首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
IL-18 is a pluripotent proinflammatory cytokine produced primarily by antigen presenting cells involved in numerous aspects of immune regulation most notably on lymphoid cells. The effect of IL-18 stimulation on cells in the myeloid compartment, however, has been poorly studied. Human monocytes did not respond to IL-18. However, the human myelomonocytic cell line KG-1 and monocyte-derived dendritic cells (generated by GM-CSF+IL-4) showed a marked increase in CD83, HLA-DR, and several costimulatory molecules upon stimulation with IL-18. Furthermore, IL-18 decreased pinocytosis of these cells and increased their ability to stimulate alloreactive T cell proliferation, all characteristics of mature dendritic cells. These results suggest that IL-18 is involved in the maturation of myeloid DCs, but not differentiation of monocytes into DCs. The finding that IL-18 is involved in the maturation of dendritic cells is both novel and unexpected and indicates another important role for IL-18 as a key regulator of immune responses.  相似文献   

2.
The role played by lung dendritic cells (DCs) which are influenced by external antigens and by their redox state in controlling inflammation is unclear. We studied the role played by nitric oxide (NO) in DC maturation and function. Human DCs were stimulated with a long-acting NO donor, DPTA NONOate, prior to exposure to lipopolysaccharide (LPS). Dose-and time-dependent experiments were performed with DCs with the aim of measuring the release and gene expression of inflammatory cytokines capable of modifying T-cell differentiation, towardsTh1, Th2 and Th17 cells. NO changed the pattern of cytokine release by LPS-matured DCs, dependent on the concentration of NO, as well as on the timing of its addition to the cells during maturation. Addition of NO before LPS-induced maturation strongly inhibited the release of IL-12, while increasing the expression and release of IL-23, IL-1β and IL-6, which are all involved in Th17 polarization. Indeed, DCs treated with NO efficiently induced the release of IL-17 by T-cells through IL-1β. Our work highlights the important role that NO may play in sustaining inflammation during an infection through the preferential differentiation of the Th17 lineage.  相似文献   

3.
Inflammatory mediators in the tumour microenvironment promote tumour growth, vascular development and enable evasion of anti-tumour immune responses, by disabling infiltrating dendritic cells. However, the constituents of the tumour microenvironment that directly influence dendritic cell maturation and function are not well characterised. Our aim was to identify tumour-associated inflammatory mediators which influence the function of dendritic cells. Tumour conditioned media obtained from cultured colorectal tumour explant tissue contained high levels of the chemokines CCL2, CXCL1, CXCL5 in addition to VEGF. Pre-treatment of monocyte derived dendritic cells with this tumour conditioned media inhibited the up-regulation of CD86, CD83, CD54 and HLA-DR in response to LPS, enhancing IL-10 while reducing IL-12p70 secretion. We examined if specific individual components of the tumour conditioned media (CCL2, CXCL1, CXCL5) could modulate dendritic cell maturation or cytokine secretion in response to LPS. VEGF was also assessed as it has a suppressive effect on dendritic cell maturation. Pre-treatment of immature dendritic cells with VEGF inhibited LPS induced upregulation of CD80 and CD54, while CXCL1 inhibited HLA-DR. Interestingly, treatment of dendritic cells with CCL2, CXCL1, CXCL5 or VEGF significantly suppressed their ability to secrete IL-12p70 in response to LPS. In addition, dendritic cells treated with a combination of CXCL1 and VEGF secreted less IL-12p70 in response to LPS compared to pre-treatment with either cytokine alone. In conclusion, tumour conditioned media strongly influences dendritic cell maturation and function.  相似文献   

