首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
何彦龙  王满堂  杜国祯 《生态学报》2007,27(8):3091-3098
以高寒草甸克隆植物黄帚橐吾为实验材料,通过遮荫网模拟植被遮荫,研究种子大小与萌发及幼苗生长能力的关系和幼苗对光照条件的反应。结果表明:(1)在自然光照下,黄帚橐吾种子大小对种子萌发的影响显著,大种子的萌发率高于小种子。遮荫生境下,大、小种子萌发率有所降低,但遮荫对小种子萌发的影响比大种子显著。小种子的萌发率下降了近1/8,而大种子的萌发率仅下降了1/11。(2)黄帚橐吾种子大小对幼苗生物量积累影响显著,大种子幼苗总生物量(TB)大于小种子幼苗的。但生物量的分配与播种时间相关,播种后60d,在自然光照条件下,大种子幼苗对根生物量的分配大于小种子幼苗,而对叶生物量的分配则正好相反。在遮荫环境中,大、小种子幼苗普遍对根的生物量分配增加,大种子幼苗根冠比(R/S)大于小种子幼苗。(3)黄帚橐吾种子大小对幼苗的生长也有明显影响。在自然光照下,小种子幼苗的相对生长速率(RGR)较大于大种子幼苗,但叶面积比率(LAR)、叶面积干质量比(SLA)、叶干质量(LWR)差别不明显。在遮荫条件下,幼苗的LAR、SLA、LWR显著增加,但大、小种子幼苗间差异不显著,幼苗的RGR减小,小种子幼苗的减小趋势大于大种子幼苗。  相似文献   

2.
分别在适宜和模拟低温胁迫下,测定了青藏高原3种橐吾属植物幼苗生物量的分配模式、相对生长率(RGR)、可溶性糖含量及膜渗漏率,并计算半致死温度(LT50),旨在了解这3种植物幼苗的生长特性、对低温胁迫的忍受力及其种间差异,探讨3种橐吾幼苗对高寒环境的适应能力。结果表明:3种植物的萌发初期,子叶迅速伸展,而后根/冠比快速增加,相对生长率在萌发后10~15 d达到峰值,根/冠比与生物量的累积呈极显著正相关关系;经4℃低温处理后,3种植物幼苗的存活率均超过70%,RGR峰值降低且滞后出现,回归分析表明RGR降低量的64%是由根部生物量的降低引起的;黄帚橐吾、箭叶橐吾及掌叶橐吾的LT50值分别为-8.24、-8.14、-7.28℃,表明3种植物幼苗均能够忍受苗期短暂的低温胁迫而实现种群更新;经-5℃低温处理,三者叶片中的可溶性糖含量分别增加3.61、2.90、1.61倍,而游离脯氨酸分别增加2.57、4.40、37.68倍,表明3种橐吾各自通过不同的代谢调节机制提高自身抗寒能力。总之,3种橐吾属植物均具有良好的适应青藏高原高寒气候环境的生活史对策。  相似文献   

3.
高寒草场优势杂草黄帚橐吾水浸液对牧草的化感作用   总被引:47,自引:0,他引:47  
研究了高寒草场中主要毒杂草——黄帚橐吾水浸液对同域分布的5种牧草的化感作用.将反应指数(RI)相加平均后分为一、二、三级敏感指数,分别评价不同测定指标、不同发育期和物种水平对化感作用的敏感性;从供体角度对相应RI值做同样处理,以综合评价不同水浸液及其不同浓度的化感效应.结果表明,5种牧草对黄帚橐吾化感作用的敏感性从强到弱依次为早熟禾>大雀麦>中华羊茅>羊茅>垂穗披碱草;牧草种子萌发期的敏感性强于幼苗生长期,尤以萌发指数受化感作用的影响明显.黄帚橐吾根、叶水浸液对牧草生物测定结果大多达到显著差异水平,物种水平的化感效应均表现为抑制作用,说明雨水淋溶是黄帚橐吾向环境中释放化感物质的途径之一.黄帚橐吾根部化感效应强于叶片,可能与其地下种间激烈的资源竞争有关.化感作用在增强黄帚橐吾生存竞争力、扩大种群和入侵草场中起着不容忽视的作用,可能是黄帚橐吾单优势种群落形成和草场退化的原因之一.  相似文献   

