首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The hydrogen peroxide dependent oxidation of the epinephrinecopper complex to adrenochrome is mediated by free copper ions. The oxidation is enhanced by chloride ions and by the presence of serum albumin. The reaction is not inhibited by SOD or by hydroxyl radical scavengers.

The 2:1 epinephrine or dopamine:Cu(II) complexes are able to bind to DNA and to catalyze its oxidative destruction in the presence of hydrogen peroxide. The DNA-epinephrine-Cu(II) terenary complex has characteristic spectral properties. It has the capacity to catalyze the reduction of oxygen or H2O2 and it preserves the capacity over a wide range of comp1ex:DNA ratios. The rate of DNA cleavage is proportional to the rate of epinephrine oxidation and the rate determining step of the reaction Seems to be the reduction of free Cu(II) ions. The ability to form redox active stable DNA ternary complexes, suggests that under specific physiological conditions, when “free” copper ions are available. catecholamina may induce oxidative degradation of DNA and other biological macromolecules.  相似文献   

2.
Prior to comparative studies on the reactivity of various copper complexes with respect to OH radicals, the influence of free Cu2+ ions on the superoxide-independent generation of OH radicals through Fenton assays and water gamma radiolysis has been tested in the present work.

Cu2+ ions have been shown to behave in a distinct manner towards each of these two production systems. As was logically expected from the noninvolvement of copper in OH- radical production through gamma radioiysis, no influence of Cu2+ ions has been observed on the amount of radicals detected in that case. In contrast, Cu2+ ions do influence OH- radical generation through iron-driven Fenton reactions, but differently depending on copper concentration.

When present in high concentrations, Cu2+ ions significantly contribute to OH- radical production, which confirms previous observations on the reactivity of these in the presence of hydrogen peroxide. At lower levels corresponding to copper/iron ratios below unity on the contrary, Cu2+ ions behave as inhibitors of the OH- production in a pH-dependent manner over the 1-6 range investigated: the lower the pH, the greater the inhibition.

The possible origin of this previously unreported inhibitory effect is discussed.  相似文献   

3.
Addition of histidyl-peptides containing the glycyl-glycyl-L-histidyl sequence stimulated the catalysis of Ni(II) hydrogen peroxide reduction. Maximum bleaching of murexide or nitrosodimethylaniline was obtained with glycyl-glycyl-L-histidine. A decrease in the bleaching rates was observed upon addition of SOD or hydroxyl radical scavengers, showing that the hydrogen peroxide/Ni(II)/glycyl-glycyl-L-histidine system generated superoxide anions as well as hydroxyl radicals. In contrast, addition of glycyl-glycyl-L-histidine inhibited the Cu(II) hydrogen peroxide reduction.

When peptides or proteins were exposed to oxygen radicals produced by Ni(II)/glycyl-glycyl-L-histidine catalysis of hydrogen peroxide reduction, the observed effects were similar to those produced by oxygen radicals generated by water radiolysis or by Fe(II) or Cu(II) mediated Fenton-reactions: hydroxylation of phenylalanine, interchange of disulfides, destruction of tryptophans and dityrosine formation.  相似文献   