4.
Recombinant Streptococcus gordonii expressing on the surface the C-fragment of tetanus toxin was tested as an Ag delivery system for human monocyte-derived dendritic cells (DCs). DCs incubated with recombinant S. gordonii were much more efficient than DCs pulsed with soluble C-fragment of tetanus toxin at stimulating specific CD4+ T cells as determined by cell proliferation and IFN-gamma release. Compared with DCs treated with soluble Ag, DCs fed with recombinant bacteria required 102- to 103-fold less Ag and were at least 102 times more effective on a per-cell basis for activating specific T cells. S. gordonii was internalized in DCs by conventional phagocytosis, and cytochalasin D inhibited presentation of bacteria-associated Ag, but not of soluble Ag, suggesting that phagocytosis was required for proper delivery of recombinant Ag. Bacteria were also very potent inducers of DC maturation, although they enhanced the capacity of DCs to activate specific CD4+ T cells at concentrations that did not stimulate DC maturation. In particular, S. gordonii dose-dependently up-regulated expression of membrane molecules (MHC I and II, CD80, CD86, CD54, CD40, CD83) and reduced both phagocytic and endocytic activities. Furthermore, bacteria promoted in a dose-dependent manner DC release of cytokines (IL-6, TNF-alpha, IL-1beta, IL-12, TGF-beta, and IL-10) and of the chemokines IL-8, RANTES, IFN-gamma-inducible protein-10, and monokine induced by IFN-gamma. Thus, recombinant Gram-positive bacteria appear a powerful tool for vaccine design due to their extremely high capacity to deliver Ags into DCs, as well as induce DC maturation and secretion of T cell chemoattractans.  相似文献   

5.
LIGHT is a recently cloned novel cytokine belonging to the TNF family that is selectively expressed on immature dendritic cells (iDCs) generated from monocytes isolated from human PBMCs. In these studies, we demonstrate that exogenous soluble LIGHT or soluble CD40 ligand (CD40L) can promote monocyte-derived dendritic cell maturation in vitro by the up-regulation of CD86, CD80, CD83, and HLA-DR antigen expression. Immature dendritic cells differentiated from monocytes of MDS patients displayed lower levels of costimulatory and HLA-DR molecules compared with iDCs differentiated from monocytes of normal subjects. However, upon induction of maturation by LIGHT or CD40L, the expression of costimulatory and HLA-DR molecules is comparable between DCs from MDS and normal subjects. Exogenous LIGHT- and CD40L-stimulated mature DCs (mDCs) also displayed increased antigen presentation to autologous T lymphocytes (tetanus toxin) or allogeneic T lymphocytes in mixed lymphocyte reactions. DCs matured by LIGHT showed increased secretion of IL-6, IL-12p75, and TNF-, but not IL-1. We conclude that both LIGHT and CD40L are immunoregulating factors that induce monocyte-derived iDCs from MDS patients to undergo maturation resulting in increased antigen presentation and T-cell activation. Monocyte-derived DCs can be stimulated to undergo phenotypic and functional changes with LIGHT that might be applied in the development of a DC-based vaccine for MDS treatment.  相似文献   