4.
受过度放牧等干扰因素的影响,黄帚橐吾(Ligularia virgaurea)在高寒草甸逐渐扩张成为优势种而被称为“退化指示种”,从而威胁生态系统功能和养分循环。然而,黄帚橐吾扩张引起的凋落物比例增多,对分解及养分释放的影响尚不清晰。凋落物分解连结着生态系统碳、氮循环,对于系统功能维持具有重要意义。本试验在三江源区黄帚橐吾为优势种的高寒草甸中,设置黄帚橐吾和其他物种凋落物的多梯度混合分解试验,测定黄帚橐吾和其他物种凋落物的重量损失和氮释放,分析黄帚橐吾生物量增多对凋落物分解的影响。结果表明:(1)分解1年后,黄帚橐吾重量损失及氮素释放较其他物种更缓慢;(2)随着黄帚橐吾生物量比例的增加,凋落物整体重量损失及氮素释放显著降低;(3)混合凋落物中黄帚橐吾能限制其他物种的分解,这种拮抗效应进一步延缓了混合凋落物的分解。综上,高寒草甸黄帚橐吾扩张引起的凋落物生物量增多通过延缓凋落物分解及氮释放,阻碍土壤养分输入,进而对草地碳氮循环过程产生不利影响。  相似文献   

5.
黄帚橐吾挥发物的化感作用及其主要成分分析   总被引:13,自引:0,他引:13  
研究了青藏高原东部高寒草场上广布的菊科毒杂草--黄帚橐吾(Ligularia virgaurea)挥发物的化感作用,并运用气相色谱-质谱方法对其挥发物主要化学成分进行了分析.结果表明,黄帚橐吾挥发物对所有5种受试牧草种子的萌发速度指数和最终萌发率均产生抑制作用,其中对垂穗披碱草和大雀麦的种子萌发抑制较为显著,而对早熟禾和羊茅影响较小.黄帚橐吾挥发物中主要含有2-甲基-庚烷(9.84%)、3-甲基-庚烷(8.25%)、庚烷(7.93%)、4-甲基-1-异丙基-双环[3,1,0]己-2-烯(7.79%)、3-甲基-己烷(6.38%)、2-甲基-己烷(5.54%)、D-苧烯(.70%)等18种化合物,占总挥发物的68.24%,其中单萜类化合物含量占总挥发物的16.58%,因此萜类化合物是其主要的化感活性物质,并通过挥发途径释放后影响到受体植物种子的萌发.黄帚橐吾挥发物的化感作用对增强其生存竞争力和种群增长起着重要作用.  相似文献   

6.
为深入了解典型毒草型退化草地形成的过程,本文对青藏高原原生草地上黄帚橐吾逐渐扩张形成典型毒草型退化草地过程中植被和土壤特征进行研究。结果表明:黄帚橐吾型退化草地形成过程中,黄帚橐吾种群密度、株高、盖度和生物量均增加;相比原生草地,退化草地的总地上生物量增加113.9%,土壤全氮、铵态氮、有机碳和速效磷含量分别增加61.0%、77.9%、45.3%和78.8%,土壤微生物生物量碳、氮分别增加42.1%和47.4%,而土壤硝态氮含量和物种丰富度分别减少40.1%和28.5%,除黄帚橐吾以外其他植物的生物量减少45.7%。黄帚橐吾极强的种间抑制能力、形态可塑性、高效的养分蓄积能力和利用效率是其成功扩张的关键,促进了黄帚橐吾型退化草地的形成。  相似文献   

