首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
蔗糖转运蛋白(sucrose transporters,SUTs)属于跨膜转运蛋白,大多数参与蔗糖的吸收和转运。迄今为止,对高粱蔗糖转运蛋白知之甚少,为进一步研究高粱蔗糖转运蛋白家族(SbSUTs),本研究利用生物信息学方法对SbSUTs的6个成员(编号SbSUT1~SbSUT6)进行蛋白理化性质、基因结构、蛋白结构、同源性及系统进化树构建等分析。结果表明:SbSUTs是一种无信号肽、定位于质膜和叶绿体类囊膜上的疏水性膜蛋白;SbSUTs均具有GPH结构功能域,是高度保守的蛋白;α-螺旋和无规卷曲是主要的二级结构元件,其三级结构较为相似。本研究为探究SbSUTs蛋白家族在高粱的蔗糖吸收及转运中的功能提供理论依据。  相似文献   

2.
ABC转运蛋白的结构与转运机制   总被引:5,自引:0,他引:5  
腺苷三磷酸结合盒转运蛋白(ATP-binding cassette transponer,ABC转运蛋白)超家族是一组跨膜蛋白,具有ATP结合区域的单向底物转运泵,以主动转运方式完成多种分子的跨膜转运.ABC转运蛋白的一个亚家族与多药抗性(multidrug resistance,MDR)有关,而多药抗性是临床肿瘤化疗中需要解决的主要问题,所以其结构与转运机制一直是研究的热点.最近几年获得了一些高分辨率的ABC转运蛋白的晶体结构,该文将根据ABC转运蛋白的结构的研究进展对其可能的转运机制进行讨论.  相似文献   

3.
植物ABC和MATE转运蛋白与次生代谢物跨膜转运   总被引:1,自引:0,他引:1  
植物产生大量的次生代谢物,不但对植物自身适应性具有极其重要的作用,而且有着巨大的实用价值。次生代谢物的跨膜转运是植物次生代谢工程研究的一个新兴领域。ABC(ATP-binding cassette)和MATE(multidrug and toxin extrusion)转运蛋白与生物体内多种物质的跨膜转运有关,在植物次生代谢物的运输过程中均发挥着重要作用。文章主要综述了ABC和MATE转运蛋白在植物次生代谢物跨膜转运中的研究进展。  相似文献   

4.
YidC/Oxa/Alb3蛋白家族是进化上保守的蛋白质转运酶,分别负责将一些与能量合成有关的膜蛋白转运到细菌内膜、线粒体内膜和叶绿体类囊体膜。它们具有保守的跨膜结构域,广泛存在于三界生物中。本文主要综述近年来对YidC/Oxa/Alb3家族成员的分布、结构、功能及进化的研究进展。  相似文献   

5.
拟南芥养分离子转运蛋白研究进展   总被引:10,自引:2,他引:8  
养分离子的跨膜转运是细胞获取养分的重要环节,亦是植物在组织和器官水平上进行养分吸收运移的基础。文中综述了拟南芥中养分离子转运蛋白在基因克隆、序列与结构分析、功能鉴定、表达与调控方面的研究进展,其中着重讨论了这些转运蛋白在氮、磷和钾等营养元素吸收、运输、分配中的作用。  相似文献   

6.
单羧酸转运蛋白家族及其生物学功能   总被引:1,自引:0,他引:1  
单羧酸转运蛋白家族是哺乳动物细胞膜上一类重要的跨膜转运蛋白,负责乳酸,短链脂肪酸等单羧酸类化合物的跨膜转运,涉及多种生物学功能,包括促进营养物质吸收、影响代谢动态平衡、调节胞内pH值以及参与药物输送等.迄今为止,单羧酸转运蛋白家族已发现有1 4个成员,各亚型间具有底物差异性和组织分布特异性.研究单羧酸转运蛋白家族的生化特征、组织分布、生物学功能及基因表达调控,将为人和动物的营养代谢稳衡和疾病治疗提供新的方法.  相似文献   