6.
Purpose: Dendritic cells (DCs) play an important role in the hosts immunosurveillance against cancer. It has been shown that the function of DCs is impaired and their population decreased in a cancer-bearing host. In the present study, we investigated the mechanism of down-regulation of DCs in a cancer-bearing host. Methods: We evaluated the relationship between DC infiltration and production of vascular endothelial growth factor (VEGF) in carcinoma tissue by immunohistochemistry. Furthermore, functional and phenotypical alterations of DCs were evaluated when monocyte-derived, mature DCs were treated with VEGF in vitro. Monocyte-derived DCs were generated in a culture of monocyte with interleukin 4 (IL-4) and granulocyte-macrophage colony-stimulating factor, and the maturation of DCs was induced by either lipopolysaccharide (LPS) or a proinflammatory cytokine cocktail: tumor-necrosis factor , prostaglandin E2, IL-6, and IL-1. Results: A significant inverse correlation was found between the density of DCs and the quantity of VEGF production in gastric carcinoma tissue (r=–0.39, p<0.05). In LPS-induced maturation, the ability of mature DCs to stimulate allogenic T cells and produce IL-12 (p70 heterodimer) was suppressed by the addition of VEGF in a dose-dependent manner. A lesser expression of costimulatory molecules (CD80 and CD86) was seen in DCs treated with exogenous VEGF than in DCs not treated with VEGF. The population of dead DCs (early and late apoptosis) treated with VEGF increased more than that without VEGF treatment, using the annexin V and propidium iodide evaluation in DCs matured by LPS. In contrast, in DCs matured by the proinflammatory cytokine cocktail, the down-regulation of costimulatory molecules and induction of DC apoptosis was not seen. Conclusions: These findings show that the inhibition of DC maturation by VEGF differs depending on the maturation status of the DCs.Abbreviations APC antigen-presenting cells - DC dendritic cells - ELISA enzyme-linked immunosorbent assay - FACS fluorescence-activated cell sorter - FCS fetal calf serum - FITC fluorescein isothiocyanate - GM-CSF granulocyte-macrophage colony-stimulating factor - HLA human leukocyte antigen - IL interleukin - LPS lipopolysaccharide - mAb monoclonal antibody - MHC major histocompatibility complex - PBS phosphate-buffered saline - PCNA proliferative cell nuclear antigen - PE phycoerythrin - PG prostaglandin - PI propidium iodide - TNF tumor-necrosis factor - VEGF vascular endothelial growth factor This work was supported by grants from the Ministry of Education, Culture, Sports, Science and Technology in Japan.  相似文献   

7.
Mesenchymal stem cells (MSCs) possess immunosuppressive properties. But also fully differentiated human renal tubular epithelial cells (RTECs) are able to modulate T-cell proliferation in vitro. In this study we compared two MSC populations, human adipose derived stem cells (ASCs) and human amniotic mesenchymal stromal cells (hAMSCs), and RTECs regarding their potential to inhibit monocyte-derived dendritic cell (DC) differentiation and maturation in indirect co-culture.In the presence of hAMSCs and RTECs, monocytes stimulated to undergo DC differentiation were inhibited to acquire surface phenotype of immature and mature DCs. In contrast, ASCs showed only limited suppressive capacity. Secretion of IL-12p70 was suppressed in hAMSC co-cultures and high IL-10 levels were detected in all co-cultures. Prostaglandin E2 was found in ASC and hAMSC co-cultures, whereas soluble human leukocyte antigen-G was highly elevated only in RTEC co-cultures. Thus, inhibition of DC generation by MSCs and RTECs might be mediated by different soluble factors.  相似文献   

8.
It is widely believed that generation of mature dendritic cells (DCs) with full T cell stimulatory capacity from human monocytes in vitro requires 5-7 days of differentiation with GM-CSF and IL-4, followed by 2-3 days of activation. Here, we report a new strategy for differentiation and maturation of monocyte-derived DCs within only 48 h of in vitro culture. Monocytes acquire immature DC characteristics by day 2 of culture with GM-CSF and IL-4; they down-regulate CD14, increase dextran uptake, and respond to the inflammatory chemokine macrophage inflammatory protein-1alpha. To accelerate DC development and maturation, monocytes were incubated for 24 h with GM-CSF and IL-4, followed by activation with proinflammatory mediators for another 24 h (FastDC). FastDC expressed mature DC surface markers as well as chemokine receptor 7 and secreted IL-12 (p70) upon CD40 ligation in the presence of IFN-gamma. The increase in intracellular calcium in response to 6Ckine showed that chemokine receptor 7 expression was functional. When FastDC were compared with mature monocyte-derived DCs generated by a standard 7-day protocol, they were equally potent in inducing Ag-specific T cell proliferation and IFN-gamma production as well as in priming autologous naive T cells using tetanus toxoid as a model Ag. These findings indicate that FastDC are as effective as monocyte-derived DCs in stimulating primary, Ag-specific, Th 1-type immune responses. Generation of FastDC not only reduces labor, cost, and time required for in vitro DC development, but may also represent a model more closely resembling DC differentiation from monocytes in vivo.  相似文献   

