首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 951 毫秒
1.
2.
Neonatal porcine diarrhoea of uncertain aetiology has been reported from a number of European countries. The aim of the present study was to use viral metagenomics to examine a potential viral involvement in this diarrhoea and to describe the intestinal virome with focus on eukaryotic viruses. Samples from the distal jejunum of 50 diarrhoeic and 19 healthy piglets from 10 affected herds were analysed. The viral fraction of the samples was isolated and nucleic acids (RNA and DNA fractions) were subjected to sequence independent amplification. Samples from diarrhoeic piglets from the same herds were pooled whereas samples from healthy piglets were analysed individually. In total, 29 clinical samples, plus two negative controls and one positive control consisting of a mock metagenome were sequenced using the Ion Torrent platform. The resulting sequence data was subjected to taxonomic classification using Kraken, Diamond and HMMER. In the healthy specimens, eight different mammalian virus families were detected (Adenoviridae, Anelloviridae, Astroviridae, Caliciviridae, Circoviridae, Parvoviridae, Picornaviridae, and Reoviridae) compared to four in the pooled diarrhoeic samples (Anelloviridae, Circoviridae, Picornaviridae, and Reoviridae). It was not possible to associate a particular virus family with the investigated diarrhoea. In conclusion, this study does not support the hypothesis that the investigated diarrhoea was caused by known mammalian viruses. The results do, however, indicate that known mammalian viruses were present in the intestine as early as 24–48 hours after birth, indicating immediate infection post-partum or possibly transplacental infection.  相似文献   

3.
Diarrhea is the third leading cause of death in developing countries in children under the age of five. About half a million children die of diarrhea every year, most of which in developing countries. Viruses are the main pathogen of diarrhea. In China, the fecal virome of children with diarrhea has been rarely studied. Using an unbiased viral metagenomics approach, we analyzed the fecal virome in children with diarrhea. Many DNA or RNA viruses associated with diarrhea identified in those fecal samples were mainly from six families of Adenoviridae, Astroviridae, Caliciviridae, Parvoviridae, Picornaviridae, and Reoviridae. Among them, the family of Caliciviridae accounts for the largest proportion of 78.42%, following with Adenoviridae (8.94%) and Picornaviridae (8.36%). In addition to those diarrhea-related viruses that have already been confirmed to cause human diarrhea, the viruses not associated with diarrhea were also identified including anellovirus and picobirnavirus. This study increased our understanding of diarrheic children fecal virome and provided valuable information for the prevention and treatment of viral diarrhea in this area.  相似文献   

4.
5.
正Dear Editor,The hepatitis A virus(HAV)is a common agent causing acute liver disease worldwide,with approximately 11,000deaths annually(WHO 2017).The virus is transmitted primarily by the fecal-oral route and it normally infects people living in high-density and resource-poor countries  相似文献   

6.
Hand, foot, and mouth disease (HFMD) affects infant and young children. A viral metagenomic approach was used to identify the eukaryotic viruses in fecal samples from 29 Thai children with clinical diagnosis of HFMD collected during the 2012 outbreak. These children had previously tested negative by PCR for enterovirus 71 and coxsackievirus A16 and A6. Deep sequencing revealed nine virus families: Picornaviridae, Astroviridae, Parvoviridae, Caliciviridae, Paramyxoviridae, Adenoviridae, Reoviridae, Picobirnaviridae, and Polyomaviridae. The highest number of viral sequences belonged to human rhinovirus C, astrovirus-MLB2, and coxsackievirus A21. Our study provides an overview of virus community and highlights a broad diversity of viruses found in feces from children with HFMD.  相似文献   

7.

Background

Urban rodents and house shrews are closely correlated in terms of location with humans and can transmit many pathogens to them. Hepatitis E has been confirmed to be a zoonotic disease. However, the zoonotic potential of rat HEV is still unclear. The aim of this study was to determine the prevalence and genomic characteristics of hepatitis E virus (HEV) in rodents and house shrews.