7.
锌转运蛋白基因研究进展   总被引:1,自引:1,他引:0  
锌作为一种重要的微量元素参与了植物体内广泛的生理和生化过程,本文详细介绍了涉及Zn^2+吸收转运的ZIP基因家族(ZRT/IRT相关蛋白)和CDF(Cation diffusion facilitator)家族。ZIP家族转运蛋白主要负责将Zn^2+等二价阳离子跨膜转运进细胞内,以完成细胞内多种生理生化反应。CDF家族转运蛋白主要负责将过量Zn^2+运出细胞,或者将细胞内过量Zn^2+进行区室化隔离,降低Zn^2+对细胞的危害作用。ZIP家族转运蛋白和CDF家族转运蛋白的相互协调使得Zn^2+在细胞和有机体水平上维持着稳态,进而为细胞内各种生理生化反应的进行供一种保障机制。  相似文献   

8.
ABC转运蛋白及其在合成生物学中的应用   总被引:1,自引:0,他引:1  
ABC转运蛋白(ATP-binding cassette transporter,ABC transporter)作为一种超大膜转运蛋白家族,在大多数生物体中发挥着重要作用。文中从结构特征、转运机制以及生理功能等方面论述了ABC转运蛋白的研究进展,进而着重综述了近些年来ABC转运蛋白在合成生物学领域中的应用,并为今后进一步的研究提出了展望,希望为扩展其应用提供指导。  相似文献   

9.
陈颖  王婷  华学军 《植物学报》2018,53(6):754-763
作为植物中普遍存在的一种逆境适应机制, 脯氨酸积累一直被认为是其合成和降解调控的结果。然而越来越多的研究表明, 脯氨酸转运也可能在其积累过程中起重要作用。在植物中, 有多个氨基酸转运蛋白家族, 如氨基酸通透酶家族(AAPs)、赖氨酸组氨酸转运蛋白家族(LHTs)和脯氨酸转运蛋白家族(ProTs)参与脯氨酸在各个器官间的运输。该文对参与脯氨酸运输的基因家族成员的表达模式、生理功能及表达调控进行了综述, 以期为脯氨酸运输与积累在植物抗逆方面的研究提供参考。  相似文献   

10.
【背景】跨膜转运蛋白在微生物转运各种物质的过程中具有重要作用。【目的】通过比较原核微生物组磷酸转移酶(phosphotransferasesystem,PTS)系统和腺苷三磷酸结合盒(ATP-binding cassette,ABC)转运蛋白编码基因在两种不同生物土壤结皮中(藻结皮与藓结皮)的差异,以期揭示随着生物土壤结皮的发育演替,微生物组跨膜转运物质的生物学过程中的潜在变化趋势。【方法】对腾格里沙漠东南缘的藻结皮和藓结皮12个样品进行宏基因组测序,参照KEGG数据库PTS系统,与ABC转运蛋白代谢通路进行比较并筛选相关基因,分析其差异显著性。【结果】藻结皮和藓结皮PTS系统和ABC转运蛋白编码基因的多样性一致。在生物土壤结皮中共检测到16种PTS系统的转运蛋白的编码基因,具有显著性差异的有5种;检测到106种ABC转运蛋白的编码基因,具有显著性差异的有46种,并对这46种转运蛋白结合的底物以及变化趋势进行了详细的描述。【结论】生物土壤结皮发育演替过程中,微生物组从环境中摄取能够增加渗透势物质的潜力总体呈现降低趋势,转运氨基酸、细胞膜和细胞壁组分的潜力总体呈现增加趋势,对于矿物离子、辅助因子、糖类和碳酸氢盐等的转运潜力总体无明显变化。需要注意的是这些转运蛋白编码基因多样性及差异与生物土壤结皮的关系还有待实验证明与解释。  相似文献   