9.
10.
Cytokines and other soluble factors released by tumor cells play an important role in modulating immune cells to favor tumor development. Monocyte differentiation into macrophages or dendritic cells (DCs) with specific phenotypes is deeply affected by tumor signals and understanding this context is paramount to prevent and propose new therapeutic possibilities. Hence, we developed a study to better describe the modulatory effects of leukemia and lymphoma cell products on human monocytes and monocyte-derived DCs secretion of cytokines such as interleukin (IL)-1β, tumor necrosis factor-α (TNF-α), IL-6, and IL-12. Except with the promyelocytic leukemia cell supernatants (HL-60), the other two tumor supernatants (chronic myeloid leukemia, K562 and Burkitt lymphoma, DAUDI) increased both TNF-α and IL-1β production by monocytes and monocytes undergoing differentiation. This effect was neither explained by alterations of cell number in culture nor by the high amount of vascular endothelial growth factor (VEGF) present in the tumor supernatants. Moreover, all supernatants used were able to induce drastic reduction of IL-12 secretion by cells induced to activation, suggesting a negative interference with Th1 antitumoral responses that should be a huge advantage for tumor progression.  相似文献   

11.
The microenvironment produced by solid tumors is inhibitory to the immune system, inducing dendritic cell (DC) alterations, but there is a paucity of information regarding haematological malignances. The aim of this study was to investigate DC differentiation under the influence of leukemic cell products. Monocytes from healthy volunteers were cultured in the presence of IL-4 and GM-CSF for the generation of immature DCs. Supernatants from leukemic cultures were added to monocyte cultures during differentiation. The lineages used were K562, a chronic myeloid leukemia, HL-60, a promyelocytic leukemia and DAUDI, originated from Burkitt lymphoma. It was observed that the expression of CD14 remained high and the CD1a was low in the presence of tumor supernatants, while non-malignant supernatants did not affect these parameters. Furthermore, IL-1β and TNF-α production by monocytes during differentiation was increased by the presence of tumor supernatants. The modifications on CD14 and CD1a expressions could be mimicked by the addition of exogenous IL-1β and partially inhibited by the neutralization of IL-1β. These results suggest that soluble products from leukemic cells interfere with DC differentiation and, in the present work, this effect could be mediated by monocyte-derived IL-1β in response to tumor supernatants.  相似文献   

12.
Dendritic cells (DCs) are the most potent antigen-presenting cells and play a central role in the host-antitumor immunity. Since it has been reported that vascular endothelial growth factor (VEGF) inhibits the functional maturation of immature-DCs and impairs DC differentiation, it is important to elucidate the mechanisms of VEGF-induced DC-dysfunction. To investigate the effects of VEGF against human mature DCs, we investigated how VEGF affects mature DCs with regards to phenotype, induction of apoptosis, IL-12(p70) production and the antigen-presenting function evaluated by allogeneic mixed leukocyte reaction (allo-MLR). We generated monocyte-derived DCs matured with lipopolysaccharide, OK-432 or pro-inflammatory cytokine cocktails. As a result, VEGF treatment did not alter the mature DCs with regard to phenotype, IL-12(p70) production and induction of apoptosis. As a novel and important finding, VEGF inhibited the ability of mature DCs to stimulate allogeneic T cells. Furthermore, this VEGF-induced DC dysfunction was mainly mediated by VEGF receptor-2 (VEGF R2). These observations were confirmed by the findings that the VEGF-induced DC dysfunction was recovered by anti-human VEGF neutralizing mAb or anti-human VEGF R2 blocking mAb, and that placenta growth factor (PlGF), VEGF R1-specific ligand, did not have any effect against mature DCs. Some modalities aiming at reversing mature-DC dysfunction induced by VEGF will be needed in order to induce the effective antitumor immunity. This work was supported by a grant from the Ministry of Education, Culture, Sports, Science and Technology in Japan.  相似文献   