Results

We collected a total of 788 animals from four provinces in China. From the 614 collected murine rodents, 20.19% of the liver tissue samples and 45.76% of the fecal samples were positive for HEV. From the 174 house shrews (Suncus murinus), 5.17% fecal samples and 0.57% liver tissue samples were positive for HEV. All of the HEV sequences obtained in this study belonged to Orthohepevirus C1. However, we observed a lower percentage of identity in the ORF3 region upon comparing the amino acid sequences between Rattus norvegicus and Rattus losea. HEV derived from house shrews shared a high percentage of identity with rat HEV. Notably, the first near full-length of the HEV genome from Rattus losea is described in our study, and we also report the first near full-length rat HEV genomes in Rattus norvegicus from China.

Conclusion

HEV is prevalent among the three common species of murine rodents (Rattus. norvegicus, Rattus. tanezumi, and Rattus. losea) in China. HEV sequences detected from house shrews were similar to rat HEV sequences. The high identity of HEV from murine rodents and house shrews suggested that HEV can spread among different animal species.
  相似文献   

8.
Cheng WX  Li JS  Huang CP  Yao DP  Liu N  Cui SX  Jin Y  Duan ZJ 《PloS one》2010,5(10):e13583
The genus bocavirus includes bovine parvovirus (BPV), minute virus of canines (MVC), and a group of human bocaviruses (HBoV1-4). Using sequence-independent single primer amplification (SISPA), a novel bocavirus group was discovered with high prevalence (12.59%) in piglet stool samples. Two nearly full-length genome sequences were obtained, which were approximately 5,100 nucleotides in length. Multiple alignments revealed that they share 28.7-56.8% DNA sequence identity with other members of Parvovirinae. Phylogenetic analyses indicated their closest neighbors were members of the genus bocavirus. The new viruses had a putative non-structural NP1 protein, which was unique to bocaviruses. They were provisionally named porcine bocavirus 1 and 2 (PBoV1, PBoV2). PBoV1 and PBoV2 shared 94.2% nucleotide identity in NS1 gene sequence, suggesting that they represented two different bocavirus species. Two additional samples (6V, 7V) were amplified for 2,407 bp and 2,434 bp products, respectively, including a partial NP1 gene and the complete VP1 gene; Phylogenetic analysis indicated that 6Vand 7V grouped with PBoV1 and PBoV2 in the genus of bocavirus, but were in the separate clusters. Like other parvoviruses, PBoV1, PBoV2, 6Vand 7V also contained a putative secretory phospholipase A(2) (sPLA(2)) motif in the VP1 unique region, with a conserved HDXXY motif in the catalytic center. The conserved motif YXGXF of the Ca(2+)-binding loop of sPLA2 identified in human bocavirus was also found in porcine bocavirus, which differs from the YXGXG motif carried by most other parvoviruses. The observation of PBoV and potentially other new bocavirus genus members may aid in molecular and functional characterization of the genus bocavirus.  相似文献   

