首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
2.
3.
We have discovered an unusual homeodomain protein, called HOP, which is comprised simply of a homeodomain. HOP is highly expressed in the developing heart where its expression is dependent on the cardiac-restricted homeodomain protein Nkx2.5. HOP does not bind DNA and acts as an antagonist of serum response factor (SRF), which regulates the opposing processes of proliferation and myogenesis. Mice homozygous for a HOP null allele segregate into two phenotypic classes characterized by an excess or deficiency of cardiac myocytes. We propose that HOP modulates SRF activity during heart development; its absence results in an imbalance between cardiomyocyte proliferation and differentiation with consequent abnormalities in cardiac morphogenesis.  相似文献   

4.
Hop is an unusual homeodomain protein that was first identified in the developing heart where it functions downstream of Nkx2.5 to modulate cardiac gene expression. Hop functions through interactions with histone deacetylase (HDAC) 2 to mediate repression of cardiac-specific genes, and recent studies show that HDAC activity and HDAC2 expression are decreased in people with chronic obstructive pulmonary disease. Here, we show that Hop is expressed in airway epithelium coincident with HDAC2, and expression is induced by the combination of dexamethasone and cAMP in parallel with induction of surfactant protein gene expression. Hop functions in the developing pulmonary airway, acting downstream of Nkx2.1 and GATA6, to negatively regulate surfactant protein expression. Loss of Hop expression in vivo results in defective type 2 pneumocyte development with increased surfactant production and disrupted alveolar formation. Thus Hop represents a novel regulator of pulmonary maturation that is induced by glucocorticoids to mediate functionally important HDAC-dependent negative feedback regulation.  相似文献   

5.
6.
7.
8.
9.
We tested the idea that T-box factors direct serum response factor (SRF) gene activity early in development. Analysis of SRF-LacZ "knock-in" mice showed highly restricted expression in early embryonic cardiac and skeletal muscle mesoderm and neuroectoderm. Examination of the SRF gene for regulatory regions by linking the promoter and 5'-flanking sequences, up to 5.5 kb, failed to target LacZ transgene activity to the heart and the tail pre-somitic mesenchyme. However, linkage of a minimal SRF promoter with the SRF 3'-untranslated region (UTR), inundated with multimeric T-box binding sites (TBEs), restored robust reporter gene activity to embryonic heart and tail. Finer dissection of the 3'-UTR to a small cluster of TBEs also stimulated transgene activity in the cardiac forming region and the tail, however, when the TBEs contained within these DNA sequences were mutated, preventing Tbx binding, transgene activity was lost. Tbx2, Tbx5, and the cardiac-enriched MYST family histone acetyltransferase TIP60, were observed to be mutual interactive cofactors through the TIP60 zinc finger and the T-box of the Tbx factors. In SRF-null ES cells, TIP60, Tbx2, and Tbx5 were sufficient to stimulate co-transfected SRF reporter activity, however this activity required the presence of the SRF 3'-UTR. SRF gene transactivation was blocked by two distinct TIP60 mutants, in which either the histone acetyltransferase domain was inactivated or the Zn finger-protein binding domain was excised. Our study supports the idea that SRF embryonic cardiac gene expression is dependent upon the SRF 3'-UTR enhancer, Tbx2, Tbx5, and TIP60 histone acetyltransferase activity.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
The smallest known homeodomain protein, Homeodomain only protein (Hop), was identified and described here as a temporally and spatially restricted gene in the neurogenic regions of the developing murine CNS including the cerebral cortex. Furthermore, an evolutionarily conserved 418 base pair upstream cis-regulatory DNA sequence was found to confine the Hop expression to the CNS of transgenic mice, but not to the heart which is the second major Hop expressing organ Chen, F., Kook, H., Milewski, R., Gitler, A.D., Lu, M.M., Li, J., Nazarian, R., Schnepp, R., Jen, K., Biben, C., Runke, G., Mackay, J.P., Novotny, J., Schwartz, R.J., Harvey, R.P., Mullins, M.C., Epstein, J.A., 2002. Hop is an unusual homeobox gene that modulates cardiac development. Cell 110, 713-723; Shin, C.H., Liu, Z.P., Passier, R., Zhang, C.L., Wang, D.Z., Harris, T.M., Yamagishi, H., Richardson, J.A., Childs, G., Olson, E.N., 2002. Modulation of cardiac growth and development by HOP, an unusual homeodomain protein. Cell 110, 725-735. The forebrain enhancer activity was successfully reproduced in vitro utilizing a combination of the electroporation and the organotypic brain culture method. Using this approach, the minimal requirement for the forebrain-specific enhancer sequence was delineated down to 200 base pairs. We further demonstrate that the Hop enhancer activity is inducible ectopically in a transgenic tissue by wild-type roof plate transplantation in vitro. Thus Hop is regulated in the forebrain by a so far unidentified paracrine signaling factor from the roof plate. Furthermore, the identified enhancer sequence provides an important tool for the targeted expression of transgenes in the medial cortex and the cortical hem.  相似文献   

18.
19.
20.
Tat-interactive protein 60 (Tip60) is a member of the MYST family of histone acetyltransferases (HATs). In addition to its HAT domain, Tip contains a heterochromatin-associated protein 1-like chromodomain and a zinc finger-like domain. Several alternative splice variants of Tip60 have been characterized, including full-length Tip60alpha, Tip60beta (which lacks exon V encoded by the Tip60 gene), and Tip55 (which encodes a novel 103-amino-acid C terminus). We report here that isoproteins recognized by a pan-Tip60 antibody are strongly and transiently expressed between embryonic days 8 and 11 in the embryonic mouse myocardium. A functional role for Tip60 isoproteins in cardiac myocyte differentiation is suggested by immunoprecipitation experiments showing that Tip60alpha, Tip60beta, and Tip55 can bind serum response factor (SRF) and by transient transfection assessments showing that Tip60 and SRF cooperatively activate the atrial natriuretic factor promoter. Although this combinatorial activity is inhibited by histone deacetylase 7, it was unexpectedly enhanced by point mutation of the HAT domain. Ablation of the chromodomain from Tip60beta caused derepression. These findings suggest that Tip60 modulates expression of SRF-dependent cardiac genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号