4.
Survival of Bacteroides fragilis in the presence of oxygen was dependent on the ability of bacteria to synthesize new proteins, as determined by the inhibition of protein synthesis after oxygen exposure. The B. fragilis protein profile was significantly altered after either a shift from anaerobic to aerobic conditions with or without paraquat or the addition of exogenous hydrogen peroxide. As determined by autoradiography after two-dimensional gel electrophoresis, approximately 28 newly synthesized proteins were detected in response to oxidative conditions. These proteins were found to have a broad range of pI values (from 5.1 to 7.2) and molecular weights (from 12,000 to 79,000). The hydrogen peroxide- and paraquat-inducible responses were similar but not identical to that induced by oxygen as seen by two-dimensional gel protein profile. Eleven of the oxidative response proteins were closely related, with pI values and molecular weights from 5.1 to 5.8 and from 17,000 to 23,000, respectively. As a first step to understanding the resistance to oxygen, a catalase-deficient mutant was constructed by allelic gene exchange. The katB mutant was found to be more sensitive to the lethal effects of hydrogen peroxide than was the parent strain when the ferrous iron chelator bipyridyl was added to culture media. This suggests that the presence of ferrous iron in anaerobic culture media exacerbates the toxicity of hydrogen peroxide and that the presence of a functional catalase is important for survival in the presence of hydrogen peroxide. Further, the treatment of cultures with a sublethal concentration of hydrogen peroxide was necessary to induce resistance to higher concentrations of hydrogen peroxide in the parent strain, suggesting that this was an inducible response. This was confirmed when the bacterial culture, treated with chloramphenicol before the cells were exposed to a sublethal concentration of peroxide, completely lost viability. In contrast, cell viability was greatly preserved when protein synthesis inhibition occurred after peroxide induction. Complementation of catalase activity in the mutant restored the ability of the mutant strain to survive in the presence of hydrogen peroxide, showing that the catalase (KatB) may play a role in oxidative stress resistance in aerotolerant anaerobic bacteria.  相似文献   

5.
The mechanism of enzymatic inactivation of purified and membrane-bound acetylcholine esterase by ascorbate and copper was investigated. While the exposure of the enzyme to either ascorbate or copper did not cause enzymatic inactivation, the incubation of the enzyme with a combination of both ascorbate and copper resulted in a loss in acetylcholine esterase activity, which was time dependent. The enzymatic inactivation required either molecular oxygen or hydrogen peroxide under anaerobic conditions. Scavengers of hydroxyl radicals at concentrations of up to 100 mM did not provide protection to acetylcholine esterase. Only mannitol at very high concentrations (above 1 M) efficiently prevented the inactivation of the enzyme. The kinetics of the aerobic oxidation of reduced ascorbate in the presence of acetylcholine esterase and copper closely followed the rate of enzyme inactivation. Addition of the chelating agents EDTA and diethylenetriaminepentaacetic acid prevented both the oxidation of ascorbate and the inactivation of the enzyme. In the presence of low concentrations of histidine (0.5-2.0 mM), which forms high affinity complexes with copper, the rate of ascorbate oxidation was similar to that recorded in its absence. On the other hand, no enzyme inactivation was indicated in the presence of histidine. Low temperature EPR measurements have demonstrated the binding of copper to the enzyme, and have shown the reduction of the cupric enzyme to the corresponding cuprous complex. In view of these results, a general "site-specific" mechanism for biological damage can be offered, in which copper(II) ions are bound to enzymes or other biological macromolecules. Ascorbate plays a dual role: it reduces the cupric complex to the corresponding cuprous state and serves as a source for H2O2, which, in turn, reacts with the reduced copper complex, in a Fenton reaction. In this reaction, secondary hydroxyl radicals are site specifically formed, and react preferentially with the protein, at the site of their formation, causing its inactivation. This mechanism is analogous to that previously proposed (Samuni, A., Chevion, M., and Czapski, G. (1981) J. Biol. Chem. 256, 12632-12635) for the enhancement of the biological damage caused by superoxide in the presence of copper.  相似文献   