13.
We investigated the role of Toxoplasma gondii-derived heat shock protein 70 (TgHSP70) as a dendritic cell (DC) maturation-inducing molecule. TgHSP70 induced the maturation of human monocyte-derived dendritic cells as determined by increased levels of surface markers, namely, CD40, CD80, CD86, and HLA-DR. Moreover, TgHSP70 also reduced phagocytic activity and increased the allostimulatory capacity of DCs, suggesting the functional maturation of DCs by TgHSP70. Maturation of DCs by TgHSP70 also elicited a significant increase in IL-12 production in a polymyxin B-insensitive manner. TgHSP70 also stimulated extracellular signal-regulated kinase and p38 kinase pathways in DCs, and TgHSP70-induced IL-12 production was inhibited by SB203580 but not by PD98059, thus indicating the role of p38 kinase in the maturation of DCs by TgHSP70. This study demonstrates the role of TgHSP70 in the functional maturation of DCs and suggests TgHSP70 as a useful molecule for the development of a vaccine against T. gondii.  相似文献   

14.
We have previously reported 27 differentially expressed microRNAs (miRNAs) during human monocyte differentiation into immature dendritic cells (imDCs) and mature DCs (mDCs). However, their roles in DC differentiation and function remain largely elusive. Here, we report that microRNA (miR)-146a and miR-146b modulate DC apoptosis and cytokine production. Expression of miR-146a and miR-146b was significantly increased upon monocyte differentiation into imDCs and mDCs. Silencing of miR-146a and/or miR-146b in imDCs and mDCs significantly prevented DC apoptosis, whereas overexpressing miR-146a and/or miR-146b increased DC apoptosis. miR-146a and miR-146b expression in imDCs and mDCs was inversely correlated with TRAF6 and IRAK1 expression. Furthermore, siRNA silencing of TRAF6 and/or IRAK1 in imDCs and mDCs enhanced DC apoptosis. By contrast, lentivirus overexpression of TRAF6 and/or IRAK1 promoted DC survival. Moreover, silencing of miR-146a and miR-146b expression had little effect on DC maturation but enhanced IL-12p70, IL-6, and TNF-α production as well as IFN-γ production by IL-12p70-mediated activation of natural killer cells, whereas miR-146a and miR-146b overexpression in mDCs reduced cytokine production. Silencing of miR-146a and miR-146b in DCs also down-regulated NF-κB inhibitor IκBα and increased Bcl-2 expression. Our results identify a new negative feedback mechanism involving the miR-146a/b-TRAF6/IRAK1-NF-κB axis in promoting DC apoptosis.  相似文献   

15.
To develop dendritic cells (DCs)-based immunotherapy for cancer patients, it is necessary to have a standardized, reproducible, fast, and easy to use protocol for in vitro generation of fully functional DCs. Recently, a new strategy was described for differentiation and maturation of human monocyte (Mo)-derived fast-DCs with full T cell stimulatory capacity within only 48–72 h of in vitro culture. Interleukin (IL)-6 plus tumour necrosis factor (TNF)-α, IL-1β, and prostaglandin (PG)-E2 were used in this strategy to induce maturation of the generated DCs. The present study further modifies this strategy by excluding IL-6 from the cytokines cocktail used for DCs maturation. The results showed that maturation of fast-DCs without IL-6 did not significantly alter the morphology, phenotype and the yield of mature DCs (P > 0.05, compared with those generated with IL-6). Moreover, fast-DCs generated without IL-6 are functional antigen presenting cells, have the ability to induce tetanus toxoid-specific autologous T cell proliferation, and are suitable for gene delivery through adenoviral vector transduction as those generated with IL-6 (P > 0.05). In conclusion, the present study proves that fully mature and functional Mo-derived fast-DCs can be generated in vitro without adding IL-6, which not only reduces the number of required recombinant cytokines, but may also resemble DCs development in vivo more closely.  相似文献   