11.
Ye J  van den Berg B 《The EMBO journal》2004,23(16):3187-3195
Tsx is a nucleoside-specific outer membrane (OM) transporter of Gram-negative bacteria. We present crystal structures of Escherichia coli Tsx in the absence and presence of nucleosides. These structures provide a mechanism for nucleoside transport across the bacterial OM. Tsx forms a monomeric, 12-stranded beta-barrel with a long and narrow channel spanning the outer membrane. The channel, which is shaped like a keyhole, contains several distinct nucleoside-binding sites, two of which are well defined. The base moiety of the nucleoside is located in the narrow part of the keyhole, while the sugar occupies the wider opening. Pairs of aromatic residues and flanking ionizable residues are involved in nucleoside binding. Nucleoside transport presumably occurs by diffusion from one binding site to the next.  相似文献   

12.
氮素是植物生长发育的重要营养元素,也是限制植物生物量尤其是经济产量的关键营养元素之一.植物不仅能从外界获取无机氮素(硝酸根、铵根和尿素等),还能以氨基酸、寡肽等形式获取有机氮素.植物已进化出复杂的运输系统来吸收与运输这些含氮化合物.硝酸根运输基因家族分为低亲和力硝酸根运输基因(low-affmity nitrate t...  相似文献   

13.
Nucleotide-sugar transporters (NSTs) form a family of structurally related transmembrane proteins that transport nucleotide-sugars from the cytoplasm to the endoplasmic reticulum and Golgi lumen. In these organelles, activated sugars are substrates for various glycosyltransferases involved in oligo- and polysaccharide biosynthesis. The Arabidopsis thaliana genome contains more than 40 members of this transporter gene family, of which only a few are functionally characterized. In this study, two Arabidopsis UDP-galactose transporter cDNAs (UDP-GalT1 and UDP-GalT2) are isolated by expression cloning using a Chinese hamster ovary cell line (CHO-Lec8) deficient in UDP-galactose transport. The isolated genes show only 21% identity to each other and very limited sequence identity with human and yeast UDP-galactose transporters and other NSTs. Despite this low overall identity, the two proteins clearly belong to the same gene family. Besides complementing Lec8 cells, the two NSTs are shown to transport exclusively UDP-galactose by an in vitro NST assay. The most homologous proteins with known function are plant transporters that locate in the inner chloroplast membrane and transport triose-phosphate, phosphoenolpyruvate, glucose-6-phosphate, and xylulose 5-phosphate. Also, the latter proteins are members of the same family, which therefore has been named the NST/triose-phosphate transporter family.  相似文献   

14.
The molecular basis of the transport of organic ions (which include such medically important compounds as drugs, toxins, and metabolites) has been intensively studied ever since the identification of the prototypical anion and cation transporters, OAT1 (originally cloned by us as NKT) and OCT1. Here we report the cloning of two novel putative organic ion transporters with 12 predicted membrane spanning segments that are most homologous to mammalian OCTNs (carnitine transporters) and to the Drosophila putative transporter, Orct, an intriguing correspondence that led us to name our sequences Fly-like putative transporters (Flipts). Another transporter we cloned has recently been identified as OAT5. Inclusion of Flipts reveals that the organic ion transporter family tree has trifurcated into three branches, one bearing Flipts, OCTNs, and fly transporters, and the other two bearing OATs and OCTs. Flipts are widely expressed in adult kidney, brain, muscle, and other tissues; in contrast, OAT1 is largely in kidney, and OAT5, in liver. In the embryo as well, Flipts are broadly distributed, whereas OAT5 was found only in fetal liver. Flipt expression patterns resemble those of the phylogenetically related OCTNs, suggesting that Flipts might also participate in carnitine transport, particularly in brain, which has relatively high Flipt expression, including EST matches from amygdala, hippocampus, and hypothalamus.  相似文献   