6.
The inactivation of glutamine synthetase (GS; EC 6.3.1.2) by metal-catalyzed oxidation (MCO) systems was studied in several Prochlorococcus strains, including the axenic PCC 9511. GS was inactivated in the presence of various oxidative systems, either enzymatic (as NAD(P)H+NAD(P)H-oxidase+Fe(3+)+O(2)) or non-enzymatic (as ascorbate+Fe(3+)+O(2)). This process required the presence of oxygen and a metal cation, and is prevented under anaerobic conditions. Catalase and peroxidase, but not superoxide dismutase, effectively protected the enzyme against inactivation, suggesting that hydrogen peroxide mediates this mechanism, although it is not directly responsible for the reaction. Addition of azide (an inhibitor of both catalase and peroxidase) to the MCO systems enhanced the inactivation. Different thiols induced the inactivation of the enzyme, even in the absence of added metals. However, this inactivation could not be reverted by addition of strong oxidants, as hydrogen peroxide or oxidized glutathione. After studying the effect of addition of the physiological substrates and products of GS on the inactivation mechanism, we could detect a protective effect in the case of inorganic phosphate and glutamine. Immunochemical determinations showed that the concentration of GS protein significantly decreased by effect of the MCO systems, indicating that inactivation precedes the degradation of the enzyme.  相似文献   

7.
Thiourea and superoxide dismutase were effective antidotes to paraquat toxicity in an HL60 cell culture system, whereas other hydroxyl scavengers were ineffective. The efficacy of thioureas was not due to blockage of intracellular paraquat uptake, inhibition of NADPH-P-450 reductase, or reaction with the paraquat radical. Thiourea also competitively inhibited the reduction of cytochrome c by the xanthine/xanthine oxidase superoxide-generating system, and the release of iron from ferritin by superoxide radicals. The reaction of superoxide with thiourea produced a sulfhydryl compound distinct from products formed by hydrogen peroxide or hydroxyl radicals. Spectrophotometric and chromatographic studies indicated the carbon-sulfide double bond was converted to a sulfhydryl group which reacted with Ellman's reagent. Additional confirmatory evidence for the sulfhydryl compound was obtained with carbon-13 NMR and mass spectroscopies. Thus, thioureas are direct scavengers of superoxide radicals as well as hydroxyl radicals and hydrogen peroxide. The rate constant for the reduction of thiourea by superoxide was estimated at 1.1 x 10(3) M-1 s-1. The implication of this finding on free radical studies, the mechanism of paraquat toxicity, and the metabolism of thioureas is discussed.  相似文献   

8.
Creatine kinase is a sulfhydryl containing enzyme that is particularly susceptible to oxidative inactivation. This enzyme is potentially vulnerable to inactivation under conditions when it would be used as a diagnostic marker of tissue damage such as during cardiac ischemia/reperfusion or other oxidative tissue injury. Oxidative stress in tissues can induce the release of iron from its storage proteins, making it an available catalyst for free radical reactions. Although creatine kinase inactivation in a heart reperfusion model has been documented, the mechanism has not been fully described, particularly with regard to the role of iron. We have investigated the inactivation of rabbit muscle creatine kinase by hydrogen peroxide and by xanthine oxidase generated superoxide or Adriamycin radicals in the presence of iron catalysts. As shown previously, creatine kinase was inactivated by hydrogen peroxide. Ferrous iron enhanced the inactivation. In addition, micromolar levels of iron and iron chelates that were reduced and recycled by superoxide or Adriamycin radicals were effective catalysts of creatine kinase inactivation. Of the physiological iron chelates studied, Fe(ATP) was an especially effective catalyst of inactivation by what appeared to be a site-localized reaction. Fe(ICRF-198), a non-physiological chelate of interest because of its putative role in alleviating Adriamycin-induced cardiotoxicity, also catalyzed the inactivation. Scavenger studies implicated hydroxyl radical as the oxidant involved in iron-dependent creatine kinase inactivation. Loss of protein thiols accompanied loss of creatine kinase activity. Reduced glutathione (GSH) provided marked protection from oxidative inactivation, suggesting that enzyme inactivation under physiological conditions would occur only after GSH depletion.  相似文献   