7.
为了研究不同光照条件下蒙古栎幼苗的生长过程,本文通过控制实验,模拟设计4种不同的光照条件:全光照(FS)、轻度遮荫(LS)、中度遮荫(MS)和重度遮荫(SS),对蒙古栎幼苗的形态特征、光合特性和生物量分配进行比较研究。结果表明:中度遮荫和重度遮荫条件下蒙古栎幼苗的比叶面积显著大于全光照和轻度遮荫,不同光照条件下苗高无显著差异,全光照条件下蒙古栎幼苗的地径显著大于中度遮荫和重度遮荫,同时,全光照条件下的主根长度和根径显著大于3种遮荫条件,而轻度遮荫和中度遮荫又显著大于重度遮荫;最大净光合速率表现为轻度遮荫全光照中度遮荫重度遮荫的趋势,表观量子效率在全光照与轻度遮荫时显著大于中度遮荫和重度遮荫,暗呼吸速率无显著差异;全光照下单株总生物量和根系生物量最高,轻度遮荫和中度遮荫次之,重度遮荫最低;叶片生物量和茎生物量差异较小;不同器官生物量分配表现为根叶茎,并且根生物量所占比重在68%~76%之前;全光照、轻度遮荫和中度遮荫的根冠比显著高于重度遮荫。  相似文献   

8.
 研究了不同生境和密度下黄帚橐吾(Ligularia virgaurea)个体大小依赖的繁殖分配。结果表明无论在种群水平还是在个体水平上,黄帚橐吾都表现出:1) 在不同的生境和种群密度中,个体大小与繁殖体大小均不相同,其排列顺序依次为沙地>坡地>滩地、裸地>非裸地、低密度>高密度;2) 繁殖分配和单株种子均重在不同生境和种群密度中,其差异程度均从不显著(p>0.05)到极显著(p<0.01)不等;3) 繁殖体大小与个体大小在不同生境和种群密度中均呈极显著的正相关关系(p<0.01);4) 单株种子均重与个体  相似文献   

9.
 比较研究了不同光强下生长的(透光率分别为12.5%、36%、50%、100%)两种入侵性不同的外来种——紫茎泽兰(Eupatorium adenophorum)和兰花菊三七(Gynura sp.)的生物量分配、叶片形态和生长特性。结果表明: 1)两种植物叶片形态对光环境的反应相似。弱光下比叶面积(SLA)、平均单叶面积(MLS)和叶面积比(LAR)较大,随着光强的升高,SLA、MLS、LAR和叶根比(LARMR)降低。2)100%光强下紫茎泽兰叶生物量比(LMR)、叶重分数(LMF)和叶面积指数高于低光强下的值,也高于兰花菊三七,支持结构生物量比(SBR)则相反。强光下紫茎泽兰叶片自遮荫严重,这可能是其表现入侵性的重要原因之一;兰花菊三七分枝较多,避免了叶片自遮荫,较多的分枝利于种子形成对其入侵有利。3)随生长环境光强的升高,两种植物的净同化速率(NAR)、相对生长速率(RGR)和生长对NAR的响应系数均升高(但100%光强下兰花菊三七RGR降低),平均叶面积比(LARm)和生长对LARm的响应系数均降低,但不同光强下LARm对生长的影响始终大于NAR。4)随着光强的减弱,两种植物都增加高度以截获更多光能,但它们的生物量分配策略不同,紫茎泽兰根生物量比(RMR)降低,SBR增大,而兰花菊三七SBR降低,RMR增大。紫茎泽兰的生物量分配策略更好的反应了弱光环境中的资源变化情况。结论:紫茎泽兰对光环境的适应能力强于兰花菊三七。  相似文献   