16.
Mesenchymal stem cells (MSCs) can suppress dendritic cells (DCs) maturation and function, mediated by soluble factors, such as indoleamine 2,3-dioxygenase (IDO), prostaglandin E2 (PGE2), and nitric oxide (NO). Interleukin-10 (IL-10) is a common immunosuppressive cytokine, and the downstream signaling of the JAK-STAT pathway has been shown to be involved with DCs differentiation and maturation in the context of cancer. Whether IL-10 and/or the JAK-STAT pathway play a role in the inhibitory effect of MSCs on DCs maturation remains controversial. In our study, we cultured MSCs and DCs derived from rat bone marrow under different culturing conditions. Using Transwell plates, we detected by ELISA that the level of IL-10 significantly increased in the supernatants of MSC-DC co-cultures at 48 hours. The cell immunofluorescence assay suggested that the MSCs secreted more IL-10 than the DCs in the co-cultures. Adding exogenous IL-10 to the DCs monoculture or MSC-DC co-cultures stimulated IL-10 and led to a decrease in IL-12, and lower expression of the DCs surface markers CD80, CD86, OX62, MHC-II and CD11b/c. Supplementing the culture with an IL-10 neutralizing antibody (IL-10NA) showed precisely the opposite effect of adding IL-10. Moreover, we demonstrated that the JAK-STAT signaling pathway is involved in inhibiting DCs maturation. Both JAK1 and STAT3 expression and IL-10 secretion decreased markedly after adding a JAK inhibitor (AG490) to the co-culture plate. We propose that there is an IL-10 positive feedback loop, which may explain our observations of elevated IL-10 and enhanced JAK1 and STAT3 expression. Overall, we demonstrated that MSCs inhibit the maturation of DCs through the stimulation of IL-10 secretion, and by activating the JAK1 and STAT3 signaling pathway.  相似文献   

17.
Leishmania parasites and some molecules they secrete are known to modulate innate immune responses through effects on dendritic cells (DCs) and macrophages. Here, we characterized four Leishmania infantum potentially excreted/secreted recombinant proteins (LipESP) identified in our laboratory: Elongation Factor 1 alpha (LiEF-1α), a proteasome regulatory ATPase (LiAAA-ATPase) and two novel proteins with unknown functions, which we termed LiP15 and LiP23, by investigating their effect on in vitro differentiation and maturation of human DCs and on cytokine production by DCs and monocytes. During DCs differentiation, LipESP led to a significant decrease in CD1a. LiP23 and LiEF-1α, induced a decrease of HLA-DR and an increase of CD86 surface expression, respectively. During maturation, an up-regulation of HLA-DR and CD80 was found in response to LiP15, LiP23 and LiAAA-ATPase, while an increase of CD40 expression was only observed in response to LiP15. All LipESP induced an over-expression of CD86 with significant differences between proteins. These proteins also induced significant IL-12p70 levels in immature DCs but not in monocytes. The LipESP-induced IL-12p70 production was significantly enhanced by a co-treatment with IFN-γ in both cell populations. TNF-α and IL-10 were induced in DCs and monocytes with higher levels observed for LiP15 and LiAAA-ATPase. However, LPS-induced cytokine production during DC maturation or in monocyte cultures was significantly down regulated by LipESP co-treatment. Our findings suggest that LipESP strongly interfere with DCs differentiation suggesting a possible involvement in mechanisms established by the parasite for its survival. These proteins also induce DCs maturation by up-regulating several costimulatory molecules and by inducing the production of proinflammatory cytokines, which is a prerequisite for T cell activation. However, the reduced ability of LipESP-stimulated DCs and monocytes to respond to lipopolysaccharide (LPS) that can be observed during human leishmaniasis, suggests that under certain circumstances LipESP may play a role in disease progression.  相似文献   