9.
Abstract Superoxide dismutase activity was detected in Aeromonas salmonicida under iron-replete and iron-limited culture conditions. Under iron-replete conditions an iron superoxide dismutase, molecular mass 50,400 Da, was identified based on inhibition by hydrogen peroxide but not by millimolar concentrations of cyanide. When the available iron in the culture medium was limited by addition of the non-assimilable iron chelator 2,2-dipyridyl, a manganese superoxide dismutase, molecular mass 45,600 Da, was identified, which was resistant to inhibition by either hydrogen peroxide or cyanide. The change in enzyme production would appear to be iron dependent, as addition of FeCl3 in excess to iron-limited broths resulted in only the iron superoxide dismutase being synthesised. Examination of the location of the superoxide dismutase enzymes revealed that the manganese superoxide dismutase expressed under iron limitation is located in the periplasm, while the iron superoxide dismutase has a cytoplasmic location. The periplasmic manganese superoxide dismutase was able to protect A. salmonicida against extracellular riboflavin-generated superoxide, with A. salmonicida grown under iron-limited conditions exhibiting a 32-fold increase in minimum bactericidal concentration of riboflavin compared to cells cultured under iron-replete conditions. Furthermore, in a time-course study of bactericidal activity of exogenously generated superoxide against A. salmonicida , bacteria grown under iron-replete conditions and expressing cytoplasmic iron superoxide dismutase were rapidly killed, whilst those grown under iron limitation expressing periplasmic manganese superoxide dismutase survived for the duration of the experiment.  相似文献   

10.
The in vivo production of HO- requires iron ions, H2O2 and O2- or other oxidants but probably does not occur through the Haber-Weiss reaction. Instead oxidants, such as O2-, increase free iron by releasing Fe(II) from the iron-sulfur clusters of dehydratases and by interfering with the iron-sulfur clusters reassembly. Fe(II) then reduces H2O2, and in turn Fe(III) and the oxidized cluster are re-reduced by cellular reductants such as NADPH and glutathione. In this way, SOD cooperates with cellular reductants in keeping the iron-sulfur clusters intact and the rate of HO- production to a minimum.

O2- and other oxidants can release iron from Fe(II)-containing enzymes as well as copper from thionein. The released Fe(III) and Cu(II) are then reduced to Fe(II) and Cu(I) and can then participate in the Fenton reaction.

In mammalian cells oxidants are able to convert cytosolic aconitase into active IRE-BP, which increases the “free” iron concentration intracellularly both by decreasing the biosynthesis of ferritin and increasing biosynthesis of transferrin receptors.

The biological role of the soxRS regulon of Escherichia coli, which is involved in the adaptation toward oxidative stress, is presumably to counteract the oxidative inactivation of the iron clusters and the subsequent release of iron with consequent increased rate of production of HO.  相似文献   

11.
Iron mediates paraquat toxicity in Escherichia coli   总被引:7,自引:0,他引:7  
The role of iron ions in paraquat toxicity was studied in bacterial system. We show that addition of ferrous iron led to an enhancement of the bacterial killing, whereas addition of chelating agents, such as nitrilotriacetate and desferrioxamine, markedly reduced, up to a total abolishment, the toxic effects. The calculated rates of bacterial killing are proportional to both paraquat and iron concentrations, and conform to the rate equation: dN/dt = -k[paraquat] [Fe2+]. The killing constant for iron, k, is 24-fold smaller than the corresponding value for copper. Mannitol, an OH. scavenger, has a partial protective effect: 15-35% at concentrations range of 1-50 mM, respectively. Histidine, on the other hand, provided a more efficient protection that may be due to a combination of various effects. Induction of endogenous superoxide dismutase and catalase provided partial protection (about 25%). These findings, together with an earlier study on the role of copper in paraquat toxicity (Kohen, R., and Chevion, M. (1985) Free Rad. Res. Commun. 1, 79-88) indicate that transition metals play a central catalytic role in the production of the deleterious effects of paraquat, probably by redox cycling and producing OH. via the site-specific Fenton reaction.  相似文献   

12.
A concentration of H2O2 resulting in mode one killing of Escherichia coli is more toxic when exposure to the oxidant is performed in complete medium (K medium), as compared to a saline (M9 salts). Inorganic salts (MgSO4 and CaCl2), thiamine or glucose, when added separately, or combined, to M9 salts had no effect on the cytotoxic response to H2O2. In contrast, the lethality of the oxidant was highly dependent on the presence of the amino acids in the incubation medium. The addition of glucose further enhanced this response. Among the seventeen amino acids which are present in the complete amino acid mixture, only two, i.e. L-histidine and L-cystine, were found to increase the toxicity of H2O2. Again, glucose augmented this response.