9.
H Tse  AK Tsang  HW Tsoi  AS Leung  CC Ho  SK Lau  PC Woo  KY Yuen 《PloS one》2012,7(8):e43986
The discovery of novel viruses in animals expands our knowledge of viral diversity and potentially emerging zoonoses. High-throughput sequencing (HTS) technology gives millions or even billions of sequence reads per run, allowing a comprehensive survey of the genetic content within a sample without prior nucleic acid amplification. In this study, we screened 156 rectal swab samples from apparently healthy bats (n = 96), pigs (n = 9), cattles (n = 9), stray dogs (n = 11), stray cats (n = 11) and monkeys (n = 20) using a HTS metagenomics approach. The complete genome of a novel papillomavirus (PV), Miniopterus schreibersii papillomavirus type 1 (MscPV1), with L1 of 60% nucleotide identity to Canine papillomavirus (CPV6), was identified in a specimen from a Common Bent-wing Bat (M. schreibersii). It is about 7.5kb in length, with a G+C content of 45.8% and a genomic organization similar to that of other PVs. Despite the higher nucleotide identity between the genomes of MscPV1 and CPV6, maximum-likelihood phylogenetic analysis of the L1 gene sequence showed that MscPV1 and Erethizon dorsatum papillomavirus (EdPV1) are most closely related. Estimated divergence time of MscPV1 from the EdPV1/MscPV1 common ancestor was approximately 60.2–91.9 millions of years ago, inferred under strict clocks using the L1 and E1 genes. The estimates were limited by the lack of reliable calibration points from co-divergence because of possible host shifts. As the nucleotide sequence of this virus only showed limited similarity with that of related animal PVs, the conventional approach of PCR using consensus primers would be unlikely to have detected the novel virus in the sample. Unlike the first bat papillomavirus RaPV1, MscPV1 was found in an asymptomatic bat with no apparent mucosal or skin lesions whereas RaPV1 was detected in the basosquamous carcinoma of a fruit bat Rousettus aegyptiacus. We propose MscPV1 as the first member of the novel Dyolambda-papillomavirus genus.  相似文献   

10.
Parvoviruses cause a variety of mild to severe symptoms or asymptomatic infections in humans and animals. During a viral metagenomic analysis of feces from children with acute diarrhea in Burkina Faso, we identified in decreasing prevalence nucleic acids from anelloviruses, dependoviruses, sapoviruses, enteroviruses, bocaviruses, noroviruses, adenoviruses, parechoviruses, rotaviruses, cosavirus, astroviruses, and hepatitis B virus. Sequences from a highly divergent parvovirus, provisionally called bufavirus, were also detected whose NS1 and VP1 proteins showed <39% and <31% identities to those of previously known parvoviruses. Four percent of the fecal samples were PCR positive for this new parvovirus, including a related bufavirus species showing only 72% identity in VP1. The high degree of genetic divergence of these related genomes from those of other parvoviruses indicates the presence of a proposed new Parvoviridae genus containing at least two species. Studies of the tropism and pathogenicity of these novel parvoviruses will be facilitated by the availability of their genome sequences.  相似文献   

11.
Polyomaviruses are small, non-enveloped viruses with a circular double-stranded DNA genome. Using a generic polyomavirus PCR targeting the VP1 major structural protein gene, a novel polyomavirus was initially identified in resected human liver tissue and provisionally named Human Polyomavirus 12 (HPyV12). Its 5033 bp genome is predicted to encode large and small T antigens and the 3 structural proteins VP1, VP2 and VP3. Phylogenetic analyses did not reveal a close relationship to any known human or animal polyomavirus. Investigation of organs, body fluids and excretions of diseased individuals and healthy subjects with both HPyV12-specific nested PCR and quantitative real-time PCR revealed additional virus-positive samples of resected liver, cecum and rectum tissues and a positive fecal sample. A capsomer-based IgG ELISA was established using the major capsid protein VP1 of HPyV12. Seroprevalences of 23% and 17%, respectively, were determined in sera from healthy adults and adolescents and a pediatric group of children. These data indicate that the virus naturally infects humans and that primary infection may already occur in childhood.  相似文献   

12.
A novel virus-like sequence from grapevine was identified by Illumina sequencing. The complete genome is 7,551 nucleotides in length, with polyadenylation at the 3' end. Translation of the sequence revealed five open reading frames (ORFs). The genomic organization was most similar to those of vitiviruses. The polymerase (ORF1) and coat protein (ORF4) genes shared 31 to 49% nucleotide and 40 to 70% amino acid sequence identities, respectively, with other grapevine vitiviruses. The virus was tentatively named grapevine virus F (GVF).  相似文献   