10.
研究了沙埋深度和种子大小对内蒙古毛乌素沙地植被群落中占优势的柠条锦鸡儿(Caragana korshinskii Kom.)种子萌发、出苗、幼苗存活和生长的影响.结果表明,沙埋深度显著影响柠条锦鸡儿的种子萌发率、休眠率、出苗率、幼苗存活率及生物量.在0.5-2cm的浅层沙埋下,种子萌发率、出苗率、幼苗存活率及生物量最高,休眠率最低;沙埋深度≥4 cm时,柠条锦鸡儿的种子萌发率、出苗率、幼苗存活率及生物量随着沙埋深度增加显著降低,而休眠率却显著升高;沙埋深度≥12 cm时,柠条锦鸡儿种子不能够出苗,幼苗也不能够存活.种子大小对柠条锦鸡儿种子萌发率没有显著影响,但对出苗率、幼苗存活率及生物量影响显著.在各个沙埋深度下,不同大小的柠条锦鸡儿种子间的萌发率没有显著差异.当沙埋深度≤6 cm时,不同大小的柠条锦鸡儿种子在同一沙埋深度下的出苗率间没有显著差异;但当沙埋深度≥8 cm时,在同一沙埋深度下,大种子的出苗率显著高于中种子和小种子的出苗率,而中种子和小种子出苗率间没有显著差异.0.5-10 cm的沙埋深度中,除6 cm和8 cm深度下中种子和小种子萌发幼苗的生物量间没有显著差异外,其余深度下,大种子萌发的幼苗的存活率及生物量显著高于同一沙埋深度下中种子萌发的幼苗的存活率及生物量,后者又显著高于小种子萌发的幼苗的存活率及生物量.可能正是种子萌发对沙埋环境的忍耐或响应能力以及种子的多态性提高了柠条锦鸡儿在毛乌素沙地的适合度,为其在流动或半流动沙丘环境中成功定居并形成优势群落奠定了基础.  相似文献   

11.
He Y L  Wang M T  Wen S J  Zhang Y H  Ma T  Du G Z 《农业工程》2007,27(8):3091-3097
We studied the influence of seed size on germination, seedling growth and seedling responses to light in Ligularia virgaurea, a clonal herb native to the Qinghai-Tibet Plateau. (1) Under unshaded conditions, large seeds had significantly (P < 0.001) higher rates of germination than did small seeds. Both large and small seeds showed significantly reduced levels of germination under shaded conditions. The magnitude of this effect was greater for small seeds than for large seed. (2) Seedlings from large seeds had significantly higher rates of biomass accumulation (g · day−1) than did seedlings from small seeds. The total biomass of seedlings from larger seeds is larger than that from smaller ones. And seedlings from large and small seeds also differed in biomass allocation. (3) Seedlings from small seeds have higher relative growth rates (RGR; g · g−1 · day−1) than do seedlings from large seeds under both shaded and unshaded conditions. In contrast, there was no significant difference in leaf area ratio (LAR), specific leaf area (SLA) or leaf weight ratio (LWR) between seedlings from small and large seeds. RGR, LAR, SLA and LWR were all significantly higher in seedlings grown under shaded conditions than under unshaded conditions.  相似文献   

12.
Abstract

Relative growth rate (RGR) is a fundamental trait for comparative plant ecology but cannot be measured in situ, leading to problems in interpreting vegetation function. However, the components of RGR (net assimilation rate (NAR), leaf area ratio (LAR), leaf weight ratio (LWR), and specific leaf area (SLA)) can be calculated for wild plants from morphological measurements (leaf area, leaf dry mass, whole plant dry mass), which potentially reflect RGR. Seeds of 19 species from Italian prealpine calcareous grasslands were collected and seedlings were cultivated under controlled conditions. RGR, NAR, LAR, LWR and SLA were analysed. The results demonstrated that RGR was positively correlated with SLA and LAR (p < 0.01). Furthermore, LAR was positively correlated with LWR and negatively with NAR (p < 0.05). Monocotyledons showed significantly higher LAR, LWR and NAR than dicotyledons, as the latter allocated a greater proportion of biomass to stems, but RGR and SLA showed no such phylogenetic constraint. Therefore SLA is the most reliable indicator of RGR in ecological and functional surveys of prealpine calcareous grasslands, and has the additional advantage that it can be measured from leaf material alone. Lower mean RGR and SLA for calcareous grassland species suggests that this vegetation is less likely to recover from the effects of disturbance than meadows and dry meadows.  相似文献   