The effect of these amino acids on the growth inhibitory action of hydrogen peroxide was also tested in Chinese Hamster Ovary cells. It was found that L-histidine was capable of increasing the toxicity of the oxidant whereas all the other amino acids did not affect the toxicity of the oxidant. Glucose only slightly augmented this effect of L-histidine.

DNA single strand breakage produced by H2O2, was increased by L-histidine and was not significantly modified by the other amino acids. DNA double strand breakage was also shown to occur in cells exposed to H2O2-L-histidine, and this effect was independent on the presence of glucose.

These results demonstrate that the cytotoxic response of bacterial and mammalian cells to challenge with H2O2 is highly dependent on the composition of the extracellular milieu. Particularly relevant seems to be the effect of L-histidine, which markedly sensitizes both types of cells to the insult elicited by the oxidant, and that of L-cystine, which increases the sensitivity of E. coli cells.  相似文献   

13.
The inactivation of glutamine synthetase (GS; EC 6.3.1.2) by metal-catalyzed oxidation (MCO) systems was studied in several Prochlorococcus strains, including the axenic PCC 9511. GS was inactivated in the presence of various oxidative systems, either enzymatic (as NAD(P)H+NAD(P)H-oxidase+Fe3++O2) or non-enzymatic (as ascorbate+Fe3++O2). This process required the presence of oxygen and a metal cation, and is prevented under anaerobic conditions. Catalase and peroxidase, but not superoxide dismutase, effectively protected the enzyme against inactivation, suggesting that hydrogen peroxide mediates this mechanism, although it is not directly responsible for the reaction. Addition of azide (an inhibitor of both catalase and peroxidase) to the MCO systems enhanced the inactivation. Different thiols induced the inactivation of the enzyme, even in the absence of added metals. However, this inactivation could not be reverted by addition of strong oxidants, as hydrogen peroxide or oxidized glutathione. After studying the effect of addition of the physiological substrates and products of GS on the inactivation mechanism, we could detect a protective effect in the case of inorganic phosphate and glutamine. Immunochemical determinations showed that the concentration of GS protein significantly decreased by effect of the MCO systems, indicating that inactivation precedes the degradation of the enzyme.  相似文献   

14.
《Free radical research》2013,47(1):691-696
Free radicals have been incriminated in a variety of injurious processes including the toxicity of the herbicide paraquat and the damage following ischemia and reperfusion of different organs.

Based on the assumption that iron and copper could serve as mediators for the transformation of relatively low reactive species (such as superoxide radicals, hydrogen peroxide, axorbate, and others) to the highly reactive species, in the site-specific metal-mediated mechanism, two new modes for intervention have been tried out. The first is the introduction of specific chelators that “pull” out redox-active and available metals, and by this reduce the apparent damage. Desferrioxamine was shown to protect bacterial cells and mammals against the poisonous effects of paraquat. Using the retrogradly perfused isolated rat heart, we have demonstrated that the chelator neocuproine, which effectively binds both iron and copper provides a major protection against hydrogen peroxide-induced cardiac damage and against ischemia/ reperfusion-induced arrhythmias. Likewise, TPEN a heavy metal chelator. provides almost total (> 90%) protection against ischemia/reperfusion-induced arrhythmias.

