首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Regulation of glutamine synthetase by metal-catalyzed oxidative modification in the marine oxyphotobacterium Prochlorococcus
Institution:1. Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia, Canada;2. Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
Abstract:The inactivation of glutamine synthetase (GS; EC 6.3.1.2) by metal-catalyzed oxidation (MCO) systems was studied in several Prochlorococcus strains, including the axenic PCC 9511. GS was inactivated in the presence of various oxidative systems, either enzymatic (as NAD(P)H+NAD(P)H-oxidase+Fe3++O2) or non-enzymatic (as ascorbate+Fe3++O2). This process required the presence of oxygen and a metal cation, and is prevented under anaerobic conditions. Catalase and peroxidase, but not superoxide dismutase, effectively protected the enzyme against inactivation, suggesting that hydrogen peroxide mediates this mechanism, although it is not directly responsible for the reaction. Addition of azide (an inhibitor of both catalase and peroxidase) to the MCO systems enhanced the inactivation. Different thiols induced the inactivation of the enzyme, even in the absence of added metals. However, this inactivation could not be reverted by addition of strong oxidants, as hydrogen peroxide or oxidized glutathione. After studying the effect of addition of the physiological substrates and products of GS on the inactivation mechanism, we could detect a protective effect in the case of inorganic phosphate and glutamine. Immunochemical determinations showed that the concentration of GS protein significantly decreased by effect of the MCO systems, indicating that inactivation precedes the degradation of the enzyme.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号