13.
Broncano  Maria José  Riba  Miquel  Retana  Javier 《Plant Ecology》1998,138(1):17-26
A two-level multifactor experimental approach was used to compare seed germination and seedling performance of two Mediterranean tree species: the early successional Aleppo pine (Pinus halepensis Mill.) and the late successional holm oak (Quercus ilex L.). In a first experiment germination rate was evaluated under the combined effects of shade, nitrogen availability, and pine or holm oak leaf litter. In a second experiment we tested for the effects of shade, nutrient availability, and litter type on seedling survival, growth and biomass allocation. Holm oak showed higher germination rates under shaded than under unshaded conditions, while Aleppo pine showed no differences between shaded and unshaded conditions. Nitrogen availability and litter type had no significant effect on germination of either species. Both species showed increased RGR, but also higher mortality rates, when grown in an enriched nutrient environment. While Aleppo pine showed no differences in RGR and mortality rate under different shading levels, RGR decreased and mortality increased for holm oak in full light. Increased radiation decreased LAR, SLA and height:diameter ratio, and increased RWR and R/S in both species, although Aleppo pine showed more pronounced changes. Unlike Aleppo pine, holm oak responded to increased nutrient availability by decreasing R/S and increasing LAR. From these results, no seed-seedling conflicts were found in either species, but a trade-off does seem to exist for holm oak between biomass allocation traits deployed in response to increased nutrient availability and radiation. Aleppo pine outperformed holm oak under most environmental conditions tested and showed a wider regeneration niche.  相似文献   

14.
Walck  Jeffrey L.  Baskin  Jerry M.  Baskin  Carol C. 《Plant Ecology》1999,145(1):133-147
Results of field and glasshouse experiments on Solidago shortii, and our observations on this species over many years, were used to construct a conceptual model of the roles of succession, light, soil nutrients and disturbance on population vigor and maintenance of this federal-endangered species. As cover of woody vegetation increased at a population site between 1986 and 1992, number of flowering ramets of S. shortii significantly decreased but number of vegetative ramets remained nearly constant. Adult plants transplanted into a redcedar thicket and those shaded in a glasshouse produced many fewer flowering ramets and capitula per flowering ramet and less biomass and had higher mortality than those in the open. Seedlings/juveniles shaded in a glasshouse had significantly less dry biomass; lower RGR, NAR, leaf area and root/shoot ratio and higher LAR, SLA and LWR than nonshaded ones. In a field site and glasshouse, fertilized plants (NPK) consistently had more flowering ramets and capitula per flowering ramet than nonfertilized ones. Hierarchy of dry weight of plants grown in a glasshouse in soils derived from five types of bedrock was phosphatic limestone > calcareous shale > sandstone > black shale = dolomite. Flowering and biomass production in the field-fertilizer and soil-type experiments were associated closely with levels of P. Number of flowering ramets significantly increased in plants transferred from shaded to nonshaded glasshouse conditions, but no such increase occurred after opening the canopy above plants in a thicket. Both high light and high nutrient levels apparently are necessary to maintain high vigor of S. shortii. In areas subject to invasion by woody plants, periodic high intensity disturbance may be required to prevent population extirpation.  相似文献   