The other mode of intervention is the use of redox-inactive metal ions that could compete for the binding sites of iron and copper, and by this “push” these metal ions out, lead to their displacement, and divert the site of free radical attack. Applying Zn(II) complexes provided a marked protection against metal mediated free radical-induced damage in the copper-mediated paraquat toxicity to E. coli, and in the arrhythmias induced by ischemia and reperfusion.

It is proposed that the complex zinc-desferrioxamine would be the ultimate protector being effective by both the “pull” and “push” mechanisms.  相似文献   

15.
Cystine markedly enhanced the cytotoxic response of Escherichia coli cells to concentrations of hydrogen peroxide resulting in mode one killing, but displayed little effect in mode two killed cells. The effect of cystine was concentration-dependent over a range of 5-50 μM and did not further increase at higher levels. Cystine had similar effects in other bacterial systems.

In order to sensitize the cells to the oxidative injury, the amino acid must be present during exposure to the oxidant since no enhancement of the cytotoxic response can be observed in cystine pre-loaded cells. In addition, no further enhancement of cytotoxicity could be detected when cystine was added before and left during challenge with the oxidant. The enhancing effect of cystine on oxidative injury of E. coli cells appears to be directly mediated by the amino acid and in fact cysteic acid, the most likely oxidation product, had no effect on the killing of bacterial cells elicited by hydrogen peroxide. Other disulfide compounds such as oxidized glutathione, cystamine and dithionitrobenzoic acid only slightly increased the susceptibility of bacteria to the oxidant. The effect of the disulfides was not concentration-dependent over a range of 200-800 μM and was statistically significant only for cystamine.

Taken together, these results indicate that cystine markedly increases the cytotoxic response of bacteria to hydrogen peroxide and suggest that the amino acid might impair the cellular defence machinery against hydrogen peroxide. This effect may involve a thiol-disulfide exchange reaction at the cell membrane level.  相似文献   

16.
The metal-mediated site-specific mechanism for free radical-induced biological damage is reviewed. According to this mechanism, cooper- or iron-binding sites on macromolecules serve as centers for repeated production of hydroxyl radicals that are generated via the Fenton reaction. The aberrations induced by superoxide, ascorbate, isouramil, and paraquat are summarized. An illustrative example is the enhancement of double-strand breaks by ascorbate/copper. Prevention of the site-specific free radical damage can be accomplished by using selective chelators for iron and copper, by displacing these redox-active metals with other redox-inactive metals such as zinc, by introducing high concentrations of hydroxyl radicals scavengers and spin trapping agents, and by applying protective enzymes that remove superoxide or hydrogen peroxide. Histidine is a special agent that can intervene in free radical reactions in variety of modes. In biological systems, there are traces of copper and iron that are at high enough levels to catalyze free-radical reactions, and account for such deleterious processes. In the human body Fe/Cu = 80/1 (w/w). Nevertheless, both (free) copper and iron are soluble enough, and the rate constants of their reduced forms with hydrogen peroxide are sufficiently high to suggest that they might be important mediators of free radical toxicity.  相似文献   

17.
Generation and enhanced detoxification of toxic free radicals by glutathione peroxidase and glutathione transferase in human breast tumor cells have been suggested to play an important role in toxicity and in resistance to adriamycin. We have examined the biochemical basis of paraquat-induced free radical formation and the mechanism of resistance to this agent in human breast tumor cell lines. We have also compared the similarities and differences between adriamycin and paraquat in their mode of free radical formation and tumor cell kill. Anaerobic incubation of paraquat resulted in the formation of the paraquat cation radical in both the sensitive and resistant cells which increased with time and was enhanced by NADPH addition. Our studies show that while both adriamycin and paraquat form hydroxyl radicals (.OH) in these cell lines, adriamycin was 2-3 fold better at reducing oxygen. The formation of .OH was inhibited by exogenously added superoxide dismutase and catalase, indicating the involvement of both superoxide anion radical and hydrogen peroxide. In the adriamycin-resistant cell line, less .OH was formed by each of these drugs. While the .OH appeared to be formed outside by both adriamycin and paraquat in the drug-sensitive cells, experiments using chromium oxalate as a spin-broadening agent suggest that the drug-induced .OH formation in the resistant cells is an intracellular event. The adriamycin-resistant cell line was also cross-resistant to paraquat, suggesting a common mechanism of toxicity for both drugs. However, adriamycin was significantly more toxic (4000-times) to the sensitive cells suggesting that either other mechanisms or site-specific free radical formation are also important in biochemical mechanisms of adriamycin toxicity.  相似文献   