15.
Feng B  Shu Y  Giacomini KM 《Biochemistry》2002,41(28):8941-8947
Organic anion transporters (OATs, SLC21) are important in the excretion of endogenous and exogenous compounds in the kidney. The rat organic anion transporter, rOAT3, mediates the transport of organic anions such as p-aminohippurate (PAH) and estrone sulfate as well as the basic compound, cimetidine. In the present study, we examined the role of conserved transmembrane aromatic amino acid residues of rOAT3 in substrate recognition and transport. Alanine scanning followed by amino acid replacements was used to construct mutants of rOAT3. The uptake of model compounds was studied in Xenopus laevis oocytes expressing the mutant transporters. We observed that four mutants in transmembrane domain 7 (TMD 7), W334A, F335A, Y341A, and Y342Q, and one mutant in transmembrane domain 8 (TMD 8), F362S, exhibited a less than 2-fold enhanced uptake of PAH and cimetidine in comparison to wild-type rOAT3, which exhibited a 16-fold enhanced uptake of PAH and an 8-fold enhanced uptake of cimetidine. Estrone sulfate uptake in oocytes expressing any one of these five mutants remained at least 8-fold enhanced. The data suggest that the five residues, W334, F335, Y341, Y342, and F362, contribute differently to the transport of the small hydrophilic organic substrates PAH and cimetidine in comparison to the large hydrophobic organic substrate estrone sulfate. The effects of side chains of these five residues on transporter functions were also evaluated by constructing conservative mutations. We observed that the residues contribute to PAH and cimetidine transport in different ways: the -OH group of Y342, the indole ring of W334, and the aromatic rings of F335, Y341, and F362 are important for PAH and cimetidine transport by rOAT3. These data suggest that there is an aromatic pocket composed mainly of residues in TMD 7 in the translocation pathway of rOAT3, which is important for the transport of PAH and cimetidine. Aromatic residues in this pocket may interact directly with substrates of rOAT3 through hydrogen bonds and pi-pi interactions.  相似文献   

16.
Gram-negative bacteria, such as Escherichia coli, frequently utilize tripartite efflux complexes in the resistance-nodulation-cell division (RND) family to expel diverse toxic compounds from the cell. These efflux systems span the entire cell envelope to mediate the phenomenon of bacterial multidrug resistance. The three parts of the efflux complexes are: (1) a membrane fusion protein (MFP) connecting (2) a substrate-binding inner membrane transporter to (3) an outer membrane-anchored channel in the periplasmic space. One such efflux system CusCBA is responsible for extruding biocidal Cu(I) and Ag(I) ions. We recently determined the crystal structures of both the inner membrane transporter CusA and MFP CusB of the CusCBA tripartite efflux system from E. coli. These are the first structures of the heavy-metal efflux (HME) subfamily of the RND efflux pumps. Here, we summarize the structural information of these two efflux proteins and present the accumulated evidence that this efflux system utilizes methionine residues to bind and export Cu(I)/Ag(I). Genetic and structural analyses suggest that the CusA pump is capable of picking up the metal ions from both the periplasm and cytoplasm. We propose a stepwise shuttle mechanism for this pump to extrude metal ions from the cell.  相似文献   

17.
T Dinh  I T Paulsen    M H Saier  Jr 《Journal of bacteriology》1994,176(13):3825-3831
Seventeen fully sequenced and two partially sequenced extracytoplasmic proteins of purple, gram-negative bacteria constitute a homologous family termed the putative membrane fusion protein (MFP) family. Each such protein apparently functions in conjunction with a cytoplasmic membrane transporter of the ATP-binding cassette family, major facilitator superfamily, or heavy metal resistance/nodulation/cell division family to facilitate transport of proteins, peptides, drugs, or carbohydrates across the two membranes of the gram-negative bacterial cell envelope. Evidence suggests that at least some of these transport systems also function in conjunction with a distinct outer membrane protein. We report here that the phylogenies of these proteins correlate with the types of transport systems with which they function as well as with the natures of the substrates transported. Characterization of the MFPs with respect to secondary structure, average hydropathy, and average similarity provides circumstantial evidence as to how they may allow localized fusion of the two gram-negative bacterial cell membranes. The membrane fusion protein of simian virus 5 is shown to exhibit significant sequence similarity to representative bacterial MFPs.  相似文献   