15.
The life span of resource-acquiring organs (leaves, shoots, fine roots) is closely associated with species successional position and environmental resource availability. We examined to what extent leaf life span is related to inter- and intraspecific variation in seedling relative growth rate (RGR). We examined relationships between relative growth rate in mass (RGRM) or height (RGRH) and leaf life span, together with classical RGRM components [net assimilation rate (NAR), specific leaf area (SLA), leaf weight ratio (LWR), and leaf area ratio (LAR)] for seedlings of five hardwood species of different successional position across a wide range of environmental resource availability, including the presence or absence of leaf litter in shaded forest understory, small canopy gaps, and large canopy gaps. Both SLA and LAR were negatively correlated with RGRM along the environmental gradient for all species. However, positive correlations were observed among species within microsites, indicating that these two components cannot consistently explain the variation in RGRM. Both NAR and LWR affect interspecific, but not intraspecific, variation in RGRM. Leaf life span was negatively correlated with either RGRM or RGRH in both inter- and intraspecific comparisons. Species with short-lived, physiologically active leaves have high growth rates, particularly in resource-rich environments. Consequently, leaf life span is a good predictor of seedling RGR. Leaf life span affects plant performance and has a strong and consistent effect on tree seedling growth, even among contrasting environments.  相似文献   

16.
  • Mechanisms of shade tolerance in tree seedlings, and thus growth in shade, may differ by leaf habit and vary with ontogeny following seed germination. To examine early responses of seedlings to shade in relation to morphological, physiological and biomass allocation traits, we compared seedlings of 10 temperate species, varying in their leaf habit (broadleaved versus needle‐leaved) and observed tolerance to shade, when growing in two contrasting light treatments – open (about 20% of full sunlight) and shade (about 5% of full sunlight).
  • We analyzed biomass allocation and its response to shade using allometric relationships. We also measured leaf gas exchange rates and leaf N in the two light treatments.
  • Compared to the open treatment, shading significantly increased traits typically associated with high relative growth rate (RGR) – leaf area ratio (LAR), specific leaf area (SLA), and allocation of biomass into leaves, and reduced seedling mass and allocation to roots, and net assimilation rate (NAR). Interestingly, RGR was not affected by light treatment, likely because of morphological and physiological adjustments in shaded plants that offset reductions of in situ net assimilation of carbon in shade. Leaf area‐based rates of light‐saturated leaf gas exchange differed among species groups, but not between light treatments, as leaf N concentration increased in concert with increased SLA in shade.
  • We found little evidence to support the hypothesis of a increased plasticity of broadleaved species compared to needle‐leaved conifers in response to shade. However, an expectation of higher plasticity in shade‐intolerant species than in shade‐tolerant ones, and in leaf and plant morphology than in biomass allocation was supported across species of contrasting leaf habit.
  相似文献   

17.
Understanding how growth and development of durum wheat cultivars respond to drought could provide a basis to develop crop improvement programmes in drought-affected tropical and subtropical countries. A greenhouse experiment was conducted to study the responses of five durum wheat cultivars to moisture stress at different developmental phases. Phenology, total dry matter (TDM), relative growth rate (RGR), leaf area ratio (LAR), net assimilation rate (NAR), leaf weight ratio (LWR), specific leaf area (SLA) and shoot:root ratio were compared. Pre-anthesis moisture stress delayed phenological development, whereas post-anthesis moisture stress accelerated it. TDM accumulation rate was different between drought-resistant and susceptible cultivars. RGR and its components changed with age and moisture availability. Drought-resistant cultivars had a high RGR in favourable periods of the growing season and a low RGR during moisture stress. In contrast, the drought-susceptible cultivar (Po) showed an opposite trend. LAR explained the differences in RGR (r=0.788) best, whereas the relationship between NAR and RGR was not significant. Even though both LWR and SLA were important factors determining the potential growth rate, LWR was of major importance to describe cultivar differences in LAR, and consequently in RGR. The drought-resistant cultivars Omrabi-5 and Boohai showed vigorous root development and/or a low shoot:root ratio. It is concluded that biomass allocation is the major factor explaining variation in RGR among the investigated durum wheat cultivars.  相似文献   