13.
Torque teno viruses (TTVs) are a large group of vertebrate-infecting small viruses with circular single-stranded DNA, classified in the Anelloviridae family. In swine, two genetically distinct species, Torque teno sus virus 1a (TTSuV1a) and 1b (TTSuV1b) are currently grouped into the genus Iotatorquevirus. More recently, a novel Torque teno sus virus species, named Torque teno sus virus k2b (TTSuVk2b), has been included with Torque teno sus virus k2a (TTSuVk2a) into the genus Kappatorquevirus. In the present study, TTSuV1 (TTSuV1a and TTSuV1b), TTSuVk2a and TTSuVk2b prevalence was evaluated in 721 serum samples of healthy pigs from Sardinian farms, insular Italy. This is the largest study to date on the presence of TTSuV in healthy pigs in Italy. The global prevalence of infection was 83.2% (600/721), being 62.3% (449/721), 60.6% (437/721), and 11.5% (83/721) the prevalence of TTSuV1, TTSuVk2a and TTSuVk2b, respectively. The rate of co-infection with two and/or three species was also calculated, and data show that co-infections were significantly more frequent than infections with single species, and that TTSuV1+TTSuVk2a double infection was the prevalent combination (35.4%). Quantitative results obtained using species-specific real time-qPCR evidenced the highest mean levels of viremia in the TTSuV1 subgroup, and the lowest in the TTSuVk2b subgroup. Interestingly, multiple infections with distinct TTSuV species seemed to significantly affect the DNA load and specifically, data highlighted that double infection with TTSuVk2a increased the viral titers of TTSuV1, likewise the co-infection with TTSuVk2b increased the titers of TTSuVk2a.  相似文献   

14.
We have identified in a skin swab sample from a healthy donor a new virus that we have named human gyrovirus (HGyV) because of its similarity to the chicken anemia virus (CAV), the only previously known member of the Gyrovirus genus. In particular, this virus encodes a homolog of the CAV apoptin, a protein that selectively induces apoptosis in cancer cells. By PCR screening, HGyV was found in 5 of 115 other nonlesional skin specimens but in 0 of 92 bronchoalveolar lavages or nasopharyngeal aspirates and in 0 of 92 fecal samples.  相似文献   

15.
Bovine enteric caliciviruses (BEC) are associated with diarrhea in young calves. The BEC strains detected in Europe form a third genogroup within the genus "Norwalk-like viruses" (NLV) of the family Caliciviridae. In this report, we present sequence, clinical, and histological data characterizing a novel enteropathogenic BEC strain, NB, detected in fecal specimens from calves in the United States. The complete RNA genome of the NB virus is 7,453 bases long and is organized into two open reading frames (ORFs). ORF-1 is 2,210 amino acids long and encodes a large nonstructural polyprotein contiguous with the major capsid protein (VP1), similar to the lagoviruses and "Sapporo-like viruses" (SLV). The conserved calicivirus motifs were identified in the nonstructural proteins. ORF-2 is located at the 3' end of the genome and encodes a small basic protein (VP2) of 225 amino acids. The 5' and 3' untranslated regions are 74 and 67 bases long, respectively. Among caliciviruses, NB virus shows amino acid identities of 14.1 to 22.6% over the entire ORF-1 nonstructural-protein sequence with NLV, SLV, vesivirus, and lagovirus strains, while the overall sequence identity of the complete NB VP-1 with other caliciviruses is low, varying between 14.6 and 26.7%. Phylogenetic analysis of the complete VP1 protein, including strains from all four calicivirus genera, showed the closest grouping of NB virus to be with viruses in the genus Lagovirus, which cause liver infections and systemic hemorrhage in rabbits. In gnotobiotic calves, however, NB virus elicited only diarrhea and intestinal lesions that were most severe in the upper small intestine (duodenum and jejunum), similar to the NLV BEC strains. The tissues of major organs, including the lung, liver, kidney, and spleen, had no visible microscopic lesions.  相似文献   