18.
Enzymatic activity of purified or membrane-bound acetylcholine esterase was lost when incubated aerobically in the presence of both favism-inducing agent (isouramil or divicine) and copper ions. The requirement for oxygen could be substituted by hydrogen peroxide. Chelating agents provided total protection to the proteins. The suggested mechanism of enzymatic inactivation is analogous to that suggested earlier for the effects of superoxide and ascorbate, and involves the site-specific formation of hydroxyl radicals in the metal-mediated Haber-Weiss reaction. These findings may be relevant to the understanding of the pathogenesis of favism.  相似文献   

19.
Monoraphidium braunii glutamine synthetase is inactivated by several mixed-function oxidation systems. Inactivation requires oxygen and a metal cation as it does not take place under anaerobic conditions or in the presence of EDTA. Glutamine synthetase can be protected against that inactivation by peroxidase and catalase but not by superoxide dismutase indicating that hydrogen peroxide is involved in the process, although hydrogen peroxide is not itself effective. The oxidative modification of glutamine synthetase renders the protein more sensitive to temperature and susceptible to proteolytic attack. This has been demonstrated by measuring by quantitative immunoelectrophoresis the levels of glutamine synthetase antigen, in enzymatic preparations treated with different oxidation systems. Besides, immunoblotting of crude extracts in the presence of mixed-function oxidation systems shows the disappearance of material cross-reacting with anti-glutamine synthetase antibodies. Other results show that glutamine synthetase from Chlamydomonas reinhardtii could be subjected to the same kind of oxidative inactivation. The possible regulatory role of oxidative modification of glutamine synthetase in green algae is discussed.  相似文献   

20.
Phosphate buffer solutions of two dipeptides prevalent in striated muscle, L-carnosine (beta-alanyl-L-histidine) and L-anserine (beta-alanyl-L-1-methylhistidine), produce active oxygen species as measured by bleaching of N,N-dimethyl-4-nitrosoaniline (RNO). Activity is enhanced 5-14-fold in the presence of 2-mercaptoimidazoles such as ergothioneine, carbimazole (3-methyl-2-mercaptoimidazole-1-carboxylate), methimazole (2-mercapto-1-methylimidazole) and 2-mercaptoimidazole but only slightly by thiourea and dimethylthiourea. Activity is proportional to carnosine concentration and to mercaptoimidazole concentration at a fixed concentration of the second component. A variety of imidazoles closely related to carnosine and anserine are inactive, even after addition of transition metal ions. Activity is moderately increased above the pKa of the carnosine imidazole ring (pH 7.2, 7.5 and 8.0) versus below the pKa (pH 6.5 and 6.8). Activity is slightly increased by addition of copper or cobalt ions but not by addition of ferrous or ferric ions. Activity is decreased by Chelex 100 pretreatment of phosphate buffer and stimulated when copper or cobalt ions are added to the chelated buffer but there is no significant stimulation by ferric ions. Catalase eliminates most activity but superoxide dismutase has little effect. We propose that metal-carnosine and metal-anserine complexes produce superoxide and also serve as superoxide dismutases with resultant accumulation of hydrogen peroxide. An unidentified radical produced from hydrogen peroxide subsequently bleaches RNO. From the biological distributions of carnosine, anserine and ergothioneine, we infer that deleterious effects are probably minimal under normal physiological circumstances due to tissue and cellular compartmentalization and to sequestration of these compounds and transition metal ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号