18.
Summary The substrate and inhibitor specificity of the lactic acid (Lac) transport system of human neutrophils was investigated. The ability of a variety of compounds to inhibit the influx of [14C]lactate, presumably reflecting competition by substrate analogues for binding at the external translocation site, was taken as an index of affinity for the Lac carrier. pH-stat techniques were utilized to assess transportability. Results indicate a relatively low order of selectivity, the neutrophil H+ + lactate cotransport system demonstrating a broad acceptance of short-chain unsubstituted and substituted alkyl monocarboxylates as well as aromatic monocarboxylates. There was a slight preference for oxo, Cl, and OH substituents over other groups at the two-position of short chain alkyl fatty acids: all were readily transported across the plasma membrane at rates approaching that ofl-lactate itself. Aromatic acids were not transported inward by the carrier although these compounds did permeate via simple nonionic diffusion. The neutrophil Lac carrier can be blocked by a number of cyanocinnamate derivatives, the classical inhibitors of monocarboxylate transport in mitochondria, and by dithiol compounds and sulfhydryl-reactive agents. This constellation of biochemical properties is similar to the features that characterize other well described H+ + lactate cotransport systems in red blood cells, Ehrlich ascites tumor cells, hepatocytes, and cardiac sarcolemmal vesicles, although significant differences exist when comparisons are made to the Na+-dependent lactate transporter of the kidney proximal tubule.  相似文献   

19.
A novel transport protein with the properties of voltage-driven organic anion transport was isolated from pig kidney cortex by expression cloning in Xenopus laevis oocytes. A cDNA library was constructed from size-fractionated poly(A)+ RNA and screened for p-aminohippurate (PAH) transport in high potassium medium. A 1856-base pair cDNA encoding a 467-amino acid peptide designated as OATV1 (voltage-driven organic anion transporter 1) was isolated. The predicted amino acid sequence of OATV1 exhibited 60-65% identity to those of human, rat, rabbit, and mouse sodium-dependent phosphate cotransporter type 1 (NPT1), although OATV1 did not transport phosphate. The homology of this transporter to known members of the organic anion transporter family (OAT family) was about 25-30%. OATV1-mediated PAH transport was affected by the changes in membrane potential. The transport was Na+-independent and enhanced at high concentrations of extracellular potassium and low concentrations of extracellular chloride. Under the voltage clamp condition, extracellularly applied PAH induced outward currents in oocytes expressing OATV1. The current showed steep voltage dependence, consistent with the voltage-driven transport of PAH by OATV1. The PAH transport was inhibited by various organic anions but not by organic cations, indicating the multispecific nature of OATV1 for anionic compounds. This transport protein is localized at the apical membrane of renal proximal tubule, consistent with the proposed localization of a voltage-driven organic anion transporter. Therefore, it is proposed that OATV1 plays an important role to excrete drugs, xenobiotics, and their metabolites driven by membrane voltage through the apical membrane of the tubular epithelial cells into the urine.  相似文献   

20.
A cDNA was isolated from rat small intestine by expression cloning which encodes a novel Na+-independent transporter for aromatic amino acids. When expressed in Xenopus oocytes, the encoded protein designated as TAT1 (T-type amino acid transporter 1) exhibited Na+-independent and low-affinity transport of aromatic amino acids such as tryptophan, tyrosine, and phenylalanine (Km values: approximately 5 mm), consistent with the properties of classical amino acid transport system T. TAT1 accepted some variations of aromatic side chains because it interacted with amino acid-related compounds such as l-DOPA and 3-O-methyl-DOPA. Because TAT1 accepted N-methyl- and N-acetyl-derivatives of aromatic amino acids but did not accept their methylesters, it is proposed that TAT1 recognizes amino acid substrates as anions. Consistent with this, TAT1 exhibited sequence similarity (approximately 30% identity at the amino acid level) to H+/monocarboxylate transporters. Distinct from H+/monocarboxylate transporters, however, TAT1 was not coupled with the H+ transport but it mediated an electroneutral facilitated diffusion. TAT1 mRNA was strongly expressed in intestine, placenta, and liver. In rat small intestine TAT1 immunoreactivity was detected in the basolateral membrane of the epithelial cells suggesting its role in the transepithelial transport of aromatic amino acids. The identification of the amino acid transporter with distinct structural and functional characteristics will not only facilitate the expansion of amino acid transporter families but also provide new insights into the mechanisms of substrate recognition of organic solute transporters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号