18.
Transit of human neural stem cells, ReNcell CX, through the blood brain barrier (BBB) was evaluated in an in vitro model of BBB and in nude mice. The BBB model was based on rat brain microvascular endothelial cells (RBMECs) cultured on Millicell inserts bathed from the basolateral side with conditioned media (CM) from astrocytes or glioma C6 cells. Glioma C6 CM induced a significant transendothelial migration of ReNcells CX in comparison to astrocyte CM. The presence in glioma C6 CM of high amounts of HGF, VEGF, zonulin and PGE2, together with the low abundance of EGF, promoted ReNcells CX transmigration. In contrast cytokines IFN-α, TNF-α, IL-12p70, IL-1β, IL-6, IL-8 and IL-10, as well as metalloproteinases -2 and -9 were present in equal amounts in glioma C6 and astrocyte CMs. ReNcells expressed the tight junction proteins occludin and claudins 1, 3 and 4, and the cell adhesion molecule CRTAM, while RBMECs expressed occludin, claudins 1 and 5 and CRTAM. Competing CRTAM mediated adhesion with soluble CRTAM, inhibited ReNcells CX transmigration, and at the sites of transmigration, the expression of occludin and claudin-5 diminished in RBMECs. In nude mice we found that ReNcells CX injected into systemic circulation passed the BBB and reached intracranial gliomas, which overexpressed HGF, VEGF and zonulin/prehaptoglobin 2.  相似文献   

19.
Alcohol consumption inhibits accessory cell function and Ag-specific T cell responses. Myeloid dendritic cells (DCs) coordinate innate immune responses and T cell activation. In this report, we found that in vivo moderate alcohol intake (0.8 g/kg of body weight) in normal volunteers inhibited DC allostimulatory capacity. Furthermore, in vitro alcohol treatment during DC differentiation significantly reduced allostimulatory activity in a MLR using naive CD4(+) T cells, and inhibited tetanus toxoid Ag presentation by DCs. Alcohol-treated DCs showed reduced IL-12, increased IL-10 production, and a decrease in expression of the costimulatory molecules CD80 and CD86. Addition of exogenous IL-12 and IL-2, but not neutralization of IL-10, during MLR ameliorated the reduced allostimulatory capacity of alcohol-treated DCs. Naive CD4(+) T cells primed with alcohol-treated DCs showed decreased IFN-gamma production that was restored by exogenous IL-12, indicating inhibition of Th1 responses. Furthermore, CD4(+) T cells primed with alcohol-treated DCs were hyporesponsive to subsequent stimulation with the same donor-derived normal DCs, suggesting the ability of alcohol-treated DCs to induce T cell anergy. LPS-induced maturation of alcohol-treated immature DCs partially restored the reduced allostimulatory activity, whereas alcohol given only during DC maturation failed to inhibit DC functions, suggesting that alcohol primarily impairs DC differentiation rather than maturation. NFkappaB activation, a marker of DC maturation was not affected by alcohol. Taken together, alcohol both in vitro and in vivo can impair generation of Th1 immune responses via inhibition of DC differentiation and accessory cell function through mechanisms that involve decreased IL-12 induction.  相似文献   

20.
The dendritic cell (DC) coordinates innate and adaptive immunity to fight infections and cancer. Our observations reveal that DCs exposed to the microbial danger signal lipopolysaccharide (LPS) in the presence of interferon-γ (IFN-γ) acquire a continuously changing activation/maturation phenotype. The DCs’ initial mode of action is pro-inflammatory via up-regulation among others of the signaling molecule interleukin (IL) 12, which polarizes IFN-γ secreting type 1 helper T-cells (Th1). Within 24 hours the same DC switches from the pro- into an anti-inflammatory phenotype. This is mediated by autocrine IL-10 release and secretion of soluble IL-2 receptor alpha (sIL-2RA) molecules. T-cells, when contacted with DCs during their anti-inflammatory phase loose their proliferative capacity and develop regulatory T-cell (Treg) -like anti-inflammatory functions indicated by IL-10 secretion and elevated FoxP3 levels. Studying the kinetics of IL-12 and IL-10 expression from LPS/IFN-γ activated myeloid DCs on a single cell level confirmed these observations. When T-cells are separated from DCs within 24 hours, they are spared from the anti-inflammatory DC activity. We conclude that, in addition to differentiation of DCs into distinct subsets, the observed sequential functional phases of DC differentiation permit the fine-tuning of an immune response. A better understanding of time-kinetic DC features is required for optimally exploiting the therapeutic capacity of DCs in cancer immune therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号