site by contacting the base critical for recognition (G4319) and the surrounding S-shaped backbone. In another structure, base flipping of the tetraloop enables cleavage by placing the target nucleotide in the active site with the nucleophile nearly inline for attack on the scissile bond. These structures provide the first views of how a site-specific protein endonuclease recognizes and cleaves a folded RNA substrate.  相似文献   

20.
Xu YZ  Li YJ  Hu HY  Hu R  Wu H  Liu WY 《Biological chemistry》2000,381(5-6):447-451
Plant ribosome-inactivating proteins specifically cleave an N-glycosidic bond of a unique adenosine in the largest ribosomal RNA, releasing an adenine from ribosomes of different sources. Here, 1H-nuclear magnetic resonance is used to analyze the enzymatic products of the A-chain of cinnamomin, a type-II ribosome-inactivating protein (RIP) acting on the nucleotides in situ. The enzymatic activities of the RIP on nine nucleotides are compared. Cinnamomin A-chain can cleave the N-glycosidic bond and release an adenine base from adenine nucleotides except 5'-ATP; however, it cannot act on 5'-GMP, 5'-CMP, and 5'-UMP. The A-chain in the mixture of cinnamomin A- and B-chain exhibits higher activity toward adenine nucleotides than the A-chain alone does, suggesting that the B-chain can conformationally stabilize the A-chain. Intact cinnamomin also exhibits lower activity toward adenine nucleotides. However, cinnamomin B-chain and heat-denatured intact cinnamomin cannot hydrolyze all the tested nucleotides. We conclude that hydrolysis of the N-C glycosidic bond of nucleotide compounds by cinnamomin A-chain has a base preference, and the negatively charged phosphate group(s) reduces the recognition ability of the A-chain to adenine nucleotide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号