18.
Relative growth rate (RGR) and other growth parameters were studied in eight pairs of closely related deciduous and evergreen species (within the same genus or family). The main objective of this study was to test the association between leaf turnover rate and RGR, specific leaf area (SLA, leaf area/leaf dry weight) and other growth variables. Plants were grown for 6 months in a greenhouse under favourable water and nutrient conditions. Variation in RGR among the 16 woody species was due mainly to differences in morphological parameters such as leaf area ratio (LAR, whole plant area/whole plant dry weight) and SLA). However, temporal variation in RGR within species was due mainly to variation in net assimilation rate. When phylogeny was not taken into account, analyses showed that deciduous species grew faster than evergreens. In contrast, when phylogeny was taken into account, the data analysis showed that a faster RGR is not consistently associated with the deciduous habit (in five pairs it was, but in the other three it was not). The faster growth of the deciduous trees (in the five positive contrasts) could be explained by their higher LAR and higher SLA relative to evergreens. The lack of differences in RGR between deciduous and evergreens (in three pairs) was due to the higher leaf mass ratio (LMR, leaf dry biomass/total dry biomass) for the evergreens, which offset the higher SLA of the deciduous species, resulting in a similar LAR in both functional groups (LAR=LMR2SLA). Deciduous species had consistently higher SLA than evergreens. We suggest that SLA, more than RGR, could be an important parameter in determining adaptive advantages of deciduous and evergreen species.  相似文献   

19.
The large seeds of Aglaia mackiana (Meliaceae) germinate and produce vigorous seedlings under closed canopies or in large gaps. To assess seedling ecology after germination, we measured growth, herbivore damage, and survivorship of seedlings over one year. The sample included shaded seedlings from dispersed seeds, undispersed seeds under parent trees, and seedlings transplanted to gaps. We quantified the light environment using hemispherical canopy photographs taken above seedlings at the beginning and end of the one–year study. Seedlings transplanted to gaps grew faster and had more leaves, larger total leaf surface area, longer secondary roots, and greater root mass than shaded seedlings. Seedlings in gaps did not differ from shaded seedlings in survivorship or amount of herbivore– and pathogen–caused leaf damage. The canopy photographs taken one year apart suggest there is a rough equilibrium in closed canopies with slight changes occurring around an average light level. Sites with < 0.06 ISF (a unitless, relative measure of canopy openness or reflected sunlight) tended to remain the same with minor fluctuations toward brighter or darker. Sites with canopy openness > 0.06 ISF tended to close; few gaps grew larger. Seedlings under parenr trees and seedlings away from parent trees had similar amounts of leaf damage and virtually identical survivorship after 18 months, but seedlings under parent trees had slower growth rates and smaller total leaf surface areas. Dispersal did not strongly benefit seeds via escaping high levels of mortality or comperition around the parent.  相似文献   

20.
南亚热带森林24种乔木的种子萌发和幼苗生长   总被引:7,自引:0,他引:7  
以膨胀珍珠岩为基质,在光和暗的条件下,对24种南亚热带森林乔木的种子萌发和幼苗生长进行了研究。种子的形态和重量与种的演替阶段有关,种子的重量也与不同的种有关。不同种的萌发率差异较大,种子较大的种,萌发率较高。肉质果实的种子,开始萌发的时间较长。光和暗条件对萌发率和萌发速度无明显影响。幼苗高度和种子重量呈正相关,这一相关在光条件下比暗条件下更明显。暗条件明显地引起群落演替早期的树种的茎徒长,限制根的生长,而对演替后期种无显著的影响。幼苗地上部分和根系生物量的分配与种的演替阶段有关,也与不同的科有关。幼苗地上部分和根系生物量的分配也受光暗条件的影响,而不受种子重量的影响。根和叶的生物量分配和种在其群落演替阶段有关。幼苗的生物量与种子重量有显著的正相关。幼苗的相对生长率相差较大,在没有营养供应的生长基质中,以演替中间阶段的种的相对生长率较大。幼苗从种子的物质利用效率与种子重量呈负相关,而与种的演替阶段无明显的相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号