16.
17.
Identification of a third human polyomavirus   总被引:20,自引:2,他引:18       下载免费PDF全文
We have previously reported on a system for large-scale molecular virus screening of clinical samples. As part of an effort to systematically search for unrecognized human pathogens, the technology was applied for virus screening of human respiratory tract samples. This resulted in the identification of a previously unknown polyomavirus provisionally named KI polyomavirus. The virus is phylogenetically related to other primate polyomaviruses in the early region of the genome but has very little homology (<30% amino acid identity) to known polyomaviruses in the late region. The virus was found by PCR in 6 (1%) of 637 nasopharyngeal aspirates and in 1 (0.5%) of 192 fecal samples but was not detected in sets of urine and blood samples. Since polyomaviruses have oncogenic potential and may produce severe disease in immunosuppressed individuals, continued searching for the virus in different medical contexts is important. This finding further illustrates how unbiased screening of respiratory tract samples can be used for the discovery of diverse virus types.  相似文献   

18.
Bocaparvovirus (BOV) is a genetically diverse group of DNA viruses and a possible cause of respiratory, enteric, and neurological diseases in humans and animals. Here, two highly divergent BOVs (tentatively named as Himalayan marmot BOV, HMBOV1 and HMBOV2) were identified in the livers and feces of wild Himalayan marmots in China, by viral metagenomic analysis. Five of 300 liver samples from Himalayan marmots were positive for HMBOV1 and five of 99 fecal samples from these animals for HMBOV2. Their nearly complete genome sequences are 4,672 and 4,887 nucleotides long, respectively, with a standard genomic organization and containing protein-coding motifs typical for BOVs. Based on their NS1, NP1, and VP1, HMBOV1 and HMBOV2 are most closely related to porcine BOV SX/1-2 (approximately 77.0%/50.0%, 50.0%/53.0%, and 79.0%/54.0% amino acid identity, respectively). Phylogenetic analysis of these three proteins showed that HMBOV1 and HMBOV2 formed two distinctly independent branches in BOVs. According to these results, HMBOV1 and HMBOV2 are two different novel species in the Bocaparvovirus genus. Their identification expands our knowledge of the genetic diversity and evolution of BOVs. Further studies are needed to investigate their potential pathogenicity and their impact on Himalayan marmots and humans.  相似文献   

19.
Enteroviruses, members of the Picornaviridae family, are ubiquitous viruses responsible for mild to severe infections in human populations around the world. In 2010 Pointe-Noire, Republic of Congo recorded an outbreak of acute flaccid paralysis (AFP) in the humans, caused by wild poliovirus type 1 (WPV1). One month later, in the Tchimpounga sanctuary near Pointe-Noire, a chimpanzee developed signs similar to AFP, with paralysis of the lower limbs. In the present work, we sought to identify the pathogen, including viral and bacterial agents, responsible for this illness. In order to identify the causative agent, we evaluated a fecal specimen by PCR and sequencing. A Human enterovirus C, specifically of the EV-C99 type was potentially responsible for the illness in this chimpanzee. To rule out other possible causative agents, we also investigated the bacteriome and the virome using next generation sequencing. The majority of bacterial reads obtained belonged to commensal bacteria (95%), and the mammalian virus reads matched mainly with viruses of the Picornaviridae family (99%), in which enteroviruses were the most abundant (99.6%). This study thus reports the first identification of a chimpanzee presenting AFP most likely caused by an enterovirus and demonstrates once again the cross-species transmission of a human pathogen to an ape.  相似文献   

20.
A novel picornavirus was isolated from specimens of a diseased European eel (Anguilla anguilla). This virus induced a cytopathic effect in eel embryonic kidney cells and high mortality in a controlled transmission study using elvers. Eel picornavirus has a genome of 7,496 nucleotides that encodes a polyprotein of 2,259 amino acids. It has a typical picornavirus genome layout, but its low similarity to known viral proteins suggests a novel species in the family Picornaviridae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号